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We present a cryptosystem which is complete for the class of probabilistic public-key cryptosys-
tems with bounded error. Besides traditional encryption schemes such as RSA and El Gamal
and probabilistic encryption of Goldwasser and Micali, this class contains also Ajtai-Dwork and
NTRU cryptosystems. The latter two make errors with a small positive probability.

1. Introduction

Reductions between computational problems have great meaning for complexity
theory. In particular, reduction is a natural tool for establishing computational
hardness of various algorithmic problems. With reductions, one can prove that
some problem is at least as hard as another one. Furthermore, for some classes
of problems, it is possible to find a complete problem, which is at least as hard
as any other problem in the class.

The same idea can be applied to cryptography, where problems of breaking cryp-
tographic primitives are considered. The notion of a reduction and the notion
of completeness may be adapted to this cryptographic setting. In particular,
they may help to find the hardest to break implementations of cryptographic
primitives. If a complete public-key cryptosystem C exists, one could argue that
under the assumption that secure public-key cryptography is possible at all, the
cryptosystem C is secure.

There is a number of important cryptographic primitives such as, to name a few,
one-way functions and public-key cryptosystems. In [14], Levin presented a uni-
versal (complete) one-way function. Informally speaking, it is a polynomial-time
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computable function which is the hardest to invert (read “to break�) among all
polynomial-time computable functions. Therefore, if hard-to-invert polynomial-
time functions exist, then Levin’s function is one of them. Readers are referred to
[7, Section 2.4.1] for a more detailed discussion. Actually, the idea can be traced
back to Levin’s optimal algorithm for NP-complete problems. The same idea was
used later to construct a universal learning algorithm [8]. Surprisingly, complete
public-key encryption schemes remained unknown.

In 2005, Harnik et al. [9] came up with a notion of robust combiners which, in
the case of public-key encryption schemes, led to a construction of a complete
scheme.

The paper [9] is a conference proceedings version, and the proof that the con-
struction indeed works is only sketched. We give a detailed presentation of the
construction of a complete public-key cryptosystem and the proof of its com-
pleteness. It follows a preprint version1 of our paper; at the time our preprint
appeared, we were not aware of Harnik et al.’s work.

1.1. Probabilistic Encryption with Bounded Error

We look for a complete public-key encryption scheme in the class of probabilistic
encryption schemes with bounded error rather than in the class of all “perfect�
cryptosystems (that do not have encryption/decryption errors). The fact that
we consider “imperfect� probabilistic encryption schemes makes the result even
more interesting. We present a public-key cryptosystem which is complete for
the class that contains all “traditional� public-key encryption schemes as well as
probabilistic encryption of Goldwasser and Micali [6], one of the first encryptions
schemes, Ajtai-Dwork cryptosystem [1], which is based on lattice problems, and
NTRU [11]. The latter two allow a small positive probability of error during the
encryption and decryption of a message.

It is known that error probability of probabilistic cryptosystems can be easily
reduced down to a negligible one [5, 2].

1.2. Reductions

In order to formalize the notion of “the hardest-to-break� cryptographic primitive,
we use reductions. A cryptographic primitive S1 is reducible to another primitive
S2, iff there exists a probabilistic oracle procedure R (called a reduction) that,
given a (probabilistic) oracle A that breaks S2, breaks S1. As an illustration,
every one-way function can be inverted by a polynomial-time algorithm given an
access to a probabilistic oracle for inverting Levin’s function with considerable
probability. Therefore, one can call Levin’s function a complete one-way function.

also believed to be unsolvable in polynomial time, problems known to be NP-
complete are less likely to have efficient solutions. In the similar way, it makes

1Electronic Colloquium on Computational Complexity, ECCC TR06-046, http://eccc.hpi-
web.de/eccc-reports/2006/TR06-046/index.html
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sense to use complete cryptographic primitives as they are less likely to be break-
able by polynomial-time adversaries.

1.3. Main Result

Levin’s universal one-way function [14] implies universal constructions of many
other one-way-functions-based cryptographic primitives such as digital signature,
private-key encryption and MAC (cf. the discussion in [9]). However, it does
not imply universal public-key cryptosystem, because the existence of one-way
functions does not suffice for public-key cryptography. Levin’s idea does not work
here either: In order to construct a complete cryptosystem, we have to overcome
the difficulty that not every triple of Turing machines corresponds to a correct
encryption scheme (it may be just undecryptable). developed only recently [2].

We stress that our encryption scheme is secure only for huge values of its se-
curity parameter. For such values, key generation, encryption and decryption
algorithms, which are polynomial-time in the security parameter, require a huge
amount of time and communication. Therefore it is highly interesting to find
practical encryption schemes that are complete.

1.4. Related Work

In complexity theory, the existence of a complete language for some class of lan-
guages is closely related to the existence of a time hierarchy in the class: namely,
both complete languages and hierarchy theorems are known for “syntactic� (i.e.,
efficiently enumerable) classes, but are hard to devise for other (“semantic�)
classes. An interesting paper of Fortnow and Santhanam [3] shows that there
exists a time hierarchy for heuristic probabilistic algorithms with two-sided error
(for which no complete problems are known). Such algorithms are permitted to
violate the error bound on a small fraction of inputs.

An important ingredient of our proof is the amplification of cryptosystem correct-
ness, i.e. a procedure that reduces the error probability of a given cryptosystem
while moderately worsening its security. Such correctness amplification technique
is known from the work of Dwork, Naor and Reingold [2]. For more discussion
on this topic, see papers by Holenstein and Renner [12, 10].

2. Definitions

Definition 2.1. A public key encryption scheme S consists of three probabilistic
worst-case polynomial-time algorithms (G,E,D), for key generation, encryption
and decryption respectively.

Key generation algorithmG is given a security parameter 1n as input, and outputs
the public key and secret key pair (pk, sk) ← G(1n). Encryption algorithm E
takes as input a public key pk, a one-bit plaintext message m and produces a
ciphertext M = Epk(m). Finally, decryption algorithm D takes as input a secret
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key sk and a ciphertext. The output of D is a message m′ = Dsk(M), which may
fail to equal the original message m. For more details, see [4].

Definition 2.2. A public key encryption scheme is δ(n)-correct, iff for all suffi-
ciently large security parameters n, for any one-bit message m ∈ {0, 1},

Pr[Dsk(Epk(m)) = m] ≥ δ(n) for (pk, sk)← G(1n),

where probability is taken over randomness of algorithms G, E and D.

Definition 2.3. A probabilistic black-box A ǫ(n)-breaks an encryption scheme
(G,E, D), if for infinitely many security parameters n,

Pr[Apk(1
n, Epk(m)) = m] ≥ ǫ(n) for (pk, sk)← G(1n),

where probability is taken over uniform selection of a one-bit message m and over
randomness of algorithms G, E and of black-box A.

Since we consider public-key encryption schemes that encode one-bit messages, it
makes sense to consider only those ǫ(n) and δ(n) that are greater than 1/2. Also,
note that Definition 2.2 implies that knowing private key sk one can δ(n)-break
the encryption scheme.

We could have defined δ(n)-correct encryption schemes in a different way, so that
the probability in the definition is also taken over randomly chosen messages
m ∈ {0, 1} like in Definition 2.3. However, Definition 2.2 that we use makes our
construction of a public-key encryption scheme a little bit easier.

Definition 2.4. A probabilistic black-box A breaks an encryption scheme (G,E,
D), if it (1/2 + 1/p(n))-breaks the encryption scheme for some polynomial p(n).

An encryption scheme (G,E,D) is secure, if no probabilistic polynomial-time
Turing machine breaks (G,E,D).

Some encryption schemes may be harder to break than others. So let us define
a reduction between a pair of encryption schemes similarly to that between two
languages. In some sense, the notion of a break of a cryptosystem is an analogue
of recognition of a language in complexity theory.

Definition 2.5. An encryption scheme (G1, E1, D1) is reducible to an encryption
scheme (G2, E2, D2), if there exists a probabilistic polynomial time oracle machine
R, such that for any probabilistic black-box A that breaks (G2, E2, D2), R

A breaks
(G1, E1, D1).

2

Obviously, if encryption scheme (G1, E1, D1) is secure, then (G2, E2, D2) is also
secure. Thus, it makes sense to find a complete encryption scheme, a one to
which any other encryption scheme, secure or not, is reducible.

2Note that, by Definition 2.3, RA is provided with a security parameter 1n as well as with a
public key pk.
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Proposition 2.6. Reductions are transitive.

3. Proof strategy

In the construction of a complete public key encryption scheme (which is the
hardest to break among all encryption schemes), we employ a natural idea of
combining all possible public-key encryption schemes (Gi, Ei, Di)i∈N, in order to
achieve the maximal possible level of security. For a given security parameter n,
we combine the first n of encryption schemes in a way that their combination is
secure if and only if at least one of them is secure.

To encrypt a message m ∈ {0, 1}, our complete public key encryption scheme
S = (G, E ,D) performs as follows. First, key generator G on input 1n obtains
pairs of public and private keys (pk1, sk1)← G1(1

n), . . . (pkn, skn)← Gn(1
n). As

we will see in Lemma 6.1, w.l.o.g. key generators Gi work in time, say, n4.

Then, encryption algorithm E selects x1, . . . xn ∈R {0, 1} (i.e. independently
and uniformly at random from {0, 1}) and produces a codeword (E1,pk1(x1), . . . ,
En,pkn(xn), x1 ⊕ . . .⊕ xn ⊕m). Evidently, if at least one encryption Ei is secure,
then no adversary has noticeable advantage over random guessing in learning
xi from Ei,pki(xi), thus in learning m from x1 ⊕ . . . ⊕ xn ⊕ m, even if all other
encryption schemes are insecure.

In order to extract the message m from x1 ⊕ . . . ⊕ xn ⊕ m, having our private
keys (sk1, . . . skn), we need to recover all xj from Ej,pkj(xj). However, most of

encryption schemes are probably not correct in the sense that Dj,skj(Ej,pkj(xj))
is not necessarily equal to xj. We overcome this difficulty by using only those
encryption schemes that are correct in a certain sense. And this is exactly the
place where we have to allow encryption/decryption errors.

Although it is impossible to test a given encryption scheme for 100% correctness,
we are able to determine with high confidence whether a given scheme is almost
correct. So we select those encryption schemes that pass our test for “almost
correctness� and combine them in our construction. Since the errors in several
almost correct schemes may accumulate and increase, we employ correctness am-
plification technique [2], the last ingredient of our proof.

Definition 3.1. We denote the class of all 2/3-correct public key encryption
schemes (every algorithm of which runs in probabilistic polynomial time) with
PKCS.

Sometimes, a key generation algorithm is allowed to run in expected polynomial
time [4, Section 7.1]. However, since we allow encryption schemes to fail with
positive probability, these two possible definitions are equivalent.

Notice that we do not include any requirement on security into this definition.
Therefore some schemes from PKCS may be much more easier (sometimes triv-
ial) to break than others. Our goal is exactly to find the scheme that is the
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hardest-to-break in this class.

The choice of the constant 2/3 in the definition is arbitrary because it is possible
to efficiently amplify correctness of an encryption scheme while preserving its
security. In fact, we could have defined PKCS as a class of encryption schemes
that are (1− 1

p(n)
)-correct for any fixed polynomial p(n).

The remaining part of the paper constitutes a proof of the following theorem.

Theorem 3.2. There exists a complete PKCS.

4. Correctness Test

In order to distinguish for a given security parameter n between those encryption
schemes that are (δ+∆)-correct and those that are less than (δ−∆)-correct, we
will use the straightforward test given below:

Correctness Test ((G,E,D), 1n, T, δ, k)
for both m ∈ {0, 1} do
for i := 1 to k do
Run G(1n) for T steps to obtain a pair of keys (pk, sk)
Run Epk(m) for T steps to obtain a ciphertext M
Run Dsk(M) for T steps to obtain a decrypted message m′

if m′ = m then Xm,i := 1 else Xm,i := 0

if for both m ∈ {0, 1},
∑k

i=1 Xm,i > δ · k then accept else reject

Figure 4.1

In this test, if one of the algorithms G, E, and D wants to work for more than T
steps, it is stopped after allowed T execution steps, and its output tape by that
moment is considered as the result of the execution.

Proposition 4.1 (Chernoff bound). Let X1,X2, . . . , Xn be independent Pois-
son trials with Pr[Xi = 1] = pi and Pr[Xi = 0] = 1− pi. Then if X is the sum
of Xi and if µ is E[X], for any λ, 0 < λ ≤ µ:

Pr[X ≤ µ− λ] < e−λ2/2n, Pr[X ≥ µ+ λ] < e−λ2/2n.

The following proposition can be proved using the Chernoff and union bounds:

Proposition 4.2. For a given security parameter n, every (δ + ∆)-correct en-
cryption scheme, every algorithm of which runs in time T , passes the test almost

for sure, failing with probability less than 2e−
∆2

·k
2 . At the same time, if the en-

cryption scheme, every algorithm of which is restricted to run no more than time
T , is less than (δ − ∆)-correct, then it passes the test with probability at most

e−
∆2

·k
2 .
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Consequently, we can distinguish in probabilistic polynomial time with high con-
fidence those encryption schemes that are, say, (1− 1

12n
)-correct from those that

are not (1 − 1
4n
)-correct. Thus, if we have n encryption schemes Si, 1 ≤ i ≤ n,

and combine into a new encryption scheme (Section 6.1) only those of them that
pass the test, we get at least 2/3-correct encryption scheme (by union bound). It
remains to show that every scheme Si ∈ PKCS, which is 2/3-correct, is reducible
to some (1− 1

12n
)-correct encryption scheme, that is to amplify the correctness of

encryption schemes (cf. [2]).

5. Correctness Amplification

Assume our encryption scheme (G,E,D) is secure and (1/2+ δ(n))-correct. Our
aim is to improve its reliability while moderately worsening its security. The
recent work by Dwork, Naor and Reingold [2] provides a way to achieve this.
However, we present an amplification scheme here because we need to prove that
there is a reduction (in our sense) from a weakly correct encryption scheme to an
encryption scheme with amplified correctness.

Definition 5.1. Let Sk(n) = (G,E,D)k(n) be the encryption scheme obtained
from encryption scheme S = (G,E,D) as follows. The key generation algorithm

Gk(n) on input 1n runs k(n) copies of G(1n) with independent sources of ran-
domness to obtain pairs of keys (pk1, sk1), . . . , (pkk(n), skk(n)). The encryption

algorithm Ek(n), provided a public key pk1, . . . , pkk(n) and a message m, runs
k(n) copies of E(m, pki) (one copy per one value of i) with independent sources
of randomness to obtain codewords M1, . . . ,Mk(n). Finally, the decryption al-

gorithm Dk(n), provided a private key sk1, . . . , skk(n) and an encoded message
M1, . . . ,Mk(n), runs k(n) copies of D(Mi, ski) with independent sources of ran-
domness to obtain codewords m′

1, . . . ,m
′
k(n) and outputs their majority value (we

assume that k(n) is odd).

The next two lemmas are close to [2, Lemma 3]. In the first lemma, which is
responsible for the security aspect of the construction, we prove that, for any
polynomial k(n), (G,E,D) is reducible to (G,E,D)k(n). Then, in the second
lemma, responsible for the correctness, we show that the probability of error of
(G,E,D)k(n) is exponentially smaller than the probability of error of the original
cryptosystem.

Lemma 5.2. Every encryption scheme S = (G,E,D) is reducible via some re-

duction R to the encryption scheme Sk(n) = (G,E,D)k(n). Furthermore, if some

black-box A (1/2 + ǫ(n))-breaks (G,E,D)k(n), then RA (1/2 + ǫ(n)/k(n))-breaks
(G,E,D).

Proof. Assume an adversary A breaks Sk(n) with probability greater than 1/2+
ǫ(n) for infinitely many security parameters n. Let us construct an adversary R
that breaks S with probability greater than 1/2 + ǫ(n)/k(n) for the same set of
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security parameters n using adversary A as a black-box.

Our reduction R (with oracle A) on input composed of a public key pk, a security
parameter 1n, and a codeword M = Epk(m) works as follows:

1. Choose i from {1, 2, . . . , k} uniformly at random. 3

2. Generate keys (pk1, sk1), . . . , (pkk, skk) ← Gk(1n) (actually, we need only
the public keys for our reduction).

3. Invoke encryption (M1, . . . ,Mi−1)← Ei−1
(pk1,...pki−1)

(0).

4. Invoke encryption (Mi+1, . . .Mk)← Ek−i
(pki+1,...pkk)

(1).

5. Output A(M1, . . .Mi−1,M,Mi+1, . . .Mk).

Note that all invocations of key generator G and encryption E use independent
sources of randomness. Then success probability of RA is:

Pr[RA(Epk(m)) = m]

=
1

2
Pr[RA(Epk(1)) = 1] +

1

2
Pr[RA(Epk(0)) = 0]

=
1

2

(

1

k
Pr[A(Ek(1)) = 1] +

k
∑

i=2

1

k
Pr[A(E(i−1)(0), Ek−(i−1)(1)) = 1]

)

+
1

2

(

k−1
∑

i=1

1

k
Pr[A(Ei(0), Ek−i(1)) = 0] +

1

k
Pr[A(Ek(0)) = 0]

)

=
1

2k

(

Pr[A(Ek(1)) = 1] +Pr[A(Ek(0)) = 0]
)

+
k − 1

k
·
1

2

>
1

2k
· 2

(

1

2
+ ǫ

)

+
k − 1

k
·
1

2
=

(

1

2k
+

ǫ

k

)

+

(

1

2
−

1

2k

)

=
1

2
+ ǫ/k,

where probability is taken over uniform choice of one-bit message m, randomness
of key generations pk ← G(1n) and pki ← G(1n), randomness of encryptions
Epk(m), Epki(0) and Epki(1) and over randomness of adversaries A and R.

Lemma 5.3. If (G,E,D) is (1
2
+ δ(n))-correct, then (G,E,D)k(n) is (1−

e−δ2(n)k(n)/2)-correct.

Proof. Recall that Dk(n) decodes the encrypted message M1, . . .Mk(n), where
Mi = Epki(m), by taking majority of outcomes Dski(Mi). The key pairs (pki, ski)
← G(1n) are generated independently, therefore, applying the Chernoff bound,

we estimate the probability of error of the encryption scheme (G,E,D)k(n) on a
message m as

Pr[
∑

Xi ≤ k/2] = Pr[
∑

Xi ≤ (1/2 + δ)k − δk] < e−
δ2k2

2k = e−
δ2k
2 ,

where Xi indicates whether Dski(Epki(m)) = m.

3For brevity, we omit parameter n and write k instead of k(n) and ǫ instead of ǫ(n).
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Now we have a method of provably secure correctness amplification that we will
employ in the completeness proof of a public-key encryption scheme that we
present in the next section.

6. A Complete Public Key Encryption Scheme

Before giving a proof of Theorem 3.2, we prove a lemma that allows us to simplify
the proof of our encryption scheme’s completeness:

Lemma 6.1. Every scheme S ∈ PKCS is reducible to some scheme S ′ ∈ PKCS,
every algorithm of which runs in time n2.

Every encryption scheme S ′ ∈ PKCS, every algorithm of which runs in time
n2, is reducible to some (1− e−n)-correct encryption scheme S ′′ ∈ PKCS, every
algorithm of which runs in time n4.

Proof. The first part of our lemma is proved by padding argument. Assume
that S works in time nk. Then, for a given security parameter 1n

′

, S ′ simulates
S with security parameter 1n, n = ⌊ (n′)1/k ⌋. Obviously, this simulation can be
done in time (n′)2. Note that, since the correctness 2/3 is a constant, it does not
decrease when we apply this argument.

Also, it is straightforward to construct a reduction R from S to S ′. For a given
security parameter n, R uses a provided black-box A (that breaks S ′) with some
security parameter n′, nk ≤ n′ < (n+1)k. The best value of this parameter can be
found by testing the probability which A stands at breaking S ′ for various values
of n′ from this interval. Again, Chernoff inequality is useful for this testing.

In order to prove the second part, it is sufficient to take S ′′ = (S ′)72n+1 by
Lemma 5.2 and Lemma 5.3.

6.1. The Construction and Proof of Correctness

Our complete public-key encryption scheme S = (G, E ,D) is given below in Figure
6.1. For the correctness test, we choose δ = 1

2
· ((1 − 1

4n
) + (1 − 1

12n
)) = 1 − 1

6n
,

therefore ∆ = 1
12n

. Also we choose k = n4 (see Proposition 4.2). Time limit T is

set to n4 (see Lemma 6.1; it coincides with k only by chance).

Obviously, it is an encryption scheme (every algorithm of which runs in polyno-
mial time). Further, it is 2/3-correct, because any encryption scheme that is not

(1− 1
4n
)-correct passes the correctness test with probability at most e−

∆2
·k

2 = e−
n2

288

by Proposition 4.2. Further, for all sufficiently large security parameters n, the
set I is guaranteed to be nonempty, because the identity encryption (the one that
leaves message as it is) always passes the test.

6.2. Proof of Completeness

In order to prove the completeness of S, assume that we have an encryption
scheme Sj′ ∈ PKCS. By transitivity of reductions and Lemma 6.1, it is reducible
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Key generator G (1n)
let I = ∅
for all i ∈ {1, . . . n}
if Correctness Test accepts
input ((Gi, Ei, Di), 1

n, T = n4, δ = 1− 1
6n
, k = n4) then

(*) Run Gi(1
n) for T = n4 steps to obtain (pki, ski)

Include i into set I
return PK = (1n, I, {pki}i∈I) and SK = (1n, I, {ski}i∈I)

Encryption E (µ,PK)
for all i ∈ I do
Select mi ∈R {0, 1}
(**) Run Ei,pki(mi) for T = n4 steps to obtain Mi

return M = ({Mi}i∈I , µ⊕
⊕

i∈I mi)

Decryption D (M,SK)
for all i ∈ I do
Run Di,ski(Mi) for T = n4 steps to obtain m′

i

return (µ⊕
⊕

i∈I mi)⊕
⊕

i∈I m
′
i

Figure 6.1

to some (1− e−n)-correct public-key encryption scheme Sj = (Gj, Ej, Dj), every
algorithm of which runs in time n4. It remains to construct a reduction from Sj

to S.

We define a reduction R on input composed of a security parameter 1n, a public
key pk, and a codeword M = Ej,pk(m), where m ∈R {0, 1}. Note that for
any security parameters n ≥ j, the encryption scheme Sj is among the first n
encryption schemes that are combined in S.

1. Simulate key generator G on input 1n to obtain a public key PK. The only
one exception is that, instead of generating pkj in step (*), R selects pkj to
be equal to pk (if occasionally Sj fails the correctness test and thus j 6∈ I,
then give up). All the other {pki}i6=j, are generated by G.

2. Simulate encryption E on input composed of a new uniformly selected mes-
sage µ ∈R {0, 1} and of the public key PK in order to obtain a codeword
M with the following modification: instead of computing Mj = Ej,pk(mj)
in step (**), R selects Mj to be equal to M . Nonetheless, mj is generated
(think of it as of R’s guess of m) as well as all the other {mi}i6=j. Then
return ciphertextM = ({Mi}i∈I\{j} ∪ {M}, µ⊕

⊕

i∈I mi).

3. Provide oracle A with security parameter 1n, public key PK and ask it to
break the codewordM. Output APK(1

n,M)⊕ µ⊕mj.

By Definition 2.3, the probability that RA succeeds is exactly

Pr
[

RA
pk(1

n, Ej,pk(m)) = m
]

for pk ← Gj(1
n)
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where probability is taken over a uniformly selected one-bit message m, over
randomness of key generation Gj(1

n), encryption Ej,pk(m), reduction Rpk and
over randomness of the invocation of probabilistic black-box A.

Conditioned on the event that j ∈ I, this probability, by the definition of reduc-
tion R and by the definition of cryptosystem S = (G, E ,D), is equal to

Pr [APK(1
n, EPK(µ⊕mj ⊕m)) = m⊕ µ⊕mj] for PK ← G(1n),

where probability is taken over uniformly selected one-bit messages m, µ and mj,
over randomness of key generation G(1n), encryption EPK and probabilistic black-
box A. Notice that key generation pk ← Gj(1

n) and encryption Ej,pk(m) become
parts of key generation PK ← G(1n) and encryption EPK correspondingly.

Let µ̃ = µ⊕mj ⊕m. Then the probability above is equal to

Pr [APK(1
n, EPK(µ̃)) = µ̃] for PK ← G(1n),

where probability is taken over a uniformly selected one-bit message µ̃, over
randomness of key generation G(1n), encryption EPK and probabilistic black-box
A. This is exactly the success probability of adversary A.

To finish the proof, it remains to notice that the encryption scheme Sj = (Gj, Ej,
Dj) passes the correctness test with probability greater than 1− e−n, thus j 6∈ I
with a negligible probability.
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