
Groups-Complexity-Cryptology

Volume 1 (2009), No. 1, 13–31

Generic Case Complexity

and One-Way Functions

Alex D. Myasnikov
Department of Mathematical Sciences, Stevens Institute of Technology,

Hoboken, NJ 07030, USA

amyasnik@stevens.edu

Received: January 7, 2008

The goal of this paper is to introduce ideas and methodology of the generic case complexity
to cryptography community. This relatively new approach allows one to analyze the behavior
of an algorithm on “most” inputs in a simple and intuitive fashion which has some practical
advantages over classical methods based on averaging.

We present an alternative definition of one-way function using the concepts of generic case
complexity and show its equivalence to the standard definition. In addition we demonstrate the
convenience of the new approach by giving a short proof that extending adversaries to a larger
class of partial algorithms with errors does not change the strength of the security assumption.

1. Introduction

Generic case complexity has originated about a decade ago in combinatorial group
theory [10, 2]. This area has long computational traditions with many fundamen-
tal problems being algorithmic in nature. It has been shown that most computa-
tional problems in infinite group theory are recursively undecidable. However, it
was also observed that decision algorithms, sometimes very naive ones, exist for
many inputs even if a problem is undecidable in general.

Generic complexity was suggested as a way of analyzing the behavior of undecid-
able problems. The main question was to describe the complexity of a problem
on a generic input or on a set which contains most of the inputs. The idea was to
separate sets of inputs where algorithms work from the “bad� ones. It happened
that quite often the number of inputs on which algorithms fail to provide an
answer are small.

In computer science, around 1980s, the same kind of arguments preceded the
development of the average case complexity. More recently, heuristic classes of
algorithms were introduced [1].

Advocates of generic complexity approach argue (see discussions in [4]) that it
is simpler, intuitive and more general then the average case complexity. The
connection between the two areas has been studied and it is known that there are

ISSN 1867-1144 / $ 2.50 c© Heldermann Verlag

14 A. D. Myasnikov / Generic Case Complexity and One-Way Functions

problems which are hard on average, but generically easy. It turns out however,
that if an algorithm is easy on average it is also easy generically.

The relation between generic complexity and heuristic complexity is less explored.
It was shown [4] that the class of generic algorithms and errorless heuristic algo-
rithms are equivalent. It seems that generic complexity has some advantage as the
area has significantly progressed in recent years. For example the completeness
theory for generic complexity has been developed.

Here we list some results in generic complexity. As we mentioned above, the
foundations were built in group theory. In particular it has been shown that the
famous word and conjugacy problems in finitely presented groups can be decided
in linear time on a generic set of inputs, although these problems are undecidable
in general [10].

In the scope of the classical complexity results, the most important is the exis-
tence of polynomial reductions for generic complexity. Using these reductions it
has been shown that there exist generically NP-complete problems, for example
bounded versions of the halting and Post correspondence problems are generically
NP-complete [4]. Another interesting result shows that the halting problem for a
model of a Turing machine with one-way infinite tape is linearly decidable on a
generic set of inputs [8]. It is not known whether the result holds for an arbitrary
Turing machine, but it was shown that the set on which the problems is decidable
cannot be strongly generic [13].

In [11] authors describe a particular procedure which allows one given an undecid-
able problem to construct a problem undecidable on every generic set of inputs.
This generic amplification shows that generically hard (undecidable) problems
exist.

It was also suggested that generic complexity might be useful for cryptographic
applications, particularly for testing security assumptions of cryptographic prim-
itives. Intuitively, we would like a cryptographic primitive to be hard to break on
most inputs which seems like a straightforward application of the ideas of generic
complexity. The main goal of this paper is to introduce ideas and methodol-
ogy of generic complexity to cryptography community. We present alternative
definitions of one-way functions based on the concept of generic complexity.

These new definitions allow one to consider, in a natural way, one-way function
candidates coming from undecidable problems. We show that any such “generic�
one-way function can be used to produce a classical one. Therefore, any new
generic one-way function comes along with new classical one. Furthermore, to
our opinion these new definitions are more intuitive and are easier to work with.
Indeed, the new security assumption is just a more precise formalization of the
original notion, due to Diffie and Hellman [3], in a sense, it separates the prob-
ability on the inputs from the probability on the oracle choices which makes
considerations easier. As an illustration, we give a short proof that extending
adversaries to a larger class of partial algorithms with errors does not change the

A. D. Myasnikov / Generic Case Complexity and One-Way Functions 15

strength of the security assumption.

In the subsequent paper we are going to discuss some potential generic one-way
functions that are related to undecidable problems in algebra.

1.1. Generic complexity notations

In this section we give a brief overview of the basic notions and definitions used
in generic complexity. For more detailed introduction to the subject and latest
results we refer to [4].

Let I be a set of inputs. In this paper we consider traditional binary representa-
tion of inputs and set I = {0, 1}∗. With each input we associate a size function
| · | : I → N which is the length of a string from I.

First we define a stratification of inputs. In general a stratification of the set I is
an ascending sequence of subsets whose union is equal to I. In the paper we will
use the spherical stratification on strings which we define next.

Definition 1.1 (Spherical Stratification). Let I = {0, 1}∗ be a set of inputs.
Define a sphere of radius n by

In = {x | x ∈ I, |x| = n} .

Then the sequence I0, I1, I2, . . . is a spherical stratification of I.

Note that sets Ii are finite and ∪∞
i=0Ii = I.

There are other commonly used stratifications available. For example one can
stratify set I using balls Bn of inputs of radius n, where Bn is a set of inputs with
lengths at most n.

Definition 1.2. Let I = {0, 1}∗ and In ⊂ I be a sphere of radius n. Let µn be
a probability distribution on the sphere In. The collection {µ0, µ1, µ2, . . .} of all
distributions is called an ensemble of spherical distributions over I and denoted
by {µn}.

In the paper we will be mostly concerned with the ensemble of uniform spherical
distributions {un} over I. For a set R ⊆ I we define

un(R) =
|R ∩ In|

|In|
,

where |X| is the cardinality of a set X.

Next we define an asymptotic density of a set in I.

Definition 1.3 (Asymptotic Density). Let µ = {µn} be an ensemble of sphe-
rical distributions over a set I. A set of inputs R ⊆ I is said to have asymptotic
density ρ(R) = α if

lim
n→∞

µn(R ∩ In) = α.

16 A. D. Myasnikov / Generic Case Complexity and One-Way Functions

A set R is called generic with respect to µ if its asymptotic density is 1 and it is
called negligible if the asymptotic density is 0.

Definition 1.4. Let R ⊆ I and the asymptotic density ρ(R) exists. The function

δR(n) = µn(R ∩ In)

is called the density function for R.

A practical measure of the “largeness� of a set often corresponds to a rate with
which the limit in Definition 1.3 converges. The convergence can be naturally
described by obtaining upper bounds on the density function of a set. One
particular type of sets of interest are sets which have superpolynomial convergence
rates.

Definition 1.5. Let R ⊆ I and δR(n) is the density function of R. We say that
R has asymptotic density ρ(R) with superpolynomial convergence if

|ρ(R)− δR(n)| <
1

p(n)

for every polynomial p(n) and all sufficiently large n.

Definition 1.6 (Strongly Generic/Negligible). A generic set with super-
polynomial convergence is called strongly generic and its complement is called
a strongly negligible set.

1.2. One-Way functions

Existence of one-way functions is one of the most basic and important assump-
tions in cryptography. In fact existence of one-way functions is a minimal as-
sumption required for constructing other cryptographic primitives such as pseu-
dorandom number generators, encryption and signature schemes.

Diffie and Hellman [3] define one-way functions:

“a function f is a one-way function if, for any argument x in the domain
of f , it is easy to compute the corresponding value f(x), yet, for almost
all y in the range of f , it is computationally infeasible to solve the
equation y = f(x) for any suitable argument x.�

There are two key points in the definition above: “for almost all� and “compu-
tationally infeasible�. A lot of attention is still concentrated on the development
and understanding of these two notions and their consequences from the practical
point of view.

It is well accepted now that one-way functions cannot be defined using determin-
istic worst-case complexity classes like P and NP, and randomized computation
is the default model for cryptographic purposes.

A. D. Myasnikov / Generic Case Complexity and One-Way Functions 17

A common argument for the necessary conditions for one-way functions to exist
proceeds as follows [5]. Suppose we have a cryptographic scheme. Legitimate
parties should be able to decode the secret efficiently, which means that there
exist a polynomial-time verifiable witness to the decoding and the problem of
breaking a cryptographic scheme is in NP. For a cryptographic scheme to be
considered secure there should be no practical algorithm to break the encryption.
Therefore, if a secure cryptographic scheme exists then NP 6⊆ BPP. Whether
BPP contains NP is an open problem. Note that NP 6⊆ BPP implies that
P 6= NP.

The NP 6⊆ BPP condition is a necessary, but not sufficient condition for a secure
cryptographic scheme to exist. Observe that the probability distribution in the
definition of the class BPP is taken over the internal states of a probabilistic
machine only. The condition which bounds away the probability of an error must
hold for all inputs. In this sense BPP is analogues to P and is still reflects the
behavior of a problem on the worst case inputs but with respect to the randomized
algorithms.

The positive answer to the problem NP 6∈ BPP may have no practical implica-
tions for cryptography, unless there are problems which belong in NP\BPP and
are hard on a significantly large fraction of inputs. Speaking in terms of generic
complexity, a problem may be considered hard if there is no efficient algorithm
which solves the problem on any but strongly negligible set of inputs.

In cryptography the existence of many useful primitives like secure symmetric
encryption, pseudorandom number generators and digital signature schemes is
reduced to the existence of the one-way functions which we define next. In general
there are two notions of one-way functions a strong and a weaker one.

Let Pr(x,σ) denote the probability taken uniformly over all pairs (x, σ) ∈ In × Σ,
where In is the set of all inputs of length n and Σ = {0, 1}t(n) is the space of
internal coin flips of a probabilistic algorithm whose running time is bounded by
some polynomial t(n). Similarly we define Prσ as the uniform probability taken
over Σ only.

One of the most commonly accepted definitions of a one-way function (strong
one-way function) is the following.

Definition 1.7 (Strong One-Way function [5]). A function f : {0, 1}∗ →
{0, 1}∗ is called strongly one-way if the following two conditions hold:

1. Easy to compute: there exists a deterministic polynomial-time algorithm
A′ such that on an input x algorithm A′ outputs f(x);

2. Hard to invert: For every probabilistic polynomial-time algorithm A, every
positive polynomial p, and all sufficiently large n:

Pr(x,σ)[A(f(Un), 1
n) ∈ f−1(f(Un))] <

1

p(n)
,

where Un is a random variable uniformly distributed over {0, 1}n and the

18 A. D. Myasnikov / Generic Case Complexity and One-Way Functions

probability is taken over all input strings from {0, 1}n and internal states
of A.

Here and in the rest of the article polynomial-time algorithm means an algorithm
that always halts after a polynomial (in the length of the input) number of steps.
Note that in addition to an input in the range of f the algorithm A is given the
auxiliary input 1n which has the same length as the desired output of A. This is
done to protect from the situations when the function f drastically reduces the
length of its input (for example |f(x)| = log2(|x|)). Obviously no algorithm can
invert such function f in polynomial number of steps in terms of |x|.

2. Generic definitions of one-way functions

2.1. Definition restricted to PPT adversary

In Definition 1.7 the performance of an algorithm A is averaged over all inputs
which results in complicated probability space. We would like to apply ideas of
generic complexity and consider the performance of an adversary on each input
separately.

Note that a naive random sampling will guess an inverse of a function f on the
input of length n with probability 1/2n. An algorithm with negligible probability
of the correct answer cannot be amplified and, therefore, cannot be considered
practical. A reasonable inversion algorithm should have noticeable probability of
success. To be more precise the probability that an algorithm A inverts f(x)

Pr[A(f(x), 1n) ∈ f−1(f(x))] >
1

nc

for any positive constant c. To make a one-way function secure we must limit the
number of inputs on which adversary succeeds to a small set. We formalize these
arguments in the following definition of a generically strong one-way function.

Definition 2.1 (Generically Strong One-Way function). Let u = {un} be
an ensemble of uniform spherical distributions over {0, 1}∗.

A function f : {0, 1}∗ → {0, 1}∗ is called generically strong one-way if the follow-
ing two conditions hold:

1. Easy to compute: there exists a deterministic polynomial-time algorithm
A′ such that on input x algorithm A′ outputs f(x);

2. Hard to invert almost all inputs: For every probabilistic polynomial-time
algorithm A, all constants c > 0, every positive polynomial p and all suffi-
ciently large n:

un

(

{x ∈ In | Pr[A(f(x), 1n) ∈ f−1(f(x))] > n−c}
)

<
1

p(n)
,

where the probability is taken over internal states of the algorithm A.

A. D. Myasnikov / Generic Case Complexity and One-Way Functions 19

Similarly we can define a generically weak one-way function.

Definition 2.2 (Generically Weak One-Way function). Let u = {un} be
an ensemble of uniform spherical distributions over {0, 1}∗.

A function f : {0, 1}∗ → {0, 1}∗ is called generically weak one-way if the following
two conditions hold:

1. Easy to compute: there exists a deterministic polynomial-time algorithm
A′ such that on input x algorithm A′ outputs f(x);

2. Hard to invert on a large enough set of inputs: For every probabilistic
polynomial-time algorithm A, every constant c > 0 there exists a poly-
nomial p(n) such that for all sufficiently large n:

un

(

{x ∈ In | Pr[A(f(x), 1n) ∈ f−1(f(x))] < n−c}
)

≥
1

p(n)
,

where the probability is taken over internal states of the algorithm A.

The following lemmas show that Definitions 2.1 and 1.7 are equivalent. We give
equivalence results for strong one-way functions. Similar results hold for the weak
notion as well (see Appendix for the detailed proof). We use standard reduction
argument which proceeds by showing that if there exists an algorithm which
violates the conditions of the first definition then we can construct an algorithm
which will violate conditions of the second one.

Lemma 2.3. Let f : {0, 1}∗ → {0, 1}∗ and suppose there is a probabilistic poly-
nomial time algorithm A such that for some constants c > 0 and d > 0 and
infinitely many n

un

(

{x ∈ In | Prσ[A(f(x), 1
n) ∈ f−1(f(x))] > n−c}

)

>
1

nd
.

Then there exists a probabilistic polynomial-time algorithm A′ such that for in-
finitely many n

Pr(x,σ)[A
′(f(Un), 1

n) ∈ f−1(f(Un))] >
1

nd+1
.

Proof. First of all observe that since we can compute f , we can also check
whether an algorithm indeed returns an inverse of f(x) or not. By definition,
f−1(y) = {x | y = f(x)} therefore if f(A(f(x))) = f(x) then A(f(x)) is an
inverse of f(x).

Now construct an algorithm A′ as follows. Repeat algorithm A on a given input
x until a witness for the inverse problem (i.e. the inverse itself) is obtained. Let

Sn =
{

x ∈ In | Prσ[A(f(x)) ∈ f−1(f(x))] ≥ n−c
}

.

20 A. D. Myasnikov / Generic Case Complexity and One-Way Functions

For the algorithm A′ to be practical on the set Sn we need to show that for every
x ∈ Sn we can obtain an inverse with high probability using only polynomially
many repetitions of A, i.e.

Prσ[A
′
k(f(x)) ∈ f−1(f(x))] ≥ 1− ǫ, (1)

where k = p(n) and ǫ < 1
nm for any m > 0.

Let yi be the output of the ith run of the algorithm A on an input x ∈ Sn and
let Xi, i = 1, . . . , k be random variables such that Xi = 1 if yi ∈ f−1(f(x)) and
Xi = 0 otherwise. Xi are mutually independent and E[Xi] = Pr[Xi = 1] ≥ 1

nc .
We also define Xo

i , i = 1, . . . , k to be random variables such that Xo
i = 0 if

yi ∈ f−1(f(x)) and Xo
i = 1 if ith run of A fails. Xo

i are also mutually independent
and E[Xo

i] = 1− Pr[Xi = 1] ≥ 1− 1
nc .

Note for A′ to produce an answer only one of yis needs to be a witness, therefore
to show (1) we need to show that

Pr

[

k
∑

i=1

Xi ≥ 1

]

= Pr

[

k
∑

i=1

Xo
i ≤ k − 1

]

≥ 1− ǫ

which is equivalent to showing

Pr

[

k
∑

i=1

Xo
i > k − 1

]

≤ ǫ.

Using Chernoff bound we have

Pr

[

k
∑

i=1

Xo
i − k ·

(

1−
1

nc

)

≥ δ · k ·

(

1−
1

nc

)

]

(2)

= Pr

[

k
∑

i=1

Xo
i ≥ k ·

(

1−
1

nc

)

· (δ + 1)

]

≤ 2−
δ
2

2
k. (3)

Substituting δ = (k − nc)/(k(nc − 1)) into (3) we obtain

Pr

[

k
∑

i=1

Xo
i ≥ k − 1

]

≤ 2−
1
2
·(k−n

c

k(nc
−1))

2
k = 2

− (k−n
c)2

2k(nc
−1)2 .

Let k = n3c, then

2
− (k−n

c)2

2k(nc
−1)2 < 2−

1
2
(n+2)

and we have

Pr

[

k
∑

i=1

Xo
i ≥ k − 1

]

< 2−
1
2
(n+2).

A. D. Myasnikov / Generic Case Complexity and One-Way Functions 21

Therefore we obtained

Prσ[A
′
k(f(x)) ∈ f−1(f(x))] ≥ 1− ǫ,

where ǫ = 2−
1
2
(n+2). Note that a similar result can be obtained without using the

Chernoff bound, however, it allows us to obtain a tighter bound on the number
of repetitions of the algorithm A.

Taking the sum over all x ∈ Sn we obtain

∑

x∈Sn

Prσ[A
′(f(x)) ∈ f−1(f(x))] ≥

∑

x∈Sn

(1− ǫ) = |Sn|(1− ǫ).

Note that

un(Sn) =
|Sn|

|In|
≥

1

nd
.

Therefore

|Sn| ≥
|In|

nd
=

2n

nd
.

It follows

∑

x∈Sn

Prσ[A
′(f(x)) ∈ f−1(f(x))] ≥ |Sn|(1− ǫ) ≥

2n

nd
(1− ǫ) . (4)

Next we show that Pr(x,σ)[A
′(f(Un), 1

n) ∈ f−1(f(Un))] ≥
1
nd − ǫ.

Define A′(x, σ) = 1 if the computation of A′ corresponding to oracle σ inverts
f(x) and A′(x, σ) = 0 otherwise.

Now we have

Pr(x,σ)[A
′(f(Un), 1

n) ∈ f−1(f(Un))] =
∑

∀(x,σ)

A′(x, σ)p(x, σ),

where p(x, σ) is the joint probability mass function.

Note that x and σ are independent from each other, therefore

∑

∀(x,σ)

A′(x, σ)p(x, σ) =
∑

x∈In

∑

σ∈{0,1}t(n)

A′(x, σ)p(x)p(σ)

=
1

2n

∑

x∈In

∑

σ∈{0,1}t(n)

A′(x, σ)p(σ)

=
1

2n

∑

x∈In

Prσ[A
′(f(x)) ∈ f−1(f(x))].

22 A. D. Myasnikov / Generic Case Complexity and One-Way Functions

From (4) and the equation above we have

Pr(x,σ)[A
′(f(Un), 1

n) ∈ f−1(f(Un))] =
1

2n

∑

x∈In

Prσ[A
′(f(x)) ∈ f−1(f(x))]

≥
1

2n

∑

x∈Sn

Prσ[A
′(f(x)) ∈ f−1(f(x))]

=
1

nd
(1− ǫ) .

Now let d′ = d+1. It is easy to see that 1/nd(1− ǫ) > 1/nd′ for n ≥ 2. Therefore
we have

Pr(x,σ)[A
′(f(Un), 1

n) ∈ f−1(f(Un))] ≥
1

nd
(1− ǫ) >

1

nd+1
.

The implication holds in the the opposite direction as well.

Lemma 2.4. Let f : {0, 1}∗ → {0, 1}∗ and suppose there is a probabilistic poly-
nomial time algorithm A such that for some polynomial p(n) and infinitely many
n

Pr(x,σ)[A(f(Un), 1
n) ∈ f−1(f(Un))] ≥

1

p(n)
.

Then there exists a probabilistic polynomial-time algorithm A′ such that for every
c > 0 and infinitely many n

un

(

{x ∈ In | Prσ[A
′(f(x)) ∈ f−1(f(x))] > n−c}

)

≥
1

2p(n)
.

Proof. First we show that

un

(

{x ∈ In | Prσ[A(f(x)) ∈ f−1(f(x))] > 1/2p(n)}
)

≥
1

2p(n)
. (5)

The proof follows directly from the following averaging argument:

Claim 2.5. Let a1, . . . , aN ∈ [0, 1] and ρ ≥ 0 such that 1
N

∑N

i=1 ai ≥ ρ and let
k = #{ai | ai > ρ/2}. Then

k

N
≥

ρ

2
.

Observe that

Pr(x,σ)[A(f(Un), 1
n) ∈ f−1(f(Un))] =

1

2n

∑

x∈In

Prσ
[

A(f(x)) ∈ f−1(f(x))
]

≥
1

p(n)
.

A. D. Myasnikov / Generic Case Complexity and One-Way Functions 23

If we set ai = Prσ [A(f(xi)) ∈ f−1(f(xi))], xi ∈ In, N = 2n, ρ = 1/p(n) and
k = #{x ∈ In | Prσ[A(f(x)) ∈ f−1(f(x))] > 1/2p(n)} then it follows from the
claim above that

k

2n
≥

1

2p(n)

and

un

(

{x ∈ In | Prσ[A(f(x)) ∈ f−1(f(x))] > 1/2p(n)}
)

≥
1

2p(n)
.

Now observe that for any c > 0 there exists a probabilistic polynomial-time
algorithm A′ such that

#{x ∈ In | Prσ[A
′(f(x)) ∈ f−1(f(x))] > n−c} ≥ k. (6)

Indeed, in the case when n−c ≥ 1/2p(n) the claim follows directly. In the second
case when n−c < 1/2p(n) we can use the probabilistic error reduction and con-
struct an algorithm A′ such that (6) holds. Therefore there exists a polynomial-
time algorithm A′ such that

un

(

{x ∈ In | Prσ[A
′(f(x)) ∈ f−1(f(x))] > n−c}

)

≥
1

2p(n)
.

The following result demonstrates the connection between the security assump-
tion and asymptotic properties of the input sets.

Proposition 2.6. A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗

is strongly one way if and only if every probabilistic polynomial-time algorithm
A fails to invert f on all but strongly negligible sets of inputs with respect to an
ensemble of uniform spherical distributions over {0, 1}∗.

Proof. Suppose f is strongly one-way and suppose there exists an algorithm A
which inverts f on a set S which is not strongly negligible. Then there exists a
polynomial p(n) such that

un({x ∈ In | Prσ[A(f(x)) ∈ f−1(f(x))] > n−c}) = un(S ∩ In) = δs(n) >
1

p(n)
.

Therefore f is not strongly one-way by Definition 2.1.

Now, suppose f is not one-way. Then there exists an algorithm A such that

un({x ∈ In | Prσ[A(f(x)) ∈ f−1(f(x))] > n−c}) >
1

p(n)

for some polynomial p, which contradicts the proposition assumption.

24 A. D. Myasnikov / Generic Case Complexity and One-Way Functions

2.2. Generic definition with a more general adversary

The most interesting question is whether the generic approach may give us new,
more general security assumptions. Note that the polynomial bound on the ad-
versary is not necessary. The only condition that a successful adversary needs
to satisfy is to have an algorithm which terminates in polynomial time and with
correct answer on a non-negligible set of inputs. Suppose we would like to make
a security statement which holds against a much stronger adversary, i.e. a partial
probabilistic heuristic algorithm which may output incorrect answers. Although
an adversary algorithm may not terminate on some inputs, it would still be a
threat if it succeeds on a relatively large set of inputs.

Definition 2.7 (Partial algorithm with errors). Let I be the set of inputs.
We say that an algorithm A is a partial algorithm with errors if it is correct on
a subset X ⊆ I of inputs and on the set I − X it either does not stop or stops
with an incorrect answer.

To make a formal statement we need a notion of achievement ratio of an adversary
which is similar to the notions given in [6, 9].

Definition 2.8 (Achievement ratio). Let f : {0, 1}∗ → {0, 1}∗ be a function
and let A be a partial probabilistic algorithm with errors. The achievement ratio
of A on an instance f(x) is defined as

RA,f (x) = TA,f (x)/δA,f (x),

where TA,f (x) is the time required for A to terminate on the input f(x) and

δA,f (x) = Prσ[A(f(x), 1n) ∈ f−1(f(x), 1n)].

Achievement ratio allows one to consider a larger class of algorithms whose run-
ning time may not be bounded by a polynomial. In order for an adversary to
have a polynomial achievement ratio on a given input x, it has to have both: the
polynomial running time and a noticeable probability of inverting f(x).

The following definition is an attempt to give an intuitive notion of a generalized
practical security assumption for a one-way function.

Definition 2.9. Let u = {un} be an ensemble of uniform spherical distributions
over {0, 1}∗.

A function f : {0, 1}∗ → {0, 1}∗ is called strongly one-way if the following two
conditions hold:

1. Easy to compute: there exists a deterministic polynomial-time algorithm
A′ such that on input x algorithm A′ outputs f(x);

2. Hard to invert: For every partial probabilistic algorithm with errors A, all
constants c > 0, every positive polynomial p and all sufficiently large n:

un ({x ∈ In | RA,f (x) ≤ nc}) <
1

p(n)
.

A. D. Myasnikov / Generic Case Complexity and One-Way Functions 25

The question is whether or not this definition gives us any advantage over the
definitions given earlier. The following argument says that if we allow only a
polynomial number of steps for an adversary on a success then, in fact, this
definition is equivalent to the one which is limited to the PPT adversary.

The main idea is that since the success of an adversary on an input x means that
it has to terminate in polynomial number of steps, then we do not really care if
adversary is a partial algorithm or not. If we have a successful partial algorithm
then we can construct a PPT algorithm by allowing it to run for polynomial
number of steps and this polynomial-time algorithm will be as successful as the
partial one.

Let GSPPT and GSPART be the classes of one way functions which satisfy
conditions of Definition 2.1 and Definition 2.9 respectively.

Proposition 2.10. A function f ∈ GSPPT if and only if f ∈ GSPART.

Proof. First we show that f ∈ GSPART implies f ∈ GSPPT. The proof is
by contradiction. Let f : {0, 1}∗ → {0, 1}∗ and assume that f ∈ GSPART ,
but f 6∈ GSPPT , then there exists a PPT algorithm A, a constant c > 0, a
polynomial p(n) such that for infinitely many n

un({x | δA,f (x) > n−c}) ≥
1

p(n)
.

Note that a PPT algorithm A is also a partial probabilistic algorithm such that
TA,f (x) ≤ q(n), for some positive polynomial q for all x. Therefore,

un({x | δA,f (x) > n−c}) ≥
1

p(n)

un({x | δA,f (x)/TA,f (x) > n−c/TA,f (x)}) ≥
1

p(n)

un({x | TA,f (x)/δA,f (x) < ncTA,f (x)}) ≥
1

p(n)

un({x | RA,f (x) < ncTA,f (x)}) ≥
1

p(n)

un({x | RA,f (x) ≤ nd}) ≥
1

p(n)
,

where d is chosen such that nd ≥ q(n) ·nc. This is a contradiction to the condition
f ∈ GSPART .

The proof in the opposite direction uses a similar argument. Suppose that f ∈
GSPPT but f 6∈ GSPART. In other words we suppose there exists a partial
probabilistic algorithm B such that for some polynomial p(n) and infinitely many
n

un ({x ∈ In | RB,f (x) ≤ nc}) ≥
1

p(n)
.

26 A. D. Myasnikov / Generic Case Complexity and One-Way Functions

Define A to be an algorithm which on a given input x ∈ In runs B for nc steps.

Let S = {x | RB,f (x) ≤ nc}. First observe that by the conjecture for all x ∈ S

δB,f (x) ≥
TB,f (x)

nc
≥

1

nc
.

Obviously, δA,f (x) = δB,f (x) for all x such that TB,f (x) ≤ nc. Therefore, since
δB,f (x) ∈ [0, 1] we have

δA,f (x) = δB,f (x)

for all x such that TB,f (x) ≤ δB,f (x) · n
c, i.e. for all x ∈ S.

Hence we have δA,f (x) ≥
1
nc for all x ∈ S and

un

(

{x ∈ In | δA,f (x) ≥ n−c}
)

≥ un(S) ≥
1

p(n)
.

Therefore, a probabilistic polynomial time algorithmA inverts f on a not strongly
negligible set which contradicts our assumption that f is one-way with respect to
Definition 2.1.

Note that the proof is simple and quite compact. Using the equivalence Lemmas
2.3 and 2.4 we can conclude that the Definition 2.9 is equivalent to Definition 1.7
which is based on the averaging argument. It seems that obtaining the same result
would be a more difficult task when working with the average type definitions
directly.

Similarly one can define a weaker variation of a one-way function with a partial
adversary.

Definition 2.11. Let u = {un} be an ensemble of uniform spherical distributions
over {0, 1}∗.

A function f : {0, 1}∗ → {0, 1}∗ is called weakly one-way if the following two
conditions hold:

1. Easy to compute: there exists a deterministic polynomial-time algorithm
A′ such that on input x algorithm A′ outputs f(x);

2. Hard to invert on non-negligible set: For every partial algorithm A and
every constant c > 0, there exists a polynomial p(x) such that for all suffi-
ciently large n

un ({x ∈ In | RA,f (x) > nc}) ≥
1

p(n)
.

The equivalence result for weak one-way functions holds as well. Let GWPPT
be the class of generically weak one-way functions and GWPART be the class of
one way functions satisfying Definition 2.11.

Proposition 2.12. A function f ∈ GWPPT if and only if f ∈ GWPART.

A. D. Myasnikov / Generic Case Complexity and One-Way Functions 27

Proof. The proof is similar to the proof of Proposition 2.10. Suppose that f ∈
GWPART but f 6∈ GWPPT . Then there exists a PPT algorithm B and constant
c > 0 such that for all polynomials p(n)

un({x | δB,f (x) < n−c}) <
1

p(n)

The probabilistic polynomial time algorithm B is a probabilistic partial algorithm
such that its time TB,f (x) ≤ q(n) for some positive polynomial q and all x.

Therefore, there exists a probabilistic partial algorithm B such that for all positive
polynomials p:

1

p(n)
> un({x | δB,f (x) < n−c})

= un({x | TB,f (x)δB,f (x) < TB,f (x)n
−c})

= un({x | TB,f (x)/δB,f (x) ≥ TB,f (x)n
c})

= un({x | RB,f (x) ≥ TB,f (x)n
c})

≥ un({x | RB,f (x) ≥ nd,∀d > 0})

Which contradicts the assumption that f ∈ GWPART .

Now note that if f is not weakly one-way in terms of Definition 2.11 then there ex-
ists a partial algorithm B such that for some constant c > 0 and every polynomial
poly(n)

un ({x ∈ In | RB,f (x) ≤ nc}) ≥ 1−
1

poly(n)
.

Define a probabilistic polynomial-time algorithm A which runs B for nc steps.
Using the equalities from Proposition 2.10 we obtain

un

(

{x ∈ In | δA,f (x) ≥ n−c}
)

≥ un ({x ∈ In | RB,f (x) ≤ nc}) ≥ 1−
1

poly(n)
.

Therefore,

un

(

{x ∈ In | δA,f (x) < n−c}
)

<
1

poly(n)

for any polynomial poly(n). Therefore, f is not weakly one way with respect to
a PPT algorithm A.

One of the important results about one-way functions is the so-called amplifica-
tion theorem which states that having a weak one-way function we can always
construct a strong one. Equivalences shown above allow us to make a similar
statement for generic one-way function.

Theorem 2.13 (Amplification). Generically weak one-way functions exist if
and only if generically strong one-way functions exist.

Proof. The proof is a corollary of the equivalence Lemmas 2.3, 2.4, 2.10, 2.12
and the classical amplification theorem.

28 A. D. Myasnikov / Generic Case Complexity and One-Way Functions

3. Conclusion

The definition based on generic case complexity methodology has significant ad-
vantage in the fact that the probabilities over inputs and internal states of the
algorithm are taken separately. The definition is very intuitive and easy to un-
derstand. In fact it may be seen as a direct formalization of the definition by
Diffie and Hellman which we quote in the introduction.

Operating with simpler probability spaces and considering inputs separately may
have some practical implications. The work in this direction started very re-
cently and the potential of generic approach has been little realized. It would
be interesting to see if generic complexity can be used to simplify definitions of
cryptographic primitives and reducibility arguments. Applications of generic case
complexity analysis of the security of particular one-way function candidates is
also could be of great interest.

A. Proof of equivalence for the definitions of the Weak One-Way func-
tions

The following is the classical definition of a weak one-way function.

Definition A.1 (Weak One-Way function). A function f : {0, 1}∗ → {0, 1}∗

is called weakly one-way if the following two conditions hold:

1. Easy to compute: there exists a deterministic polynomial-time algorithm
A′ such that on an input x algorithm A′ outputs f(x);

2. Slightly hard to invert: There exists a polynomial p such that for every
PPT A and all sufficiently large n:

Pr(x,σ)[A(f(Un), 1
n) 6∈ f−1(f(Un))] ≥

1

p(n)
,

where Un is a random variable uniformly distributed over {0, 1}n and the
probability is taken over all input strings from {0, 1}n and internal states
of A.

Proposition A.2. Definitions A.1 and 2.2 are equivalent.

The following two lemmas give the proof. Denote

δA,f (x) = Pr[A(f(x), 1n) ∈ f−1(f(x))]

and

δ̄A,f (x) = Pr[A(f(x), 1n) 6∈ f−1(f(x))].

Obviously

δA,f (x) = 1− δ̄A,f (x).

A. D. Myasnikov / Generic Case Complexity and One-Way Functions 29

Lemma A.3 (Generic implies Classic). Suppose there exists a PPT algo-
rithm A such that for some (equivalently all) c > 0, all polynomials p and in-
finitely many n

un

(

{x ∈ In | δA,f (x) < n−c}
)

<
1

p(n)

then there exists a PPT algorithm A′ such that for all polynomials q(n) and
infinitely many n

Pr(x,σ)[A(f(Un), 1
n) 6∈ f−1(f(Un))] <

1

q(n)
.

Proof. Observe that

un({x | δA,f (x) ≥ n−c}) ≥ 1−
1

p(n)
.

Let
Sn = {x | δA,f (x) ≥ n−c}

Then

un(Sn) =
|Sn|

2n
≥ 1−

1

p(n)

However,
∑

x∈Sn

δA,f (x) ≥
∑

x∈Sn

n−c = |Sn|n
−c

and we obtain

1

2n

∑

x∈Sn

δA,f (x) ≥
|Sn|

2n
n−c ≥ n−c

(

1−
1

p(n)

)

=
p(n)− 1

ncp(n)
>

1

ncp(n)

From the proof of the equivalence for the case of strong one way functions we
know that

Pr(x,σ)[A(f(Un), 1
n) ∈ f−1(f(Un))] ≥

1

2n

∑

x∈Sn

δA,f (x).

Therefore

Pr(x,σ)[A(f(Un), 1
n) ∈ f−1(f(Un))] ≥

1

ncp(n)

Again, from the proof of the strong version we know that by repeating the algo-
rithm A polynomially many times we can obtain an algorithm A′ such that

Pr(x,σ)[A
′(f(Un), 1

n) ∈ f−1(f(Un))] ≥ 1− ǫ

where ǫ < 1/q(n) for any positive polynomial q(n). Then

Pr(x,σ)[A
′(f(Un), 1

n) 6∈ f−1(f(Un))] < 1− (1− ǫ) = ǫ <
1

q(n)

for all polynomials q(n).

30 A. D. Myasnikov / Generic Case Complexity and One-Way Functions

Lemma A.4 (Classic implies Generic). Suppose there exists a PPT algo-
rithm A such that for all polynomials p and infinitely many n

Pr(x,σ)[A(f(Un), 1
n) 6∈ f−1(f(Un))] <

1

p(n)
.

then there exists a PPT algorithm A′ such that for some (equivalently all) c > 0,
all polynomials p(n) and infinitely many n

un

(

{x ∈ In | δA′,f (x) < n−c}
)

<
1

p(n)

Proof. Let
Sn = {x | δ̄A,f (x) ≥ n−d}

Observe that

nd · Pr(x,σ)[A(f(Un), 1
n) 6∈ f−1(f(Un))] <

1

p(n)

for all positive polynomials p(n).

Proof. Suppose that it is not. Then there exists a polynomial p′(n) such that

nd · Pr(x,σ)[A(f(Un), 1
n) 6∈ f−1(f(Un))] ≥

1

p′(n)

and

Pr(x,σ)[A(f(Un), 1
n) 6∈ f−1(f(Un))] ≥

1

p′(n)nd

which contradicts the condition of the lemma.

Now using the same argument as in the previous proofs we can show that

Pr(x,σ)[A(f(Un), 1
n) 6∈ f−1(f(Un))] =

1

2n

∑

x∈In

δ̄A,f (x) ≥
1

2n

∑

x∈Sn

δ̄A,f (x)

Therefore, for every p(n)

1

p(n)
> nd · Pr(x,σ)[A(f(Un), 1

n) 6∈ f−1(f(Un))]

≥
nd

2n

∑

x∈Sn

δ̄A,f (x)

≥
nd

2n

∑

x∈Sn

n−d

= nd ·
|Sn|

2n
· n−d

= un(Sn).

A. D. Myasnikov / Generic Case Complexity and One-Way Functions 31

Note that

Sn = {x | 1− δ̄A,f (x) < 1− n−d}} = {x | δA,f (x) < 1− n−d}}.

Using amplification we can construct a PPT algorithm A′ which repeats A poly-
nomially many times and such that

Sn =

{

x | δA′,f (x) <
1

2n

}

Therefore, there exists a PPT algorithm A′ such that for every polynomial p(n)

un

({

x | δA′,f (x) <
1

2n

})

<
1

p(n)
.

References

[1] A. Bogdanov, L. Trevisan: Average-Case Complexity, Now, Boston (2006).

[2] A. V. Borovik, A. G. Miasnikov, V. N. Remeslennikov: Multiplicative measures on
free groups, Int. J. Algebra Comput. 13 (6) (2003) 705–731.

[3] W. Diffie, M. Hellman: New Directions in Cryptography, IEEE Trans. Inf. Theory
22(6) (1976) 644–654.

[4] R. Gilman, A. G. Miasnikov, A. D. Myasnikov, A. Ushakov: Generic complexity
of algorithmic problems, preprint (2007).

[5] O. Goldreich: Foundations of Cryptography: Volume 1, Basic Tools, Cambridge
University Press, Cambridge (2001).

[6] O. Goldreich, L. Levin: A hard-core predicate for all one-way functions, in: ACM
Symposium on Theory of Computing (STOC, Seattle, 1989), ACM, New York
(1989) 25–32.

[7] S. Goldwasser, S. Micali: Probabilistic encryption, J. Comput. Syst. Sci. 28 (1984)
270–299.

[8] J. D. Hamkins, A. G. Miasnikov: The halting problem is decidable on a set of
asymptotic probability one, Notre Dame J. Formal Logic 47(4) (2006) 515–524.

[9] J. Hastad, R. Impagliazzo, L. Levin, M. Luby: Construction of pseudorandom
generator from any one-way function, manuscript (1993).

[10] I. Kapovich, A. G. Miasnikov, P. Schupp, V. Shpilrain: Generic-case complexity,
decision problems in group theory and random walks, J. Algebra 264 (2003) 665–
694.

[11] A. Miasnikov, A. Rybalov: On generically undecidable problems, preprint (2007).

[12] C. Papadimitriou: Computational Complexity, Addison-Wesley, Amsterdam
(1994).

[13] A. Rybalov: On the strongly generic undecidability of the halting problem, Theor.
Comput. Sci. 377(1-3) (2007) 268–270.

