
Groups-Complexity-Cryptology

Volume 1 (2009), No. 1, 63–75

Cryptanalysis of the

Anshel-Anshel-Goldfeld-Lemieux

Key Agreement Protocol

Alex D. Myasnikov
Department of Mathematics, Stevens Institute of Technology,

Hoboken, NJ 07030, USA

amyasnik@stevens.edu

Alexander Ushakov
Department of Mathematics, Stevens Institute of Technology,

Hoboken, NJ 07030, USA

aushakov@stevens.edu

Received: February 20, 2008

The Anshel-Anshel-Goldfeld-Lemieux (abbreviated AAGL) key agreement protocol [1] is pro-
posed to be used on low-cost platforms which constraint the use of computational resources.
The core of the protocol is the concept of an Algebraic EraserTM (abbreviated AE) which is
claimed to be a suitable primitive for use within lightweight cryptography. The AE primitive is
based on a new and ingenious idea of using an action of a semidirect product on a (semi)group
to obscure involved algebraic structures. The underlying motivation for AAGL protocol is the
need to secure networks which deploy Radio Frequency Identification (RFID) tags used for
identification, authentication, tracing and point-of-sale applications.

In this paper we revisit the computational problem on which AE relies and heuristically analyze
its hardness. We show that for proposed parameter values it is impossible to instantiate a secure
protocol. To be more precise, in 100% of randomly generated instances of the protocol we were
able to find a secret conjugator z generated by the TTP algorithm (part of AAGL protocol).

1. The Colored Burau Key Agreement Protocol

A general mathematical framework of the AAGL protocol is quite complicated.
In this paper we try to omit unnecessary details and simplify the notation of [1]
as much as possible. We refer an interested reader to [1, Sections 2 and 3] for a
complete description. Here we start out by giving a particular implementation of
the primitive called the Colored Burau Key Agreement Protocol (CBKAP).

ISSN 1867-1144 / $ 2.50 c© Heldermann Verlag

64 A. D. Myasnikov, A. Ushakov / Cryptanalysis of the Anshel-Anshel- ...

1.1. A platform group

Fix an integer n ≥ 7 and a prime p. Let t = (t1, . . . , tn) be a tuple of formal
variables. Define matrices

x1(t) =

−t1 1
1

. . .

1

and for i = 2, . . . , n− 1

xi(t) =

1
. . .

ti −ti 1
. . .

1

which is the identity matrix except for the ith row where it has successive entries
ti, −ti, 1 with −ti on the diagonal. We look at the matrices x1(t), . . . , xn−1(t) as
elements of the group GL(n,Fp(t)) of n × n matrices whose entries are Laurent
polynomials over the finite field Fp. The symmetric group Sn on n symbols acts
on GL(n,Fp(t)) by permuting the variables t1, . . . tn. We denote the result of the
action of s ∈ Sn on x ∈ GL(n,Fp(t)) by

sx.

The semidirect product GL(n,Fp(t)) o Sn of the groups GL(n,Fp(t)) and Sn

relative to the defined action of Sn on matrices GL(n,Fp(t)) is a set of pairs

{(m, s) | m ∈ GL(n,Fp(t)), s ∈ Sn}

with multiplication given by

(m1, s1) · (m2, s2) := (m1 ·
s1 m2, s1 · s2).

Denote by si = (i, i + 1) ∈ Sn the transposition which interchanges i and i + 1
and by gi the element of the semidirect product GL(n,Fp(t))o Sn

gi = (xi(t), si).

A subgroup
G = 〈g1, . . . , gn−1〉

of GL(n,Fp(t))oSn is called the colored Burau group. The group G is a platform
group for the AAGL key agrement protocol.

Recall that the group Bn of n-strand braids has the classical Artin’s presentation:

Bn =

〈

σ1, . . . , σn−1

∣

∣

∣

∣

σiσjσi = σjσiσj if |i− j| = 1
σiσj = σjσi if |i− j| > 1

〉

.

A. D. Myasnikov, A. Ushakov / Cryptanalysis of the Anshel-Anshel- ... 65

A word over the group alphabet {σ1, . . . , σn−1} is called a braid word. Any n-
strand braid can be represented by a braid word. The length of a shortest braid
word representing an element g ∈ Bn is called the geodesic length of g relative
to Artin’s set of generators and is denoted by |g|. The function | · | : Bn → N is
called the geodesic length function on Bn.

Lemma 1.1. The elements gi = (xi(t), si), for i = 1, 2, . . . , n − 1, satisfy the
braid relations and hence determine a representation of the braid group Bn, i.e.,
the mapping σi

ϕ
7→ gi defines a group epimorphism

ϕ : Bn → G.

Proof. Straightforward check.

1.2. Action of the platform group on GL(n,Fp)

Fix elements τ1, . . . , τn ∈ Fp and define a homomorphism π which maps GL(n,
Fp(t)) intoGL(n,Fp) by assigning the value τi to the variable ti, i.e., by evaluating
a matrix at τ1, . . . , τn. We call π the evaluation function.

Assumption on τ1, . . . , τn. We assume that π defines a correct group
homomorphism.

Relative to the chosen tuple τ1, . . . , τn ∈ Fp and the corresponding function π one
can define an action of GL(n,Fp(t))o Sn on GL(n,Fp)× Sn by putting

(m1, s1) ⋆ (m2, s2) = (m1 · π(
s1m2), s1s2)

where ⋆ denotes the action. Indeed, it is not difficult to check that ⋆ is an action
and satisfies the property

((m1, s1) ⋆ (m2, s2)) ⋆ (m3, s3) = (m1, s1) ⋆ ((m2, s2) · (m3, s3)).

We say that (m1, t1) and (m2, t2) ⋆-commute if the equality

(π(m1), s1) ⋆ (m2, s2) = (π(m2), s2) ⋆ (m1, s1)

holds. The next lemma is obvious.

Lemma 1.2. Let w =
∏m

k=1(xik(t), sik) and v =
∏l

p=1(xjp(t), sjp) be such that
|ik − jp| > 1 for every k = 1, . . . ,m and p = 1, . . . , l. Then the elements w and v
⋆-commute.

1.3. The protocol

Before the parties perform actual transmissions the following data is being pre-
pared by the Third Trusted Party (TTP).

• A matrix m0 ∈ GL(n,Fp) which has an irreducible characteristic polynomial
over Fp. The choice of m0 is not relevant for the purposes of this paper,
we refer the reader to [1] for more information on how m0 can be generated
randomly.

66 A. D. Myasnikov, A. Ushakov / Cryptanalysis of the Anshel-Anshel- ...

• ⋆-commuting subgroups A = 〈w1, . . . , wγ〉 and B = 〈u1, . . . , uγ〉 of the group
G. We want to point out that the elements wi and vj are given to us as
products of generators of G and there inverses, i.e., as formal words in group
alphabet {g1, . . . , gn−1}. We prefer this form because it allows us to avoid
time consuming matrix multiplication in GL(n,Fp(t)).

Both the matrix m0 and subgroups A and B can be chosen only once. Now, the
public and private keys are chosen as follows:

Alice’s Private Key: is a pair which consists of a matrix of the form

na = l1m
α1

0 + l2m
α2

0 + . . .+ lrm
αr

0 ∈ GL(n,Fp)

(where l1, . . . , lr ∈ Fp and r, α1, . . . , αr ∈ Z
+) and a random sequence wε1

i1
, . . . , wεm

im

of generators of A and their inverses.

Alice’s Public Key: is an element

Apublic = (na, id) ⋆ w
ε1
i1
⋆ . . . ⋆ wεm

im
∈ GL(n,Fp)× Sn.

Recall that each wik is given as a formal product of the generators of G. To
perform the ⋆-operation efficiently one should not directly compute wik , but con-
sequently apply the factors of wik to the argument.

Bob’s Private Key: is a pair which consists of a matrix of the form

nb = l′1m
β1

0 + l′2m
β2

0 + . . .+ l′r′m
βr′

0 ∈ GL(n,Fp)

(where l′1, . . . , l
′

r′ ∈ Fp and r′, β1, . . . , βr′ ∈ Z
+) and a random sequence vδ1j1 , . . . , v

δl
jl

of generators of B and their inverses.

Bob’s Public Key: is a pair

Bpublic = (nb, id) ⋆ v
δi
j1
⋆ . . . ⋆ vδljl ∈ GL(n,Fp)× Sn.

Again, each vjk is given as a formal product of the generators of G. To perform
the ⋆-operation efficiently one should not directly compute vjk , but consequently
apply the factors of vjk to the argument.

The shared key: is an element of GL(n,Fp)×Sn obtained by Alice in the form

[(na, id) ·Bpublic] ⋆ w
ε1
i1
⋆ . . . ⋆ wεm

im

and by Bob in the form

[(nb, id) · Apublic] ⋆ v
δi
j1
⋆ . . . ⋆ vδljl

It requires a little work to prove that the obtained elements are indeed equal in
GL(n,Fp). We omit the proof.

A. D. Myasnikov, A. Ushakov / Cryptanalysis of the Anshel-Anshel- ... 67

1.4. TTP algorithm

The cornerstone part of the proposed key exchange is the choice of ⋆-commuting
subgroups of the group G. The basic idea is to use Lemma 1.1 and choose
commuting subgroups A and B in Bn and then pull them into G using the epi-
morphism ϕ. The resulting subgroups ϕ(A) and ϕ(B) of G commute. Moreover,
for any choice of π the subgroups ϕ(A) and ϕ(B) ⋆-commute.

Before we present the algorithm we need to give some details about the braid
group Bn. The group Bn has a cyclic center generated by the element ∆2, where
∆ is the element called the half twist and can be expressed in the generators of
Bn as follows:

∆ = (σ1 . . . σn−1) · (σ1 . . . σn−2) · . . . · (σ1).

Any element g ∈ Bn can be uniquely represented in the form

∆pξ1 . . . ξp

satisfying certain conditions and called the left Garside normal form.

Now, since ∆2 is a central element, it follows that two elements u,w commute
in Bn if and only u∆2p and w∆2r do (for any choice of p, r ∈ Z). Hence we
may always assume that the normal forms of the generators {w1, . . . , wγ} and
{v1, . . . , vγ} have the exponent on ∆ equal to 0 or −1. When we say that we
reduce a braid modulo ∆2 we mean changing the ∆-power of its normal form to
−1 or 0 depending on the parity.

The algorithm below (originally proposed in [1]) generates two ⋆-commuting sub-
groups.

Algorithm 1.3. (TTP algorithm)

(1) Choose two secret subsets BL = {σl1 , . . . , σlα}, BR = {σr1 , . . . , σrβ} of the
set of generators of Bn, where |li−rj| ≥ 2 for all 1 ≤ i ≤ lα and 1 ≤ j ≤ rβ.

(2) Choose a secret element z ∈ Bn.

(3) Choose words {w1, . . . , wγ} of bounded length over the generators BL.

(4) Choose words {v1, . . . , vγ} of bounded length over the generators BR.

(5) For each i = 1, . . . , γ:
(a) calculate the left normal form of zwiz

−1 and reduce the result modulo
∆2;

(b) put w′

i to be a braid word corresponding to the element calculated in (a);
(c) calculate the left normal form of zviz

−1 and reduce the result modulo
∆2;

(d) put v′i to be a braid word corresponding to the element calculated in (c).

(6) Publish the sets {v′1, . . . , v
′

γ} and {w′

1, . . . , w
′

γ}.

We want to point out that the TTP algorithm produces generators of two com-
muting subgroups in Bn. Alice and Bob need to compute their images in GL(n,
Fp(t)) to obtain ⋆-commuting subgroups.

68 A. D. Myasnikov, A. Ushakov / Cryptanalysis of the Anshel-Anshel- ...

1.5. Security assumptions

It was noticed in [1] that if the conjugator z generated randomly by the TTP
algorithm is known, then there exists an efficient linear attack on the scheme
which is able to recover the shared key of the parties. The problem of recovering
the exact z seems like a very difficult mathematical problem because it reduces
to solving the system of equations

w′

1 = ∆2p1zw1z
−1

. . .
w′

γ = ∆2pγzwγz
−1

v′1 = ∆2r1zv1z
−1

. . .
v′γ = ∆2rγzvγz

−1

(1)

which has too many unknowns, since only left hand sides (i.e., elementsw′

1, . . . , w
′

γ,
v′1, . . . , v

′

γ) are known. Hence, it might be difficult to find the original z.

Now observe that the AAGL key exchange protocol uses only the output of the
TTP algorithm, namely the tuples {v′1, . . . , v

′

γ} and {w′

1, . . . , w
′

γ} since all internal
values in the TTP algorithm are not available to the parties. In other words it
is irrelevant for the protocol how two particular commuting generating sets were
constructed. This observation leads us to the following problem

For tuples {v′1, . . . , v
′

γ} and {w′

1, . . . , w
′

γ} find any z′ and any num-
bers p1, . . . , pγ, r1, . . . , rγ ∈ Z such that the words {∆2p1z′−1v′1z

′, . . . ,
∆2pγz′−1v′γz

′} and {∆2r1z′−1w′

1z
′, . . . ,∆2rγz′−1w′

γz
′} can be expressed as

words over two disjoint commuting subsets of generators of Bn.

This is a new problem for computational group theory. Let us refer to it as si-
multaneous conjugacy separation search problem (abbreviated SCSSP). We want
to emphasize that SCSSP has little in common with the simultaneous conjugacy
search problem often referenced in the papers on the braid group cryptanalysis.
The main difference is that in the conjugacy search problem both conjugate el-
ements are available and the goal is to recover the secret conjugator. In case of
SCSSP, only the left hand side of the equation is known. It is not clear if one of
the problems can be reduced to the other.

It follows from the observation above that any solution z′ to a problem stated
above plays a role of a conjugator z and can be used in a linear attack outlined in
[1]. The main goal of this paper is to present an algorithm which for proposed
parameter values solves the SCSSP. Experimental results convince us that our
attack is a serious threat to the AAGL as the success rate is 100%. Furthermore,
a slight modification of the algorithm produces the exact z generated by TTP in
40% of randomly generated instances.

While this paper was undergoing the reviewing process, it was brought to our
attention by B. Tsaban (private communication) that the security of this protocol
can be studied using a different approach [6].

A. D. Myasnikov, A. Ushakov / Cryptanalysis of the Anshel-Anshel- ... 69

1.6. Proposed parameter values

To provide 80 bits of security against the exhaustive search for z for the scheme
the authors propose two slightly different sets of parameters:

• Parameter set # 1.
– Let n = 14, p = 13, and r = 3.
– Choose the conjugator z randomly of length 17.
– Choose the words wi and vj randomly of length approximately 10.
– The number γ of the words wi and vj is 27.

• Parameter set # 2.
– Let n = 12, p = 13, and r = 3.
– Choose the conjugator z randomly of length 18.
– Choose the words wi and vj randomly of length approximately 10.
– The number γ of the words wi and vj is 27.

2. TTP attack

In this section we describe a heuristic attack which finds a solution to a given
instance of the SCSSP. The main ingredient in our attack is a length function on
the group Bn. As it is explained in [9] there are no known efficiently computable
and “sharp" length functions for braid groups. Therefore, for our attack we adopt
the method of approximation of the geodesic length function originally proposed
in [7]. In all our algorithms by | · | we denote approximation of the geodesic length
function.

We present results of experiments which show that a fast heuristic procedure
based on the length-based reduction is extremely successful for the suggested pa-
rameters. In fact, every instance of TTP algorithm generated in our experiments
has been broken.

2.1. Generation

The original paper [1] lacks any details on how to randomly generate the secret
element z and the words {w1, . . . , wγ}, {v1, . . . , vγ} in TTP algorithm. Hence, in
all our experiments:

• The word z is taken uniformly randomly as a word of a particular length
from the ambient free group F (σ1, . . . , σn−1).

• The words w1, . . . , wγ and v1, . . . , vγ are taken uniformly randomly as words
of particular lengths from the ambient free groups F (BL) and F (BR).

Also, the authors suggest to take the sets BL and BR randomly on step (1) of
TTP algorithm. Observe that in general this might result in a choice of BL such
that for some 1 ≤ i < j < k ≤ n− 1

σi, σk ∈ BL, but σj ∈ BR.

We think that this situation is not desirable as it excludes the use of at least two
braid generators in the words wi and vj. We think that the choice of the following

70 A. D. Myasnikov, A. Ushakov / Cryptanalysis of the Anshel-Anshel- ...

sets
BL = {σ1, . . . , σl} and BR = {σl+2, . . . , σn−1}

(where n is an even number and l = (n−2)/2) is optimal as it excludes only σl+1

which maximizes the size of a space for the words w1, . . . , wγ and v1, . . . , vγ.

2.2. Recovering ∆-powers

The first stage in our attack is recovering ∆ powers in the system (1), i.e., com-
puting numbers p1, . . . , pγ and r1, . . . , rγ. The main tool in our computations
below is the triangular inequality for the Cayley graph of the braid group Bn.
Observe that the following inequalities hold.

(Parameter set #1) For each i = 1, . . . , γ

|z−1uiz| ≤ 2|z|+ |ui| = 44 and |z−1wjz| ≤ 2|z|+ |wj| = 44

and
|∆2p| = pn(n− 1) = 182p.

Hence, |∆2pz−1uiz|, |∆
2pz−1wjz| ∈ [182p− 44, 182p+ 44] and

|∆2pz−1uiz| − |∆2(p−1)z−1uiz| ≥ 182− 2 · 44 = 94,

|∆2pz−1wjz| − |∆2(p−1)z−1wjz| ≥ 182− 2 · 44 = 94.

(Parameter set #2) For each i = 1, . . . , γ

|z−1uiz| ≤ 2|z|+ |ui| = 46 and |z−1wjz| ≤ 2|z|+ |wj| = 46

and
|∆2p| = pn(n− 1) = 132p.

Hence |∆2pz−1uiz|, |∆
2pz−1wjz| ∈ [132p− 46, 132p+ 46] and

|∆2pz−1uiz| − |∆2(p−1)z−1uiz| ≥ 132− 2 · 46 = 40,

|∆2pz−1wjz| − |∆2(p−1)z−1wjz| ≥ 132− 2 · 46 = 40.

This observation implies that for both parameter sets the sequences
{|∆2pz−1uiz|}

∞

p=0 and {|∆2pz−1wjz|}
∞

p=0 are strictly increasing. Thus, to recover
the original power of ∆ one can repeatedly multiply u′

i (and w′

j) on the left by
∆2 until the length cannot be reduced anymore (see Algorithm 2.1). There-
fore, the task of recovering of ∆-powers reduces to computation of the length
function, which, according to [10], might be hard. Nevertheless, we showed
above that for both parameter sets the values |∆2pz−1wjz| − |∆2(p−1)z−1wjz| and
|∆2pz−1uiz|− |∆2(p−1)z−1uiz| are at least 40 and hence even crude approximation
of the length function can detect such a change of the length.

In this paper we use approximation of the length function proposed in [7] which
employs Dehornoy handle free form of braid words (see [3]). The approximation

A. D. Myasnikov, A. Ushakov / Cryptanalysis of the Anshel-Anshel- ... 71

algorithm in [7] for a braid word w finds a braid word w′ representing the same
element of the braid group as w does, with |w′| ≤ |w|. The obtained braid
word w′ in general is not geodesic, but numerous experiments and successful
applications of that technique in [7], [8], [9] prove that w′ is sufficiently close to
being a geodesic. There is no known polynomial upper bound on the complexity
of the approximation algorithm as there is no known polynomial upper bound
on the complexity of the Dehornoy algorithm, but series of computations suggest
that it has linear time complexity in terms of the length of the input word w.

Algorithm 2.1 (∆-power recovery).
Input: An element w ∈ Bn.
Output: An element u minimal in the left coset 〈∆−2〉w.
Computations:

A. Set u = w.

B. If |u| > |∆−2u| then set u = ∆−2u and goto B.

C. If |u| > |∆2u| then set u = ∆2u and goto B.

D. Otherwise output u.

Clearly Algorithm 2.1 always terminates. Moreover, under the assumption that
the approximation algorithm has linear time complexity, it is easy to see that
the power-recovery algorithm can be executed in at most O((|w|+ n2)|w|/n2) =
O(|w|2/n2 + |w|) steps as the algorithm performs up to |w|/n2 iterations and on
each iteration for a word u of length at most |w| the length of a word ∆2u is
estimated.

2.3. Recovering conjugator

The second part of the attack computes a secret conjugator. At this point we
assume that all ∆-powers from the system (1) are successfully found and we have
a system of equations of the form

w′′

1 = zw1z
−1

. . .
w′′

γ = zwγz
−1

v′′1 = zv1z
−1

. . .
v′′γ = zvγz

−1

or

z−1w′′

1z = w1

. . .
z−1w′′

γz = wγ

z−1v′′1z = v1
. . .
z−1v′′γz = vγ

(2)

where only elements u′′

i = ∆−2piu′

i and w′′

j = ∆−2riw′

j are known. Let us call two
sets of braids separated if they can be expressed as words over disjoint commuting
sets of generators of Bn. As mentioned in Section 1.5, to break the protocol it
is sufficient to find any conjugator z′ which conjugates two tuples of elements
(u′′

1, . . . , u
′′

γ) and (w′′

1 , . . . , w
′′

γ) into two separated tuples of elements (u1, . . . , uγ)
and (w1, . . . , wγ). This is the main goal of our attack.

Let ū = (u1, . . . , um) be a tuple of elements in Bn and x an element of Bn. Denote

72 A. D. Myasnikov, A. Ushakov / Cryptanalysis of the Anshel-Anshel- ...

by |ū| the total length of elements in ū, i.e., put

|ū| =
m
∑

i=1

|ui|.

Denote by ūx the tuple obtained from ū by conjugation of each its element by x.
It is intuitively clear that conjugation of a tuple of braids by a random element
x almost always increases the length of the tuple. In other words, for a random
element x the inequality

|ūx| > |ū| (3)

is almost always true. We do not have a proof of this fact, but numerous exper-
iments convince us that this is true. Moreover, conjugation by longer elements
almost always results in longer tuples.

The idea that conjugation consequently increases the length of tuples is not new.
It was used in papers [5], [4] for different length functions with different success
rates. But the most successful is a recent attack [9] which uses approximation
of the geodesic length. In this paper we use the idea of separating two tuples of
braids. To find z′ we repeatedly conjugate the tuple (u′′

1, . . . , u
′′

γ, w
′′

1 , . . . , w
′′

γ) by

generators of Bn and their inverses and if for some generator σ±1
k the decrease of

the total length of the tuple is observed, then it is reasonable to guess that σ±1
k

is involved in z′.

Algorithm 2.2 (Recovering conjugator - I).
Input: Tuples ā = {a1, . . . , aγ} and b̄ = {b1, . . . , bγ}.
Output: An element z′ separating tuples ā and b̄.
Initialization: Set z′ = 1.
Computations:

A. For each i = 1, . . . , n−1 and ε = ±1 conjugate tuples ā and b̄ by a generator
σε
i and compute

δi,ε = |āσ
ε
i |+ |b̄σ

ε
i | − (|ā|+ |b̄|).

B. If for some σε
i the sets āσ

ε
i and b̄σ

ε
i are separated, then output z′ = σε

i z
′.

C. Otherwise, if all δi,ε are positive (i.e., conjugation by σε
i cannot further

decrease the total length), then output FAILURE.

D. Otherwise, choose i and ε for which δi,ε is minimal. Set z′ = σε
i z

′, ā = āσ
ε
i ,

and b̄ = b̄σ
ε
i . Goto step A.

The described attack is similar to the one described in [9]. Recall that the main
problem in [9] was the existence of so-called peaks (see [9, Definition 2.5]). This
phenomenon is a consequence of difficult structure of finitely generated subgroups
of braid groups. In this paper, we do not have this problem as z is chosen in the
whole group Bn.

Note that Algorithm 2.2 is a greedy descend procedure. It may fail due to the fact
that there exists a small fraction of words for which the inequality (3) does not

A. D. Myasnikov, A. Ushakov / Cryptanalysis of the Anshel-Anshel- ... 73

hold. It is also prone to the length approximation errors. One can significantly
reduce the failure rate of a descent procedure by introducing a backtracking
algorithm which allows exploration of more than one search path. Algorithm 2.3
gives an implementation of the attack with backtracking.

Algorithm 2.3 (Recovering conjugator with Backtracking).
Input: Tuples ā = {a1, . . . , aγ} and b̄ = {b1, . . . , bγ}.
Output: An element z′ separating tuples ā and b̄.
Initialization: Set S = {(ā, b̄, 1)}.
Computations:

A. If S = ∅ then output FAILURE.

B. Choose (x̄, ȳ, c) ∈ S such that |x̄|+ |ȳ| is the minimal.

C. For each i = 1, . . . , n−1 and ε = ±1 conjugate tuples x̄ and ȳ by a generator
σε
i and compute

δi,ε = |x̄σε
i |+ |ȳσ

ε
i | − (|x̄|+ |ȳ|).

D. If for some σε
i the sets x̄σε

i and ȳσ
ε
i are separated then output z′ = σε

i c.

E. Otherwise, for each i = 1, . . . , n−1 and ε = ±1 add the tuple (x̄σε
i , x̄σε

i , σε
i c)

to the set S. Goto step A.

We must mention here that, although there is a possibility that Algorithm 2.3
outputs FAILURE or does not terminate on some inputs, this situation has never
occurred in our experiments.

Finally, we present another modification of Algorithm 2.2.

Algorithm 2.4 (Recovering conjugator - II).
Input: Tuples ā = {a1, . . . , aγ} and b̄ = {b1, . . . , bγ}.
Output: An element z′ separating tuples ā and b̄.
Initialization: Set z′ = 1.
Computations:

A. For each i = 1, . . . , n−1 and ε = ±1 conjugate tuples ā and b̄ by a generator
σε
i and compute

δi,ε = |āσ
ε
i |+ |b̄σ

ε
i | − (|ā|+ |b̄|).

B. If all δi,ε are positive (i.e., conjugation by σε
i cannot further decrease the

total length) and the sets ā and b̄ are separated then output z′.

C. If all δi,ε are positive (i.e., conjugation by σε
i cannot further decrease the

total length), but the sets ā and b̄ are not separated then output FAILURE.

D. Otherwise, choose i and ε for which δi,ε is minimal. Set z′ = σε
i z

′, ā = āσ
ε
i ,

and b̄ = b̄σ
ε
i . Goto step A.

Algorithms 2.2 and 2.4 are almost the same except that they have different ter-
mination conditions. Algorithm 2.2 stops as soon as the tuples are separated,
while Algorithm 2.4 tries to minimize the total length of the tuple, and when the
minimal value is reached, it checks if the current tuples are separated.

74 A. D. Myasnikov, A. Ushakov / Cryptanalysis of the Anshel-Anshel- ...

The complexity of step A in Algorithms 2.2 and 2.4 is O(γn(|ai| + |bi|)). The
maximal number of iterations can be bounded by the total length of the input
|ai|+ |bi|. A very rough upper bound on the complexity of the two algorithms is
O(γn(|ai|+ |bi|)

2).

The complexity of Algorithm 2.3 is harder to estimate. Potentially, the backtrack-
ing mechanism may cause the algorithm to explore exponentially many potential
solutions. However, our experiments show that a very few backtracking steps are
required to find a solution.

2.4. Results of experiments

The attack was implemented using routines of "CRyptography And Groups"
package [2]. It was tested on different sets of instances of the protocol. In
particular, we generated the sets BL and BR randomly and used fixed sets
BL = {σ1, . . . , σl} and BR = {σl+2, . . . , σn−1}. We used the proposed values of
the parameters (see Section 1.6). In addition the attack was tested on instances
generated with the increased length of the secret conjugator z.

In all the experiments Algorithm 2.3 had 100% success (1000 successful recovery
out of total 1000 experiments) of producing a separating conjugator z′. The
average time of a run of the algorithm was 4.5 seconds when executed on a
Dual Core Opteron 2.2 GHz machine with 4GB of ram. The algorithm without
backtracking had slightly smaller but still respectable success rate of 90%. It is
very interesting to notice that Algorithm 2.4 actually recovered the original secret
conjugator z in about 40% of the cases. This is the reason why we mention this
algorithm in our paper.

Experiments with instances of the TTP protocol generated using |z| = 50 (which
is almost three times greater than the suggested value) again showed 100% suc-
cess rate. However, we need to point out that the attack may fail when the length
of z is large relative to the length of ∆2. For instance, when in the second param-
eter set the length of z is increased to 100, the algorithm recovering ∆-powers
sometimes output wrong values. Nevertheless, the success rate of Algorithm 2.3
is still about 90% in this case. We think it is possible to modify our algorithms
to work with increased parameter values. But the biggest concern here is that
the protocol with increased parameter values may not be suitable for purposes of
lightweight cryptography.

References

[1] I. Anshel, M. Anshel, D. Goldfeld, S. Lemieux: Key agreement, the algebraic
eraserTM , and lightweight cryptography, in: Algebraic Methods in Cryptography,
L. Gerritzen et al. (ed.), Contemp. Math. 418, AMS, Providence (2006) 1–34.

[2] CRyptography And Groups (CRAG) C++ Library, available at http://www.acc.
stevens.edu/downloads.php.

[3] P. Dehornoy: A fast method for comparing braids, Adv. Math. 125 (1997) 200–235.

A. D. Myasnikov, A. Ushakov / Cryptanalysis of the Anshel-Anshel- ... 75

[4] D. Garber, S. Kaplan, M. Teicher, B. Tsaban, U. Vishne: Length-based conjugacy
search in the braid group, in: Algebraic Methods in Cryptography, L. Gerritzen et
al. (ed.), Contemp. Math. 418, AMS, Providence (2006) 1–34.

[5] J. Hughes, A. Tannenbaum: Length-based attacks for certain group based encryp-
tion rewriting systems, preprint.

[6] A. G. Kalka, M. Teicher, B. Tsaban: Cryptanalysis of the algebraic eraser, in
preparation.

[7] A. G. Miasnikov, V. Shpilrain, A. Ushakov: A practical attack on some braid group
based cryptographic protocols, in: Advances in Cryptology (CRYPTO, Santa Bar-
bara, 2005), V. Shoup (ed.), Lect. Notes Comput. Sci. 3621, Springer, Berlin (2005)
86–96.

[8] A. G. Miasnikov, V. Shpilrain, A. Ushakov: Random subgroups of braid groups:
an approach to cryptanalysis of a braid group based cryptographic protocol in:
Public Key Cryptography (PKC, New York, 2006), M. Yung, et al. (ed.), Lect.
Notes Comput. Sci. 3958, Springer, Berlin (2006) 302–314.

[9] A. D. Myasnikov, A. Ushakov: Length based attack and braid groups: cryptanaly-
sis of Ahsel-Anshel-Goldfeld key exchange protocol, in: Public Key Cryptography
(PKC, Beijing, 2007), T. Okamoto et al. (ed.), Lect. Notes Comput. Sci. 4450,
Springer, Berlin (2007) 76–88.

[10] M. Paterson, A. Razborov: The set of minimal braids is co-NP-complete, J. Algo-
rithms 12 (1991) 393–408.

