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A method for non-abelian Cramer-Shoup cryptosystem is presented. The role of decision and
search is explored, and the platform of solvable / polycyclic group is suggested. In the process
we review recent progress in non-abelian cryptography and post some open problems that
naturally arise from this path of research.

1. Introduction

The field of combinatorial group theory began with decision problems of Max
Dehn from 1912, known as the word problem, the conjugacy problem and the
isomorphism problem. These fields have developed close connections to topology,
logic and computer science. Word problem: Let G be a group given by a finite
presentation. Does there exist an algorithm to determine if an arbitrary word w
in the generators of G whether or not w =G 1? Conjugacy problem: Let G be a
group given by a finite presentation. Does there exist an algorithm to determine
if an arbitrary pair of words u and v in the generators of G whether or not u
and v define conjugate elements of G? By the celebrated theorem of Novikov
[25] and Boone [7], there are groups for which these questions are undecidable:
they cannot be answered algorithmically. Nevertheless, because of the practical
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importance of these problems, a lot of effort is devoted to the development of
methods for investigating finitely presented groups. The study of designing such
algorithms and implementing them, is computational group theory. These topics
have generated much attention and proved of importance in modern cryptography,
namely algebraic cryptography, initiated in 1999 by I. Anshel, M. Anshel and D.
Goldfeld [1]. Algebraic key establishment protocols based on the difficulty of
solving equations over algebraic structures are described as a theoretical basis
for constructing public-key cryptosystems. These applications rely strongly on
complexity of decision problems in combinatorial group theory. Needless to say,
complexity problems are some of the most important problems in mathematics.

1.1. Motivation

Key exchange problems are of central interest in cryptology [24]. The basic aim
of key exchange problems is that two people who can only communicate via an
insecure channel want to find a common secret key. Key exchange methods are
usually based on one-way functions; that is, functions which are easy to com-
pute, while their inverses are difficult to determine (see [26, 15]). Here ‘easy’
and ‘difficult’ can mean that the complexities or the practicality of the methods
are far away from each other; ideally, the one-way function has a polynomial
complexity and its inverse has an exponential complexity. Many of the known
one-way functions have a common problem: it is often easy to find a one-way
function with a polynomial complexity, but showing that there is no inverse func-
tion with similar complexity or practicality is usually the difficult part of the
project, since the best inverse function might just not have been discovered yet.
Hence it is of interest to investigate new one-way functions. The decision prob-
lems in combinatorial group theory have shown much potential for this purpose.
Another reason is that, using Shors algorithm the discrete log problem and prime
factorization problem admit polynomial-time quantum algorithm. That leaves
the current cryptosystem in danger if the quantum computers are to be built!
Non-abelian (a.k.a. Non-commutative) group theorists have been working in the
field of non-commutative cryptography for about ten years, but a class of groups
which provides a provably secure basis for the non-commutative protocols is not
known yet. The groups of the authors interest are mainly polycyclic groups.
These are natural generalizations of cyclic groups but are much more complex in
their structure. Hence their algorithmic theory is more difficult.

In the last decade the Braid group cryptography has been of great interest to
many researchers in the field and has been investigated by private and public
sectors. No such investigation has been done for solvable / polycyclic groups.

The reason for developing a non-abelian Cramer-Shoup cryptosystem is to streng-
then the non-commutative ElGamal cryptosystem [20]. We think that it should be
secured against CCA1 and CCA2. The tested modification would be tested while
such research can go on for developing the non-commutative ElGamal [20]. It has
been pointed out to us that the goal of Cramer-Shoup was to defend ElGamal
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against chosen ciphertext attacks. We do not know if the non-commutative El-
Gamal [20] can be attacked using chosen ciphertext attack. However in the mean-
time a C-S like cryptosystem can be developed to defend the non-commutative
ElGamal public key cryptosystem [20].

2. Applications of Non-commutative Group Theory in Cryptography

In 1984, Wagner et al. [32] proposed an approach to design of public-key cryp-
tosystems based on groups and semigroups with undecidable word problem. In
2005, Birget et al. [6] pointed out that Wagner’s idea is actually not based on
word problem, but on, generally easier, premise problem. And finally, Birget
et al. proposed a new public-key cryptosystem which is based on finitely pre-
sented groups with hard word problem. In 1999, Anshel et al. [1] proposed a
compact algebraic key establishment protocol. The foundation of their method
lies in the difficulty of solving equations over algebraic structures, in particular
non-commutative groups. In their pioneering paper, they also suggested that
braid groups may be good alternative platforms for PKC (public-key cryptogra-
phy). Subsequently, Ko et al. [22] and Dehornoy [9] developed the theory and
practice of braid-based cryptography. The security foundation is that the con-
jugator search problem (CSP) is intractable when the system parameters, such
as braid index and the canonical length of the working braids, are selected prop-
erly. In 2002, certain homomorphic cryptosystems were constructed for the first
time for non-abelian groups due to Grigoriev and Ponomarenko [17]. Shortly af-
terwards, they [18] extended their method to arbitrary nonidentity finite groups
based on the difficulty of the membership problem for groups of integer matrices.
In 2004, Eick and Kahrobaei [12] proposed a new cryptosystem based on poly-
cyclic groups. In 2005 Baumslag, Fine and Xu proposed public key cryptosystem
using the modular group [3], [4]. In 2005, Shpilrain and Ushakov [28] suggested
that R. Thompson’s group may be a good platform for constructing public-key
cryptosystems. In their contribution, the key assumption is the intractability of
the decomposition problem, which is more general than the conjugator search
problem, defined over R. Thompson’s group, also a infinite non-abelian group
given by finite presentation. In [8], Cao et al. propose a new method for design-
ing public key cryptosystems based on general non-commutative rings. The key
idea of their proposal is that for a given non-commutative ring, they can define
polynomials and take them as the underlying work structure. In 2006 Kahrobaei
and Khan, proposed a non-commutative key-exchange scheme which generalizes
the classical ElGamal Cipher [20]. This scheme is closer to the spirit of ElGamal
and the they proposed polycyclic groups for such protocol.

Recently, Gilman, et al. in [14] study the algorithmic security of the Anshel-
Anshel-Goldfeld (AAG) key exchange scheme and show that contrary to prevalent
opinion, the computational hardness of AAG depends on the structure of the
chosen subgroups, rather than on the conjugacy problem of the ambient braid
group. Proper choice of these subgroups produces a key exchange scheme which
is resistant to all known attacks on AAG.



220 D. Kahrobaei, Michael Anshel / Decision and Search in Non-Abelian ...

In recent work [16], Grigoriev et al., show new constructions of cryptosystems
based on group invariants and suggest methods to make such cryptosystems se-
cure in practice. In their paper their introduce a new notion of cryptographic
security, a provable break, and prove that cryptosystems based on matrix group
invariants and also a variation of the Anshel-Anshel-Goldfeld key agreement pro-
tocol for modular groups are secure against provable worst-case break unless
NP ⊂ RP .

2.1. Non-Commutative public key cryptosystem using Conjugacy

The following is the public key cryptosystem problem proposed by Kahrobaei and
Khan [20].
Let G be a finitely presented non-abelian group having solvable word problem.
Let S, T < G be finitely generated proper subgroups of G, for which the subgroup
[S, T ] (i.e. the subgroup generated by {[s, t] | s ∈ S, t ∈ T}) is the trivial subgroup
consisting of just the identity element of G. Now suppose two parties, Alice and
Bob, wish to establish a session key over an unsecured network.

Bob takes s ∈ S, b ∈ G and publishes b and c = bs as his public keys, keeping s
as his private key. If Alice wishes to send x ∈ G as a session key to Bob, she first
chooses a random t ∈ T and sends

E = x(ct)

to Bob, along with the header
h = bt.

Bob then calculates (bt)s = (bs)t = ct with the header. He can now compute

E ′ = (ct)−1

which allows him to decrypt the session key,

(

x(ct)
)E′

=
(

x(ct)
)

(ct)−1
= x.

The element x ∈ G can now be used as a session key.

The feasibility of this scheme rests on the assumption that products and inverses
of elements of G can be computed efficiently. To deduce Bob’s private key from
public information would require solving the equation c = bs for s, given the
public values b and c. This is called the conjugacy search problem for G. Thus
the security of this scheme rests on the assumption that there is no fast algorithm
for solving the conjugacy search problem for the group G.

2.2. Non-Commutative public key cryptosystem using Power Conju-

gacy

The following is the public key cryptosystem problem which was proposed by
Kahrobaei and Khan in [20] What if the conjugacy search problem is tractable?
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The next paradigm embellishes conjugacy-based key exchange to address this
possibility. Bob takes s ∈ S, g ∈ G and n ∈ N and publishes v = gn and
w = s−1gs as his public keys. Note that the centralizer of g is trivial. Bob keeps
n ∈ N and s ∈ S as his private keys. Note that v and w satisfy wn = s−1vs. If
Alice wishes to send x ∈ G to Bob, she first chooses a random m ∈ N and t ∈ T .
To encrypt x, Alice computes

E = x−1t−1(v)mtx = x−1t−1gmntx

and sends it to Bob along with the header

h = t−1wmt = t−1s−1gmst.

Bob receives E and h, and computes

E ′ = shns−1 = t−1gmnt.

Note that E = x−1E ′x, so if Bob can solve the conjugacy search problem, he can
obtain x ∈ G, which can then serve as the common secret that can be used as a
symmetric session key for secure communication.

The feasibility of this scheme rests on the assumption that products and inverses
of elements of G can be computed efficiently, and that the conjugacy problem
is solvable. To deduce Bob’s private key from public information would require
solving the equation wn = s−1gns for n and s, given the public values gn and
w. This is called the power conjugacy search problem for G. Thus the security
of this scheme rests on the assumption that there is no fast algorithm for solving
the power conjugacy search problem for the group G.

3. Cramer-Shoup cryptosystem

Cramer-Shoup cryptosystem is a generalization of ElGamal Key exchange prob-
lems, it is provably secure against adaptive chosen ciphertext attack. Moreover,
the proof of security relies only on a standard intractability assumption, namely,
the hardness of the Diffie-Hellman decision problem in underlying group (see
[31], [30]). A hash function H whose output can be interpreted as a number in
Zq (where q is a large prime number). It should be hard to find collisions in H.
In fact, with a fairly minor increase in cost and complexity, one can eliminate H
altogether.

3.1. Definition of provably secure against adaptive chosen ciphertext

attack

The right formal, mathematical definition of security against active attacks evolved
in a sequence of papers by Naor and Yung, Rackoff and Simon, Dolev, Dwork
and Naor. The notion is called chosen ciphertext security or equivalently non-
malleability. The intuitive thrust of this definition is that even if an adversary
can get arbitrary ciphertexts of his choice decrypted, he still gets no partial
information about other encrypted messages. (for more information see [31],
[30])
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3.2. The Cramer-Shoup Scheme

Secret Key: random x1, x2, y1, y2, z ∈ Zq.
Public Key:

g1, g2 in G(but not 1)

c = g1
x1g2

x2 , d = g1
y1g2

y2

h = g1
z.

Encryption of m ∈ G: (u1, u2, e, v), where

u1 = g1
r, u2 = g2

r, e = hrm, v = crdrα,

r in Zq is random, and α = H(u1, u2, e).

Decryption of (u1, u2, e, v):

If v = u1
x1+αy1u2

x2+αy2 , where α = H(u1, u2, e)
then m = e/u1

z

else “reject�.

4. Non-commutative Cramer-Shoup Cryptosystem

The objective of this section is to propose non-commutative Cramer-Shoup cryp-
tosystem and analyze its security. As it is pointed out in [31], [30], with a fairly
minor increase in cost and complexity, one can eliminate the hash function alto-
gether and that is what we are doing in this scheme. Can our protocol be extended
so that our C-S like cryptosystem can incorporate hash functions? Here we have
in mind the winner of the SHA 3 hash function competition sponsored by NIST.

Let G be a non-abelian group such that every element has a normal form, and
the conjugacy search problem is hard.

Secret Key: random x1, x2, y1, y2, z ∈ G.
Public Key:

g1, g2 in G (but not 1), such that [g2
x2 , g1

y1 ] = 1

c = g1
x1g2

x2 , where g1
x1 = x1

−1g1x1 and g2
x2 = x2

−1g2x2

d = g1
y1g2

y2 , where g1
y1 = y1

−1g1y1 and g2
y2 = y2

−1g2y2

h = g1
z = z−1g1z.

Encryption of m ∈ G: (u1, u2, e, v), where

u1 = g1
r = r−1g1r, u2 = g2

r = r−1g2r, e = mhr

, v = crdr.

Suppose r be a random element in G such it commutes with x1, x2, y1, y2 and z.

Decryption of (u1, u2, e, v):

If v = u1
x1u1

y1u2
x2u2

y2

then m = e(u1
z)−1

= mhru1
z
−1

= mu1
z(u1

z)−1

else “reject�.
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Note that the authors currently experimenting the search for the secure randomly
generated r.

5. Polycyclic groups new platform for cryptology

Polycyclic groups are a natural generalization of cyclic groups, but they are much
more complex in their structure than cyclic groups. Hence their algorithmic
theory is more difficult and thus it seems promising to investigate classes of
polycyclic groups as candidates to have a more substantial platform perhaps
more secure. Recall that a group is called polycyclic if there exists a polycyclic
series through the group; that is, a subnormal series of finite length with cyclic
factors. There are two different natural representations for these groups which
can be used for computations: polycyclic presentations and matrix groups over
the integers. We refer to [29], [27], [13], [11], [5] and [19] for background and a
more detailed introduction to polycyclic groups.

In particular polycyclic groups are linear. In this setting, both group multiplica-
tion and the word problem are efficiently solvable, since matrix multiplication for
such groups is solvable in polynomial time. One can show that for a subgroup
of a general linear group, if two elements are conjugate then they have the same
Jordan normal form. Using this lemma one conclude that the search conjugacy
problem in any subgroup of the General Linear group is solvable. However the
complexity is not known but is conjectured to be exponential. Kharlampovich
[21] showed that there is a finitely presented solvable group with an undecidable
word problem. It follows by a theorem of Arzhantseva-Osin in [2] that the word
problem is in NP for any finitely generated metabelian group. For polycyclic
groups, some decision problems are known to be difficult but not provably so
[10, 23].
A large growth rate would imply a large key space for the set of all possible keys,
thus making the brute force search of this space intractable. Ideally, we would
like to use groups which exhibit provably exponential growth. A large class of
polycyclic groups are known to have an exponential growth rate, namely those
which are not virtually nilpotent, by results of Wolf and Milnor in 1968. Using
these observations about the polycyclic groups, we conjecture they are the best
candidate for the non-abelian Cramer-Shoup cryptosystem.
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[31] V. Shoup, R. Cramer: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack, in: Advances in Cryptology - CRYPTO
’98 (Santa Barbara, 1998), H. Krawczyk (ed.), Lect. Notes Comput. Sci. 1462,
Springer, Berlin (1998) 13–25.

[32] N. Wagner, M. Magyarik: A public-key cryptosystem based on the word problem,
in: Advances in Cryptology (Santa Barbara, 1984), G. R. Blakley et al. (ed.), Lect.
Notes Comput. Sci. 196, Springer, Berlin (1985) 19–36.


