
Groups-Complexity-Cryptology

Volume 1 (2009), No. 2, 231–259

Algebraic Attacks Galore!

Martin Kreuzer
Fakultät für Informatik und Mathematik,

Universität Passau, 94030 Passau, Germany
Martin.Kreuzer@uni-passau.de

Dedicated to Benjamin Fine on the occasion of his 60th birthday.

Received: May 15, 2009

This is the first in a two-part survey of current techniques in algebraic cryptanalysis. After
introducing the basic setup of algebraic attacks and discussing several attack scenarios for
symmetric cryptosystems, public key cryptosystems, and stream ciphers, we discuss a number of
individual methods. The XL, XSL, and MutantXL attacks are based on linearization techniques
for multivariate polynomial systems. Then we look at Gröbner basis and border bases methods.
In the last section we introduce attacks based on integer programming techniques and try them
in some concrete cases.

Keywords: Cryptosystem, algebraic attack, polynomial system solving

2000 Mathematics Subject Classification: Primary 11T71; Secondary 13P10, 94A60

Contents

1 Introduction 232

2 Cryptosystems 233

3 From Cryptosystems to Polynomial Systems 235

4 Attack Methods Based on Polynomials 236

5 The XL, XSL and MutantXL Attacks 240

6 The Gröbner Basis Attack 245

7 The Border Basis Attack 249

8 The Integer Programming Attack 253

ISSN 1867-1144 / $ 2.50 c© Heldermann Verlag



232 M. Kreuzer / Algebraic Attacks Galore!

1. Introduction

Cryptosystems (also called ciphers or encryption schemes) are important building
blocks of many cryptographic protocols that play an essential role in modern life.
Already in his seminal paper [44], C. E. Shannon remarked:

Thus, if we could show that solving a certain system requires at least
as much work as solving a system of simultaneous equations in a large
number of unknowns, of a complex type, then we would have a lower
bound of sorts for the work characteristic.

Since it is well-known that any encryption map between finite dimensional vector
spaces over a finite field is polynomial, it is natural to represent the task of
breaking a cryptosystem by the problem of solving a multivariate polynomial
system of equations over a finite field. Such techniques are usually called algebraic
attacks.

The fact that the serious study of algebraic attacks did not get off the ground for
a long time after Shannon’s paper is probably due to the lack of sufficiently fast
computers and efficient computer algebra methods. This situation has changed
dramatically in the last decades, and now algebraic attacks are an active area of
research. The purpose of this paper (and its follow-up) is to give a sampling of the
methods that have been developed, are being developed, or could be developed,
based on the (limited) understanding of the author. The main emphasis is not to
provide fine details or the latest optimizations, but to give an overview of a variety
of different techniques, originating in a variety of mathematical disciplines, and
to hint at possible connections or synergies.

Let us describe briefly what is ahead of us. In Section 2 we introduce some
basic definitions, and in Section 3 we describe the fundamental setup of algebraic
attacks. In particular, we recall the Buchberger-Möller algorithm which can be
used to compute polynomial relations between plaintext and ciphertext units or
between key bits and ciphertext units. Then, in Section 4, we discuss some general
attack scenarios, in particular for attacking symmetric cryptosystems, public key
cryptosystems, and stream ciphers.

The discussion of individual methods for performing the cryptanalysis starts in
Section 5 with the XL, XSL, and MutantXL attacks. The XL attack uses a
linearization technique to reduce the solution of a multivariate polynomial system
to a linear system of equations. Contrary to some initial hopes, it does not
solve the problem in subexponential time and, worse, it suffers from a rapid
increase in memory consumption. To overcome this difficulty, several remedies
have been proposed. We discuss briefly the XSL algorithm which is the subject
of ongoing lively discussion, and a recent idea of J. Ding called the MutantXL
algorithm. Especially the last suggestion seems to be able to rival the Gröbner
basis techniques and certainly merits further investigation.

In Section 6 we introduce the Gröbner basis attack which is mainly based on the
F4 and F5 algorithms of J.-C. Faugère. They rose to popularity after they were



M. Kreuzer / Algebraic Attacks Galore! 233

successfully used to break the “HFE 80 Challenge�. Recent improvements and
additions made them even more powerful and several stream ciphers and digital
signature streams have come under serious attack. An idea which is similar to
the F5 algorithm and which makes it possible to include some of the techniques
underlying the MutantXL attack is presented in Section 7 where we explain the
border basis attack. This attack is based on the border basis algorithm (BBA)
which computes (surprise!) border bases, a generalization of Gröbner bases. The
BBA offers several points in which the memory consumption of the algorithm
can be minimized, thereby improving the search heuristics of the Gröbner basis
oriented approaches.

Finally, in Section 8, we move to a different branch of mathematics to search
for efficient attack mechanisms: discrete optimization. After formulating the
solution of a system of polynomial equations over F2 as an integer programming
problem over Z in the straightforward way, we can apply standard IP solvers
inside our algebraic attacks. Using some concrete examples, we show that this
“IP attack� seems to be rather efficient and deserves to be the subject of further
investigations. We end the section with a first suggestion for how to improve this
IP attack in certain cases.

In view of the large number of different techniques, this overview has been split
into two parts. The second part is called Algebraic Attacks Ante Portas! and will
contain further methods coming from mathematical logic, numerical analysis,
linear and multilinear algebra, algebraic geometry and other fields.

Although I have tried to be reasonably complete and quote as generously as
possible, the sheer amount of work published on this subject makes it virtually
impossible to paint an entirely fair and complete picture. A sincere apology goes
in advance to all colleagues whose contributions have been overlooked or not
represented adequately. Even so, the paper ends with a list of 46 references. For
basic definitions and notation, I will adhere to the books [32] and [33] because
they are the ones I know best. Of course, whatever I quote from there is also
available in other monographs on computer algebra.

I can’t tell you the secret of the universe,
said Mullah Nasrudin,

because then it would not be a secret anymore.

2. Cryptosystems

Algebraic attacks can be used against a variety of cryptosystems: symmetric or
public key, block ciphers and stream ciphers. Let us briefly recall some basic
definitions.

Definition 2.1. A cryptosystem (or cipher or encryption scheme) consists of the
following parts:

(1) A set P called the set of plaintext units.

(2) A set C called the set of ciphertext units.



234 M. Kreuzer / Algebraic Attacks Galore!

(3) A set K called the key space.

(4) For every key k ∈ K, an encryption map εk : P −→ C.
(5) For every key k ∈ K, a decryption map δk : C −→ P.

(6) A map η : K −→ K such that δη(k) ◦ εk = idK for all k ∈ K. A pair (k, η(k))
is called a key pair.

The cryptosystem is called symmetric if η(k) can be computed efficiently given
the knowledge of k and εk. Otherwise, the system is called a public key cryptosys-
tem. In a block cipher, the plaintext is broken into plaintext units and encrypted
using a fixed key k. In a stream cipher, there is a function to generate a key
stream k1, k2, . . . from an initial key, and then k1, k2, . . . are used to encrypt the
individual plaintext units.

In the cases we are going to consider, the sets P and C are (subsets of) finite
dimensional vector spaces over a finite field, usually of characteristic 2. The field
will be denoted by K = Fq where q = pe and p is the characteristic. The following
easy observation is the basis of all algebraic attacks.

Remark 2.2. Over a finite field K, every map ϕ : Kn −→ Km is polynomial,
i.e. there exist polynomials f1, . . . , fm ∈ K[x1, . . . , xn] such that

ϕ(a1, . . . , an) = (f1(a1, . . . , an), . . . , fm(a1, . . . , an))

for all a1, . . . , an ∈ K. The polynomials fi are not uniquely determined. Consid-
ering X = Kn as a finite point set, the polynomials fi can be modified by adding
elements of the vanishing ideal

I(X) = {g ∈ K[x1, . . . , xn] | g(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X}.

Let us illustrate this phenomenon with a non-standard look at the RSA cryp-
tosystem.

Example 2.3. We use the RSA cryptosystem with n = 15 = p · q, where p = 3
and q = 5. The public exponent is e = 5, the secret one is d = 5, so that de ≡
1(mod 8) with 8 = ϕ(n). The plaintext and ciphertext units are represented as
tuples (a0, a1, a2, a3) ∈ F4

2 corresponding to elements a0+2a1+4a2+8a3 ∈ Z/(15).
A straightforward calculation shows that ε5(a0, a1, a2, a3) = (a0+2a1+4a2+8a3)

5

is then represented by (c0, c1, c2, c3) ∈ F4
2 where

c0 = a0a1a2a3 + a0a1a2 + a0a2 + a0a3 + a2a3 + a0 + a3

c1 = a0a1a2a3 + a0a1a2 + a0a1a3 + a0a2a3 + a0a1 + a1 + a2 + a3

c2 = a1a2a3 + a0a1 + a1a2 + a1a3 + a1 + a2

c3 = a0a1a2a3 + a0a1a2 + a1a2a3 + a0a1 + a0a2 + a0a3 + a2a3 + a3.

Thus we can decipher for example the ciphertext (1, 1, 0, 0) by finding the F2-
rational solutions of the polynomial system c0 − 1 = 0, c1 − 1 = 0, c2 = 0, c3 = 0.



M. Kreuzer / Algebraic Attacks Galore! 235

For instance, this can be done by computing a reduced Gröbner bases of the ideal
I = 〈c0−1, c1−1, c2, c3, a

2
0−a0, . . . , a

2
3−a3〉. The result G = {a0−1, a1−1, a2, a3}

tells us that the plaintext unit was (1, 1, 0, 0) which agrees with 35 ≡ 3(mod 15).

From now on we let P = K[x1, . . . , xn]. Since the multiplicative group F×
q is cyclic,

the elements of Fq are the zeros of xq − x and the vanishing ideal of X = Kn is
I(X) = 〈xq

1 − x1, . . . , x
q
n − xn〉. We shall call this the field ideal. If we represent

an encryption map (or a family of encryption maps) via polynomials f1, . . . , fm
and use them to devise an algebraic attack involving the solution of a polynomial
system, it is usually safe to add the equations of the field ideal to the system,
since we are looking for K-rational solutions.

3. From Cryptosystems to Polynomial Systems

The construction of the polynomials f1, . . . , fm which represent the encryption
maps εk is frequently performed on a case-by-case basis, taking into account the
specific descriptions of εk. If the space of plaintext units P (and possibly the
key space) is not too large, the algorithm below can be applied to the set of all
plaintext – cyphertext pairs.

However, for large real-world cryptosystems, it is sometimes not possible to de-
termine the actual polynomials f1, . . . , fm. In particular, this happens if we are
dealing with a symmetric cryptosystem and if the polynomials f1, . . . , fm depend
on further indeterminates representing the key bits. In this case we can still
generate polynomial relations between the (plaintext, key bits)-tuple and the
ciphertext-tuple which hold for a large number of corresponding tuples via the
following well-known and efficient algorithm from computer algebra.

Proposition 3.1 (Buchberger-Möller Algorithm). Let Y = {(p1, k1), . . . ,
(ps, ks)} ⊆ Kn ×Kℓ be a finite set of points. (Here the tuples pi represent plain-
text units and the tuples ki represent the keys used to encrypt them.) Furthermore,
let qi = εki(pi) be the corresponding ciphertext units for i = 1, . . . , s. Form the
polynomial ring Q = K[x1, . . . , xn, y1, . . . , yℓ] and consider the following instruc-
tions.

(1) Let G = ∅, O = ∅, S = ∅, L = {1}, and let M = (mij) ∈ Mat0,s(K) be a
matrix having s columns and initially zero rows. Choose a term ordering σ
on Q.

(2) If L = ∅, continue with step (6 ). Otherwise, choose the term t = minσ(L)
and delete it from L.

(3) Compute the evaluation vector (t(p1, k1), . . . , t(ps, ks)) ∈ Ks and reduce it
against the rows of M to obtain

(v1, . . . , vs) = (t(p1, k1), . . . , t(ps, ks)) − ∑
i

ai (mi1, . . . ,mis)

with ai ∈ K.



236 M. Kreuzer / Algebraic Attacks Galore!

(4) If (v1, . . . , vs) = (0, . . . , 0), append the polynomial t−∑
i aisi to G, where si

is the ith element in S. Remove from L all multiples of t. Then continue
with step (2 ).

(5) Otherwise we have (v1, . . . , vs) 6= (0, . . . , 0). Append (v1, . . . , vs) as a new
row to M and t−∑

i aisi as a new element to S. Add t to O, and add to L
those elements of {x1t, . . . , xnt, y1t, . . . , yℓt} which are neither multiples of
an element of L nor of LTσ(G). Continue with step (2 ).

(6) Row reduce M to a diagonal matrix and mimic these row operations on the
elements of S, considered as a column vector. Next replace S by M−1S.

(7) For i = 1, . . . , s, write qi = (qi1, . . . , qim) with qij ∈ K. For j = 1, . . . ,m,
form the polynomial fj =

∑s
i=1 qijsi where si is the i

th element of S. Return
(f1, . . . , fm) and G and stop.

This is an algorithm which computes a tuple of polynomials (f1, . . . , fm) ∈ Qm

and a tuple G such that (f1(pi, ki), . . . , fm(pi, ki)) = qi for i = 1, . . . , s and G is
the reduced σ-Gröbner basis of I(Y).

In other words, the Buchberger-Möller Algorithm yields all polynomials which
model the encryption map correctly for the given plaintext units and keys. For a
proof, see for instance [33], Thm. 6.3.10 and Cor. 6.3.11.

In his diploma thesis [35], J. Limbeck implemented the polynomials representing
the encryption functions of a number of important cryptosystems, e.g. DES, AES,
Serpent, Keeloq, HFE and a number of variations of these. These implementa-
tions in ApCoCoA (see [3]) are available from the author upon request.

4. Attack Methods Based on Polynomials

In this section we describe several attack scenarios using the algebraic represen-
tation of the encryption and decryption maps discussed above. Depending on
whether one deals with block ciphers or stream ciphers, and depending on the in-
formation available to and the goals of the attacker, the following attack methods
have been proposed.

Attack Methods for Symmetric Block Ciphers.

Symmetric block ciphers are typically constructed along the lines of the following
figure. The cipher consists of several rounds in which the plaintext repeatedly
undergoes (essentially) the same transformations. Here key addition means that
a round key is added bitwise to the plain text unit, the key schedule is a function
to compute from the initial key a new round key for each round, and the S-boxes
and diffusion layers are various maps to achieve a homogeneous distribution of
the plaintext information over the ciphertext unit.

With the exception of the S-boxes, these components are usually modeled by
linear polynomials, and for the S-boxes one can normally get away with quadratic



M. Kreuzer / Algebraic Attacks Galore! 237

key addition

key schedule

diffusion layer

x1,0

x1,1

x1,2

Sbox

SS DD

k0 k1 kn kn+1

x1 y1 z1 xn yn zn

K

p c

Figure 4.1: Schematic of a Symmetric Block Cipher

polynomials. Thus the basic attack method here is the following type of known
plaintext attack:

Attack 1. Assume that one or more plaintext-ciphertext pairs are known. Write
down the encryption map as a system of linear and quadratic polynomials in the
indeterminates using the initial key (or key bits) and the indeterminates repre-
senting the intermediate text units after each round. Then find a solution of
the resulting multivariate polynomial system and use the key to decrypt other
plaintext-ciphertext pairs.

It is clear that we are only interested in the indeterminates representing the
key. In this attack method, it is usually sufficient to know one or two plaintext-
ciphertext pairs in order to have a unique solution of the polynomial system. This
assumption is not unreasonable because, for instance, certain files or file types
always start with the same sequence of bytes. Less likely to succeed, but in that
case even more dangerous, is the following ciphertext only attack:

Attack 2. Assume that the attacker knows several ciphertext units which have
been encrypted using the same key. Write down the polynomials representing the
encryption map a corresponding number of times, using distinct indeterminates
for the various plaintexts and the same indeterminates for the keys. Solve the
resulting polynomial system and obtain both the plaintext and the key.

Finally, we note the following suggestion in [16]. It is not a specific attack but
a method to find weak keys or statistical defects of the encryption maps. A dif-



238 M. Kreuzer / Algebraic Attacks Galore!

ferential characteristic of an encryption map is a pair (∆p,∆cn) such that two
plaintext units differing by ∆p are transformed by n rounds of the encryption
map into ciphertext units differing by ∆cn with a “large enough� probability.
Differential cryptanalysis uses information about the number of pairs of cipher-
texts having a difference predicted by the characteristic to recover (parts of) the
secret key.

Attack 3. Write down the polynomial system describing the application of the
encryption map to two plaintext units differing by ∆p and to intermediate or
ciphertext units differing by ∆cn where (∆p,∆cn) is a differential characteristic.
Solve the system to find weak keys or, for a fixed key, to find right pairs, i.e.
pairs of plaintexts for which the characteristic holds.

In [2], the authors propose several ways to combine the methods of differential
cryptanalysis and algebraic attacks.

Algebraic Attacks for Public Key Cryptosystems.

The basic algebraic attack of a public key cryptosystem is straightforward and
has already been used in Example 2.3.

Attack 4. Write down the encryption map as a system of polynomials in the
indeterminates representing the plaintext unit(s), substituting the public key and
the given cipertext unit(s). Solve the polynomial system and recover the plaintext.

Since one has complete knowledge of the encryption map, one can also generate
plaintext-cipertext pairs and attack the secret key.

Attack 5. Using the public key and arbitrarily chosen plaintext units, compute
the corresponding ciphertext units. Write down a polynomial representation of
the decryption map using the bits of the secret key as indeterminates. Solve the
polynomial system and thus find the secret key.

It is clear that this attack applies to all kinds of one-way functions, e.g. to the
ones used to determine hash values in signature or authentication protocols.

Algebraic Attacks for Stream Ciphers

This kind of algebraic attacks has the longest history and may be considered
as a well-established technique. The basic type of synchronous stream cipher
considered here uses a sequence of key bits which are generated from a given
initial secret key using a key generator. This keystream is then combined with
the stream of plaintext bits using a XOR operation to obtain the ciphertext.
Thus, schematically, the system works as follows. Typically, there is a tuple of
indeterminates (si1, . . . , sin) which describes the i-th internal state of the key
generator. The initial state is computed from the secret key k. Then there exists
a function f(si1, . . . , sin) which computes the next state (si+11, . . . , si+1n) of the



M. Kreuzer / Algebraic Attacks Galore! 239

k
keystream

generator key stream

plain text

ci

Figure 4.2: Schematic of a Synchronous Stream Cipher

key generator, a function zi = g(si1, . . . , sin) which produces the next bit of the
keystream, and the addition ci = zi + pi which yields the next ciphertext bit ci
from the next plaintext bit pi. Let us have a look at an actual example.

Example 4.1. The synchronous stream cipher Trivium has been suggested for
the eStream project (see [24]). It has the following structure:

(1) The initial state (s01, . . . , s0 288) ∈ F288
2 is computed from the 80-bit key and

an 80-bit initial value.

(2) For i = 1, 2, . . . , the following commands are repeated.

(3) Define three temporary values by t1 = si 66 + si 93, t2 = si 162 + si 177, and
t3 = si 243 + si 288.

(4) Compute the i-th keystream bit zi = t1 + t2 + t3.

(5) Replace t1 by t1 + si 91si 92 + si 171, replace t2 by t2 + si 175si 176 + si 264, and
replace t3 by t3 + si 286si 287 + si 69.

(6) Let (si+11, . . . , si+193) be (t3, si1, . . . , si 92), let (si+194, . . . , si+1177) be (t1,
si 94, . . . , si 176), and let (si+1178, . . . , si+1288) be (t2, si 178, . . . , si 287).

It is evident that all assignments are given by simple, sparse, linear or quadratic
polynomials over F2.

The typical attack against such a stream cipher is a known plaintext attack which
proceeds as follows.

Attack 6. Introduce indeterminates (s1, . . . , sn) representing the initial state of
the key generator. Moreover, introduce indeterminates z0, z1, . . . representing the
key stream bits. For each clock i, get an equation which represents zi as a polyno-
mial in the indeterminates s1, . . . , sn. Using the known plaintext-ciphertext pairs,
determine a part of the keystream and solve the polynomial system to recover
the internal state of the keystream generator. Then use the result to decrypt the
remainder of the ciphertext.

Of course, one can also try to use the knowledge of the internal state to clock
the stream cipher backwards and to recover the secret key. A more special type
of attack (proposed in [18]) is possible for the common type of stream cipher
in which the function f(si1, . . . , sin) that computes the next state is linear (e.g.
stream ciphers based on LFSRs). The details of this method (called fast algebraic
attack) can be found in [14] and [30].



240 M. Kreuzer / Algebraic Attacks Galore!

Attack 7. Suppose that f(si1, . . . , sin) is linear, so that zi = g(f i(s01, . . . , s0n))
is a polynomial of degree deg(g) in the indeterminates s01, . . . , s0n. Find a re-
lation of the form zi · h1(s01, . . . , s0n) = h2(s01, . . . , s0n) with polynomials h1, h2

of “small� degrees deg(h1) < deg(h2) and use it to derive a relation of the form∑i1
i=i0

αizih1(f
i(s01, . . . , s0n)) = 0 with αi ∈ F2. Finally, write down this relation

for many consecutive values of i0 and use the additional polynomials to speed up
Attack 6 substantially.

In all cases, we have seen that the main task for a successful attack is to solve
a multivariate polynomial system over a finite field. Therefore the rest of this
article deals with different methods that have been used or suggested for this
purpose in the context of polynomial systems derived from algebraic attacks.

5. The XL, XSL and MutantXL Attacks

The XL Attack.

The XL Attack uses the XL Algorithm which in turn is based on a technique
called relinearization introduced by A. Kipnis and A. Shamir in [34]. Let us
describe this technique via the example given there.

Example 5.1. Suppose we want to solve the following system of polynomial
equations in F7[x1, x2, x3].

3x2
1 + 5x1x2 + 5x1x3 + 2x2

2 + 6x2x3 + 4x2
3 = 5

6x2
1 + x1x2 + 4x1x3 + 4x2

2 + 5x2x3 + x2
3 = 6

5x2
1 + 2x1x2 + 6x1x3 + 2x2

2 + 3x2x3 + 2x2
3 = 5

2x2
1 + x1x3 + 6x2

2 + 5x2x3 + 5x2
3 = 0

4x2
1 + 6x1x2 + 2x1x3 + 5x2

2 + x2x3 + 4x2
3 = 0.

For every product xixj, we introduce a new indeterminate yij and solve the re-
sulting linearized system of equations. We get y11 = 2+5z, y12 = z, y13 = 3+2z,
y22 = 6+4z, y23 = 6+z, and y33 = 5+3z with z ∈ F7. To isolate the correct solu-
tion, we use the fundamental syzygies of the terms xixj, namely y11y23 = y12y13,
y12y23 = y13y22, and y12y33 = y13y23 and obtain new equations for z, namely

3z2 + z + 5 = 0, 4z + 4 = 0, z2 + 4z + 3 = 0.

Now we apply a relinearization step : we introduce z1 = z and z2 = z2, solve
the linear system, and find z1 = 6, z2 = 1. This yields y11 = 4, y22 = y33 = 2,
and hence x1 = ±2, x2 = ±3, x3 = ±3. Finally, y12 = 6 and y23 = 5 imply
(x1, x2, x3) ∈ {(2, 3, 4), (5, 4, 3)}.

It is already apparent from this small example that a potentially huge number
of new indeterminates has to be introduced, so that the linear system has to
be solved with great care to preserve sparseness. Based on this relinearization



M. Kreuzer / Algebraic Attacks Galore! 241

technique, N. Courtois, A. Klimov, J. Patarin and A. Shamir proposed in [17] the
XL Algorithm (which stands for eXtended Linearization) for solving a system of
multivariate quadratic equations

f1(x1, . . . , xn) = 0
...

fm(x1, . . . , xn) = 0

with fi ∈ K[x1, . . . , xn] over a field K. (Recall that, in our case, K is finite and
we are after just one K-rational solution.)

Remark 5.2. By XL Algorithm we mean the procedure defined by the following
steps.

(1) Choose a number d > 2 such that d ≥ n/
√
m.

(2) Form all products xα · fi where 1 ≤ i ≤ m and xα = xα1

1 · · ·xαn
n is a term of

degree ≤ d− 2.

(3) Linearize the set of all xαfi. In other words, introduce a new indetermi-
nate yj for every term of degree≤ d inK[x1, . . . , xn] and solve the linear sys-
tem using Gaußian elimination. The elimination has to be performed in such
a way that the indeterminates yj corresponding to some set {1, xk, . . . , x

d
k}

are eliminated last.

(4) Assume that step (3) yields at least one univariate equation c0 + c1xk +
· · ·+ cdx

d
k = 0. Solve this equation.

(5) Substitute the values of xi back into the system and simplify it. Repeat the
process to find the values of the other indeterminates.

If the base field is K = F2, it suffices to use squarefree terms xα in step (2).

The hope expressed by the authors of [17] was that this method could find so-
lutions of large overdefined systems of quadratic equations over finite fields in
subexponential time. However, careful analyses of its running time in [20] and [21]
make this appear unlikely. In a number of papers the XL Algorithm has been
related to the Gröbner basis methods we discuss in the next section (see for in-
stance [5], [11], and [45]). Let us apply it to the following simple example taken
from [1].

Example 5.3. Over the polynomial ring F127[x1, x2], consider the quadratic poly-
nomial system

f1 = x2
1 + 80x1x2 + 114 = 0

f2 = x2
2 + 107x1x2 + 29 = 0

and apply the XL Algorithm.

(1) Choose d = 4.

(2) Form the products x2
1fi, x1x2fi, x

2
2fi, x1fi, x2fi, and fi with i = 1, 2.



242 M. Kreuzer / Algebraic Attacks Galore!

(3) Linearization and Gaußian elimination (where 1, x2, x
2
2, x

3
2, x

4
2 are eliminated

last) amounts to interreducing the products xαfi and yields the set

{x4
1 + 106x2

2 + 115, x3
1x2 + 66x2

2 + 28, x3
1 + 119x3

2 + 109x2,

x2
1x

2
2 + 61x2

2 + 113, x2
1x2 + 4x3

2 + 103x2, x
2
1 + 4x2

2 + 103,

x1x
3
2 + 34x2

2 + 124, x1x
2
2 + 119x3

2 + 43x2, x1x2 + 119x2
2 + 43x2,

x1 + 24x3
2 + 17x2, x

4
2 + 74x2

2 + 67}

(4) The equation x4
2 + 74x2

2 + 67 = (x2 − 36)(x2 + 36)(x2
2 − 27) = 0 yields

x2 = ±36.

(5) Substituting x2 back, we find the solution x2 = 91, x1 = 89.

The XSL Attack

To overcome the inefficiency of the XL Algorithm and take advantage of the
sparseness present in polynomial systems arising from algebraic attacks, N. Cour-
tois and J. Pieprzyk proposed in [19] a further method called XSL (which stands
for eXtended Sparse Linearization). This method is particularly tailored to attack
the following kind of cryptosystem.

Definition 5.4. A symmetric block cipher is called an XSL cipher if it has the
following structure.

(1) The first round i = 1 starts with a XOR with the session key k.

(2) There is a layer of b parallel S-boxes, each working on s bits.

(3) Next there is a linear diffusion layer.

(4) Finally, there is a XOR with a round key ki.

(5) Repeat (2)–(4) until N rounds have been completed.

For an XSL cipher, the XSL Attack can informally be described as follows (see [19]
and [12]).

Remark 5.5. Given an XSL cipher, perform the following steps.

(1) Form the system of multivariate quadratic polynomial equations describing
the cryptosystem. Let each S-box correspond to r equations which involve
a total of t terms. Choose a basis of t− r terms (involving 1, but avoiding
indeterminates) and express the remaining r terms as linear combinations
of the basis.

(2) Select a parameter p. (Some heuristics for this choice are given in [19].)
Multiply the linear layer equations (from the encryption and the key sched-
ule) by terms chosen from the bases of p−1 different S-boxes. (Ensure that
the generated equations contain only terms from different S-boxes.)

(3) As much as possible, perform substitutions of terms not in the basis by
their expressions using linear combinations of terms in the basis.

(4) Apply the so-called T ′-method: Multiply selected equations by single inde-
terminates to create further equations. If T denotes the set of all terms in



M. Kreuzer / Algebraic Attacks Galore! 243

the set and xi is an indeterminate, let T ′
i = {t ∈ T | xit ∈ T }. Perform a

Gaußian elimination to bring the system to a form in which every term is a
linear combination of the terms in T ′

i . Then multiply these equations by xi,
reduce modulo the field equations and append any new linearly independent
equations to the system. Repeat this process as long as possible.

(5) Finally, apply linearization to the entire system and use Gaußian elimina-
tion to solve it.

As can be seen, the XSL Attack is a dedicated method for solving specific block
ciphers, for instance AES and Serpent. However, its practical applicability has
been the subject of intense discussion (see for instance [12], [40], and [46]). Several
variants and improvements have been proposed, but a final conclusion of the
debate has not been reached. Since the analysis of the XSL Attack in [19] is not
universally accepted, we leave this topic here and move to a more recent idea on
how to improve the XL Attack.

The MutantXL Attack

In [22], J. Ding et al. suggested a new strategy to speed up the XL Attack which is
based on the concept ofmutants. The idea is that in the process of generating new
equations, polynomials of small degree should be treated preferentially. Let f1 =
· · · = fm = 0 be a system of polynomial equations over Fq, i.e. let f1, . . . , fm ∈
Fq[x1, . . . , xn]. We are interested in finding Fq-rational solutions of this system.
Thus we will be working over the ring

R = Fq[x1, . . . , xn]/〈xq
1, . . . , x

q
n〉

where we reduce everything modulo the field equations. In the process of solv-
ing the system, we are typically generating futher elements of the ideal I =
〈f1, . . . , fm〉 in R. In this setting, mutants are defined as follows.

Definition 5.6. Let g = h1f1+· · ·+hmfm ∈ I. The level of this representation is
the number ℓ = max{deg(hifi) | i ∈ {1, . . . ,m}, hi 6= 0}. Then the level of g with
respect to (f1, . . . , fm) is defined to be the minimal level of any representation
of g. We say that g is a mutant with respect to (f1, . . . , fm) if deg(g) is smaller
than the level of g.

In other words, a mutant of degree d is a polynomial which cannot be found by
forming linear combinations of products tfi where t ∈ Tn is a term such that
deg(tfi) ≤ d and where i ∈ {1, . . . ,m}. The MutantXL Attack is based on the
following modification of the XL algorithm.

Remark 5.7. As above, let f1, . . . , fm ∈ R. The MutantXL Algorithm is the
procedure defined by the following steps.

(1) Interreduce F = {f1, . . . , fm}, let d = e = min{deg(f1), . . . , deg(fm)}, and
let G = F .



244 M. Kreuzer / Algebraic Attacks Galore!

(2) Linearize G and use Gaußian elimination to bring it into row echelon form.

(3) If there are univariate polynomials in G, determine the values of the cor-
responding indeterminates. If this solves the system, return the result.
Otherwise, substitute the values and continue with step (1), applied to
polynomials in a smaller ring.

(4) Form the set M of all polynomials of degree < e in G. (These polynomials
are mutants with respect to F .)

(5) If M 6= 0, multiply each g ∈ M by all terms of degree d − deg(g) and
replace g in G by the resulting polynomials. Let e = min{deg(g) | g ∈
M}+ 1 and continue with step (2).

(6) Replace all g ∈ G of degree d by all possible products xig with i ∈
{1, . . . , n}, increase d by one, let e = d, and continue with step (2).

Let us consider this algorithm in a small example (due to J. Ding) of a polynomial
system derived from the HFE cryptosystem.

Example 5.8. Over the ring R = F2[x1, . . . , x4]/〈x2
1 − x1, . . . , x

2
4 − x4〉, consider

the following system of equations.

f1 = x1x2 + x2x3 + x2x4 + x3x4 + x1 + x3 + 1 = 0

f2 = x1x2 + x1x3 + x1x4 + x3x4 + x2 + x3 + 1 = 0

f3 = x1x2 + x1x3 + x2x3 + x3x4 + x1 + x4 + 1 = 0

f4 = x1x3 + x1x4 + x2x3 + x2x4 + 1 = 0.

We follow the steps of the MutantXL algorithm.

(1) Let d = e = 2 and G = F .

(2) Gaußian elimination yields the system

g1 = x1x2 + x2x3 + x2x4 + x3x4 + x1 + x3 + 1 = 0

g2 = x1x3 + x1x4 + x2x3 + x2x4 + x1x2 = 0

g3 = x1x4 + x2x3 + x1 + x2 + x3 + x4 = 0

g4 = x1 + x2 + 1 = 0.

(4) We have M = {g4}.
(5) Let G = {g1, g2, g3, g5, g6, g7} with g5 = x1x2, g6 = x1x3 + x2x3 + x3, and

g7 = x1x4 + x2x4 + x4. Set e = 2.

(2) Gaußian elimination yields the new polynomials g̃5 = x2x3 + x2x4 + x3x4 +
x1 + x3 + 1, g̃6 = x3x4 + x1 + x3 + x4 + 1, and g̃7 = x3 + x4 + 1.

(4) We have M = {g̃7}.
(5) Replace g̃7 in G by g8 = x1x3+x1x4, g9 = x2x3+x2x4+x2, and g10 = x3x4.

Set e = 2.

(2) Gaußian elimination yields g̃8 = x2 + x4 and g̃9 = x4 + 1.

(3) We substitute x4 = 1 everywhere and get the solution (x1, x2, x3, x4) =
(0, 1, 0, 1).



M. Kreuzer / Algebraic Attacks Galore! 245

The MutantXL Attack has recently been improved further in [37]. It seems to be
comparable in speed to the Gröbner basis methods explained in the next section.
Moreover, it is clear that the mutant strategy can also be used to guide and
possibly improve the Gröbner basis and border basis computations below.

6. The Gröbner Basis Attack

In the following, we assume that the reader has a basic understanding of Gröbner
bases and the Buchberger algorithm, e.g. as laid out in Chapters 1 and 2 of [32].
Let K = Fq be a finite field, and let f1, . . . , fm ∈ K[x1, . . . , xn] be a set of
polynomials. We want to find the K-rational solutions of the polynomial system
of equations

f1(x1, . . . , xn) = 0
...

fm(x1, . . . , xn) = 0.

To this end, we form the ideal I = 〈f1, . . . , fm〉+ 〈xq
1−x1, . . . , x

q
n−xn〉. If we are

able to compute a Gröbner basis of I, we can use it to solve the system in several
ways.

Remark 6.1. In the above setting, let σ be a term ordering on Tn, and let G be
the reduced σ-Gröbner basis of I.

(1) If I is in normal xn-position and σ = Lex is the lexicographic term ordering,
then the Shape Lemma (see [32], Thm. 3.7.25) says that G is of the form

G = {x1 − h1(xn), . . . , xn−1 − hn−1(xn), hn(xn)}

with h1, . . . , hn ∈ K[xn]. After factoring hn, we can immediately read off
the zeros of I, i.e. the solutions of the system. Notice that the ideal I is
automatically a 0-dimensional radical ideal. We say that I is in normal xn-
position if the xn-coordinates of the zeros of I are pairwise distinct. This
is no serious restriction in the cases we are interested in, because the ideals
under consideration have usually only very few solutions. If I is not in
normal xn-position, a linear coordinate change may be employed (see [32],
Sect. 3.8).

(2) Suppose that the polynomial system has only one K-rational solution (a1,
. . . , an) ∈ Kn. Then every reduced Gröbner basis G of I is of the form
G = {x1 − a1, . . . , xn − an}. Similarly, if there are exactly two solutions,
the reduced Gröbner bases of I have the form G = {(xi − ai)(xi − bi)} ∪
{ℓj(xi, xj) | j 6= i} for some i ∈ {1, . . . , n}, where ℓj ∈ K[xi, xj] is linear.

The computation of a Gröbner basis of I is usually achieved by a variant of the
Buchberger algorithm introduced in [10]. (For a description using our notation,
see [32], Thm. 2.5.5.) In his papers [25] and [26], J.-C. Faugère presented improved



246 M. Kreuzer / Algebraic Attacks Galore!

versions of Buchberger’s algorithm. Since they are the bases of essentially all
successful Gröbner basis attacks until now, let us briefly sketch their main ideas.

The algorithm called “F4� is, in effect, a particular strategy for performing the
steps of the Buchberger algorithm in a certain way which takes advantage of fast
linear algebra techniques and possible sparseness of the generating polynomials
f1, . . . , fm of I. It uses the following matrix representation of vector spaces of
polynomials.

Definition 6.2. Let G = (g1, . . . , gr) ∈ K[x1, . . . , xn]
r, let σ be a term ordering

on Tn, and let S =
⋃r

i=1 Supp(gi). We write S = {t1, . . . , ts} with t1 >σ · · · >σ ts
and form the matrix Mσ(V ) ∈ Matr,s(K) whose (i, j)-entry is the coefficient of tj
in gi. Then Mσ(G) is called the coefficient matrix of the tuple (g1, . . . , gr) with
respect to σ.

With this terminology in mind, we can describe a simplified version of the F4
Algorithm as follows.

Remark 6.3. Let F = (f1, . . . , fm) ∈ K[x1, . . . , xn]
m. The F4 Algorithm for

computing a Gröbner basis of I consists of the following steps.

(1) Choose a degree compatible term ordering σ and form the coefficient matrix
Mσ(F ).

(2) Reduce Mσ(F ) to row echelon form and put the polynomials corresponding
to the non-zero rows into a tuple G. Let B be the set of critical pairs of G.

(3) For d = 1, 2, . . . , repeat the following steps until B = ∅. Then return G
and stop.

(4) Form the set of critical pairs B≤d of degree ≤ d and remove it from B. Let
Sd be the set of all left-hand and right-hand sides of S-polynomials Sij of
B≤d. Form the set S ′

d of all tg where t ∈ Tn and g ∈ G which may be used
during the top-reduction of Sd. (This is called symbolic preprocessing.)

(5) Form the coefficient matrix of (G,Sd, S
′
d) and reduce it to row echelon form.

Put the polynomials corresponding to new non-zero rows intoG, put all new
critical pairs into B, and continue with (3).

There are two main advantages of this algorithm in the cryptanalytic setting: by
the way the new rows of the matrices are generated in the symbolic preprocess-
ing phase, the growth of the space consumption of the algorithm is kept under
control, and for the reduction to row echelon form one can choose variants of
Gaußian elimination which take advantage of possible sparseness of the matri-
ces (e.g. structured Gaußian elimination, see [36] and [41], or Lanczos algorithm,
see [38]).

If one modifies the XL algorithm such that it proceeds degree by degree, it can
be seen as a version of the F4 algorithm, as was shown in [45]. Let us try the F4
algorithm in a small example.

Example 6.4. Over the field K = F2, consider the ideal I = 〈x2 − x, y2 −



M. Kreuzer / Algebraic Attacks Galore! 247

y, z2 − z, f1, f2, f3〉 in K[x, y, z], where f1 = xy + xz + 1, f2 = xz + yz + z,
and f3 = xy + xz + y + 1. We compute a Gröbner basis of I with respect
to σ = DegrevLex following the above version of the F4 algorithm, applied to
F = (x2 − x, y2 − y, z2 − z, f1, f2, f3).

(1) We have Supp(F ) = (x2, xy, xz, y2, yz, z2, x, y, z, 1) and

Mσ(F ) =




1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0
0 1 1 0 0 0 0 0 0 1
0 0 1 0 1 0 0 0 1 0
0 1 1 0 0 0 0 1 0 1




.

(2) For the row echelon form, we replace f3 by g3 = f3 − f1 and have the
new last row (0, 0, 0, 0, 0, 0, 0, 1, 0, 0). The pivot elements correspond to
the leading terms {x2, y2, z2, xy, xz, y} and yield G = {g1, g2, g3, g4, g5, g6}
with g1 = x2 + x, g2 = y2 + y, g3 = z2 + z, g4 = f1, g5 = f2, and
g6 = y. Taking into account Buchberger’s first criterion, the critical pairs
are B = {(1, 4), (1, 5), (2, 4), (2, 6), (3, 5), (4, 5), (4, 6)}.

(4) For d = 2, we have B≤2 = {(2, 6), (4, 6)}. They yield the additional rows



0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0


 .

(5) The row echelon form has one new non-zero row (0, 0, 0, 0, 0, 0, 0, 1, 1), cor-
responding to g7 = z + 1. There is no new critical pair.

(4) In degree d = 3 we have B≤3 = {(1, 4), (1, 5), (2, 4), (3, 5)}. The new rows
have additional entries corresponding to (x2y, x2z, xy2, xyz, xz2, y2z, yz2)
and are




1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0




.

(5) The row echelon form has one new non-zero row, namely

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)

corresponding to g8 = x+ 1.

(2) Since B = ∅, the algorithm stops and returns G = {g1, . . . , g8}.



248 M. Kreuzer / Algebraic Attacks Galore!

The polynomials g6, g7, g8 of the resulting Gröbner basis show that (1, 0, 1) is the
only zero of I.

One problem in the F4 algorithm is that there may still be many critical pairs
whose corresponding S-polynomials reduce to zero. To address it, J.-C. Faugère
developed his algorithm “F5�. The details of this algorithm are too complicated
to be described here. For extensive discussions, we refer to the original paper [26]
and to the elaborations in [43] and [28]. Let us collect a few aspects which are
important to our algebraic attacks.

Remark 6.5.

(1) The F5 algorithm is optimized for the case when the input polynomials
form a regular sequence. In this case, it has been shown to avoid all unnec-
essary reductions to zero. For highly overdetermined systems (such as the
ones coming from algebraic attacks), its efficiency is not well-understood,
although very good in practise.

(2) There is no complete proof yet that the F5 algorithm terminates on regular
sequence inputs. (The original proof in [26] seems to contain a gap.) For
overdetermined systems, in particular the ones defined over finite fields and
containing the field equations, the “algorithm� apparently fails to terminate
quite often (see [43], p. 43).

(3) One of the main points of the F5 algorithm is the replacement of the tradi-
tional Buchberger criteria for avoiding the treatment of unnecessary critical
pairs with new “F5 criteria�. It seems to be possible to combine the F5
techniques with the classical Buchberger criteria (see [28]) but has not been
done so far. Similarly, the current forms of the F5 algorithm seem not to
use the F4 techniques described above.

(4) The F5 algorithm is an incremental Gröbner basis algorithm, i.e. it adds
the input polynomials one by one and computes bases of the subideals
iteratively. Therefore the order in which the input polynomials are passed
to the algorithm matters considerably.

Despite these remarks, the F5 algorithm has been the algorithm of choice for
Gröbner basis attacks. In part, this is certainly due to the success in [27] where the
“HFE 80 Challenge� was solved. Further successes with algebraic attacks using
the F4 and F5 algorithms were reported in [23] against the perturbed Matsumoto-
Imai cryptosystem, in [18] and [4] against certain stream ciphers, and in [7] and [8]
against the digital signature schemes TRMS and UOV.

Our last remark about the use of variants of the Buchberger algorithm for alge-
braic attacks is that, over the base field K = F2, the usual Buchberger criteria for
avoiding unnecessary critical pairs may be complemented by the following new
criterion shown in [9].

Proposition 6.6. Let σ be a term ordering on Tn, let I ⊆ P = F2[x1, . . . , xn]
be an ideal containing the field polynomials, and let f ∈ I be a polynomial of



M. Kreuzer / Algebraic Attacks Galore! 249

the form f = ℓ · g where ℓ, g ∈ P and LTσ(ℓ) = xi. Then the S-polynomial
S(f, x2

i + xi) has a t-representation for some term t <σ lcm(LTσ(f), x
2
i ).

In particular, the critical pair (LTσ(f), x
2
i ) may be skipped during a Gröbner basis

computation.

7. The Border Basis Attack

All of the preceding attacks were in essence based on the construction of further
polynomials in the ideal I generated by the original system. This system is defined
over a finite field K and contains the field equations. Hence I is a 0-dimensional
radical ideal in K[x1, . . . , xn]. And all of these attacks face more or less the same
difficulty: the number of newly generated polynomials grows very fast and all too
soon the algorithms run out of memory.

This leads us to the idea to use border bases in order to solve the polynomial
system. For 0-dimensional polynomial ideals, they provide a more flexible concept
than Gröbner bases. The border basis algorithm for computing them can be
tailored to proceed as space-efficiently as possible, and it can be conditioned to
search for special polynomials in the ideal, e.g. for the elimination polynomials
in I ∩ K[xi]. Since the theory of border bases is not as well-known as that of
Gröbner bases, we briefly recall the main definitions. For details and proofs we
refer to [33], Sect. 6.4.

As usual, we let K be a (finite) field and P = K[x1, . . . , xn]. We assume that
f1, . . . , fm ∈ P generate a 0-dimensional polynomial ideal I = 〈f1, . . . , fm〉.
Definition 7.1. Let O = {t1, . . . , tµ} be a finite set of terms in Tn.

(1) The set O is called an order ideal if t ∈ O and t′ | t imply t′ ∈ O, i.e. if O
is closed under forming divisors.

(2) The set ∂O = (x1O ∪ · · · ∪ xnO) \ O is called the border of O.

(3) Let ∂O = {b1, . . . , bν}. A set of polynomials G = {g1, . . . , gν} ⊂ P is called
an O-border prebasis if its elements are of the form gj = bj−

∑µ
i=1 cijtj with

cij ∈ K.

(4) An O-border prebasis is called an O-border basis if the residue classes of
the elements of O form a K-vector space basis of the ring P/〈g1, . . . , gν〉.

In the following we let O = {t1, . . . , tµ} be an order ideal and ∂O = {b1, . . . , bν}.
Of course, we shall say that G is an O-border (pre-) basis of I if G is an O-border
(pre-) basis and G generates I. Let us collect some basic properties of O-border
(pre-) bases.

Proposition 7.2. Let G = {g1, . . . , gν} be an O-border prebasis of I.

(1) Using the Border Division Algorithm, we can represent every f ∈ P in the
form f = h1g1 + · · ·+ hνgν + c1t1 + · · ·+ cµtµ with hi ∈ P and cj ∈ K.

(2) The residue classes of the elements of O generate the K-vector space P/I.

(3) If O = Tn \ LTσ(I) for some term ordering σ, then I has an O-border



250 M. Kreuzer / Algebraic Attacks Galore!

basis G. The elements of G corresponding to the corners of LTσ(I) (i.e.
the minimal generators of this monomial ideal) form the reduced σ-Gröbner
basis of I.

(4) If I has an O-border basis, it is uniquely determined.

The following easy example shows that I has, in general, many more border bases
than reduced Gröbner bases. One of the goals of the border basis attack is to
capitalize on this increased flexibility.

Example 7.3. Let I ⊂ F2[x, y] be the ideal generated by {x2 + xy, y2 + xy, x3},
and let O = {1, x, y, xy}. Then we have ∂O = {x2, x2y, xy2, y2}, and the set
G = {x2 + xy, x2y, xy2, y2 + xy} is an O-border basis of I.

However, this O-border basis does not contain a reduced σ-Gröbner basis for any
term ordering σ because x >σ y implies xy = LTσ(y

2 + xy) ∈ LTσ(I) and x <σ y
implies xy = LTσ(x

2 + xy) ∈ LTσ(I). Thus the order ideal O = {1, x, y, xy} is
not of the form T2 \ LTσ(I).

Given a system of generators {f1, . . . , fm} of I, the Border Basis Algorithm (BBA)
computes an order ideal O and an O-border basis of I. A generic version of this
algorithm was introduced in [39]. The following discussion is based on the detailed
elaboration in [31].

All the computations performed by the BBA take place in a finite dimensional
K-vector subspace U of P called the computational universe. At certain points
of the algorithm the space U has to be enlarged, and exactly these enlargements
enable us to control the “direction� and the “speed� of the spacial growth of
the computation. A second important ingredient is the following method to
approximate the intersection I ∩ U .

Definition 7.4. Let F ⊆ U be two finite dimensional K-vector subspaces of P .
Inductively, we define the vector subspaces F0 := F and Fi+1 = F+

i ∩ U for
i = 0, 1, . . . , where F+

i = Fi + x1Fi + · · · + xnFi. Then the union FU =
⋃

i≥0 Fi

is called the U -stable span of F .

The vector space F in this definition should be viewed as the part of I ∩ U
that we know already. By computing FU , we enlarge it to produce a kind of
“approximation� of I ∩ U . The following criterion is then the key point of the
BBA (cf. [31], Prop. 16).

Proposition 7.5. Let U be a vector subspace of P , let F be a vector subspace
of I which generates I and satisfies F+ ∩ U = F , and let O be an order ideal
such that U = F ⊕ 〈O〉K and ∂O ⊆ U . Then I has an O-border basis which is
contained in U .

The last ingredient of the BBA is the Final Reduction Algorithm which can be
used in the setting of the preceding proposition to extract the O-border basis of I



M. Kreuzer / Algebraic Attacks Galore! 251

from the bases of F and U . Since it is a kind of technicality, we do not repeat the
details here but refer instead to [31], Prop. 17. Finally, we are ready to enunciate
the basic version of the BBA (which is actually called the Improved Border Basis
Algorithm in [31], Prop. 21).

Proposition 7.6. (The Border Basis Algorithm)
Let I = 〈f1, . . . , fm〉 be a 0-dimensional ideal in P = K[x1, . . . , xn]. Then the
following algorithm computes an order ideal O and the O-border basis of I.

(1) Let U be the order ideal generated by
⋃m

i=1 Supp(fi). Choose a degree com-
patible term ordering σ.

(2) Interreduce {f1, . . . , fm} to get a K-basis V of F = 〈f1, . . . , fm〉K with
pairwise distinct leading terms.

(3) Compute a basis extension V ∪W ′ of V such that V ∪W ′ is a K-basis of F+

with pairwise distinct leading terms.

(4) Let W = {w ∈ W ′ | LTσ(w) ∈ U}.
(5) If

⋃
w∈W Supp(w) * U , enlarge U by the terms in the order ideal generated

by this set and continue with step (4 ).

(6) If W 6= ∅, append W to V , replace F by F+, and continue with step (3 ).

(7) Let O = U \ LTσ(V ). If ∂O * U , replace U by U+ and continue with
step (3 ).

(8) Apply the Final Reduction Algorithm and return the set G = {g1, . . . , gν} it
computes.

The term ordering σ in this algorithm is of a purely auxiliary nature. It is merely
used to guide the computation and to make sure that step (7 ) yields an order
ideal. It is possible to replace it by other rules guiding the computation. However,
we note that in this case one has to either prove that the new rule produces an
order ideal O or modify the computation so that it backtracks some steps if
necessary.

Example 7.7. Consider the ideal I = 〈f1, . . . , f6〉 in P = F2[x, y, z] of Exam-
ple 6.4, i.e. let f1 = xy+xz+1, f2 = xz+yz+z, f3 = xy+xz+y+1, f4 = x2+x,
f5 = y2 + y, and f6 = z2 + z. Let us follow the steps of the BBA.

(1 ) Let U = T3
≤2 and σ = DegRevLex.

(2 ) Interreduction yields the basis V = {f1, f2, f̃3, f4, f5, f6} with f̃3 = y.

(3 ) We interreduce the 24 polynomials V ∪xV ∪yV ∪zV and get V ∪W ′ = V ∪
{x+1, z+1, yz, x3+1, x2y, xy2, y3, x2z+1, xyz, y2z, xz2+1, yz2, z3+1}.

(4 ) We have W = {x+ 1, z + 1, yz}.
(6 ) Let V = {f1, f2, f̃3, f4, f5, f6, f7, f8, f9} with f7 = x + 1, f8 = z + 1, and

f9 = yz.

(3 ) We interreduce the 36 polynomials in V ∪ xV ∪ yV ∪ zV and get V ∪W ′ =
V ∪ {x3 + 1, x2y, xy2, y3, x2z + 1, xyz, y2z, xz2 + 1, yz2, z3 + 1}.

(4 ) We have W = ∅.
(7 ) We let O = U \ LTσ(V ) = {1} and obtain ∂O = {x, y, z} ⊆ U .



252 M. Kreuzer / Algebraic Attacks Galore!

(8 ) The Final Reduction Algorithm returns G = {x+ 1, y, z + 1}.
Thus we see that (1, 0, 1) is the only zero of I.

A preliminary implementation of the BBA is available in the ApCoCoA library
(see [3]). Since it works for general 0-dimensional ideals, it is not optimized for
performing algebraic attacks. In the following remarks we collect a number of
possible improvements.

Remark 7.8. After choosing a number N > 0, we can replace step (8 ) of the
BBA by the following instruction.

(8 ′ ) If ∂O * U , enlarge U by the order ideal generated by ∂O. Every N th time
this is done, replace U by U+ instead.

The resulting algorithm still computes an order ideal O and an O-border basis
of I. In general, it keeps the size of the computational universe U even smaller
than the BBA, but it may require more iterations. In other words, we are sacri-
ficing time efficiency for gaining space efficiency.

Note that the second part of step (8 ′ ) has been introduced as a safeguard since
we have not been able to prove termination without it. In practice, there is no
problem and N can be chosen quite large.

Remark 7.9. In the BBA we may try to reduce the number of iterations of the
loop in steps (3 )–(6 ) by replacing them with the following instructions.

(3 ′ ) Enlarge F to a vector space F++ by adding for each basis element v of V all
products tv such that t ∈ Tn and LTσ(tv) ∈ U . Compute a basis extension
V ∪W ′ of V such that V ∪W ′ is a K-basis of F++ with pairwise distinct
leading terms.

(4 ′ ) Let W = {w ∈ W ′ | LTσ(w) ∈ U}.
(5 ′ ) If

⋃
w∈W Supp(w) * U , enlarge U by the terms in the order ideal generated

by this set and continue with step (4 ′ ).

(6 ′ ) If W 6= ∅, append W to V , replace F by F++, and continue with step (3 ).

Notice that we are imitating J. Ding’s mutant idea here: if, after a certain it-
eration, one of the elements of V has a particularly small degree, it is used to
generate more polynomials in the next iteration. Moreover, we can try to reduce
the work for the next iterations by saving the polynomials in W ′ \W because it
is quite likely that they can be reused in the next iteration.

Remark 7.10. Suppose that f1, . . . , fm define a system of equations for which
we expect several solutions, and we are mostly interested in the elimination poly-
nomials I ∩K[xi]. In this case we can choose a number N > 0 and modify the
search heuristics in the BBA by replacing step (8 ) as follows.

(8 ′ ) If ∂O * U , enlarge U by the order ideal generated by {xαi

i | 1 ≤ i ≤ n,

αi = min{j | xαj

i /∈ U}}. Every N th time this is done, replace U by U+

instead.



M. Kreuzer / Algebraic Attacks Galore! 253

Again the last part of step (8 ′ ) has to be introduced in order to secure termi-
nation. Clearly, the computational universe will now tend to grow faster in the
direction of the axes {xj

i | j ≥ 0}. This increases our chances of finding the
elimination polynomials sooner.

In the spirit of these remarks, it is obviously possible to generate a number of
further variations of the BBA which have the potential to speed up algebraic
attacks considerably while at the same time avoiding a quick exhaustion of the
available memory.

As a final note, we point out that the vector space basis extension computed in
step (3 ) of the BBA can be found with the help of all the sparse linear algebra
techniques which lie at the heart of the F4 algorithm. In this sense, the BBA is
able to combine several techniques for improving the best known solution algo-
rithms for polynomial systems and deserves further efficient implementation and
experimentation.

8. The Integer Programming Attack

In this section we will restrict our attention to algebraic attacks based on poly-
nomial systems defined over F2. Although the generalization to other finite
base fields is straightforward, we want to concentrate on the fundamental prin-
ciples in the most important case. The task of solving a polynomial system
f1 = · · · = fm = 0 with f1, . . . , fm ∈ F2[x1, . . . , xn] can be rephrased as follows:
Find a tuple (a1, . . . , an) ∈ {0, 1}n such that

F1(a1, . . . , an) ≡ 0 (mod 2)
...

Fm(a1, . . . , am) ≡ 0 (mod 2)

where Fi ∈ Z[x1, . . . , xn] is the canonical representative of fi. Thus we are looking
for an integer solution (a1, . . . , an) of this system which satisfies 0 ≤ ai ≤ 1. This
formulation suggests to linearize the system and to apply an Integer Programming
(IP) algorithm for finding a solution satisfying the stated bounds. The following
proposition turns this idea into an effective algorithm.

Proposition 8.1 (The Integer Programming Attack). Let f1, . . . , fm ∈ P
= F2[x1, . . . , xn]. Then the following instructions define an algorithm which com-
putes a tuple (a1, . . . , an) ∈ {0, 1}n which defines a zero of the 0-dimensional
radical ideal I = 〈f1, . . . , fm, x2

1 + x1, . . . , x
2
n + xn〉.

(1) Reduce f1, . . . , fm modulo the field equations, i.e. make their support square-
free. For i = 1, . . . ,m, let Si be the set of terms of degree ≥ 2 in fi and
si = #Supp(fi).

(2) For i = 1, . . . ,m, introduce a new indeterminate ki and write down the
linear inequality Ki : ki ≤ ⌊si/2⌋.



254 M. Kreuzer / Algebraic Attacks Galore!

(3) For every tj ∈ Si, introduce a new indeterminate yij. For i = 1, . . . ,m,
write fi =

∑
j tj + ℓi where the sum extends over all j such that tj ∈ Si and

where ℓi ∈ P≤1. Form the linear equation Fi :
∑

j yij + ℓi − 2 ki = 0.

(4) For i ∈ {1, . . . ,m} and tj ∈ Si, write tj = xj1 · · ·xjr with 1 ≤ j1 < · · · <
jr ≤ n. Form the linear inequalities Yij : yij − xi ≤ 0 and Zij : −yij +
xj1 + · · ·+ xjr − r + 1 ≤ 0.

(5) For all i ∈ {1, . . . ,m}, let Xi : xi ≤ 1.

(6) Choose a linear polynomial C ∈ Q[xi, yij, ki] and use an IP solver to find
the tuple of natural numbers (ai, bij, ci) which solves the system of linear
equations and inequalities {Ki, Fi, Yij, Zij, Xi} and minimizes C.

(7) Return (a1, . . . , an) and stop.

Proof. Since we are looking for natural numbers ai for which Xi holds, we have
ai ∈ {0, 1}. Similary, we have bij ∈ {0, 1} by Xi and Yij. Moreover, if tj ∈ Si and
if one of the numbers aj1, . . . , ajr is zero then Yij implies bij = 0. On the other
hand, if aj1 = · · · = ajr = 1 then Zij implies bij ≥ 1. Altogether, this means that
bij equals aj1 · · · ajr , the value of tj at (a1, . . . , an).

Next it follows from Fi that fi(a1, . . . , an) = 2 ki is an even number, and Ki is
nothing but the trivial bound for ki implied by the size of the support of fi.
In this way the solutions of the IP problem correspond uniquely to the tuples
(a1, . . . , an) ∈ {0, 1}n which satisfy the above reformulation of the given polyno-
mial system.

In this proposition we have not taken any advantage of the possibility to choose
the cost function C. Obviously, the number of additional indeterminates yij
(and ki) we have to introduce depends on the sparsity of the system defined
by f1, . . . , fm. For systems with few quadratic or higher degree terms, even a
straightforward, non-optimized implementation yields satisfactory results, as our
next example shows.

Example 8.2. Given the CTC (“Courtois Toy Cipher�) cryptosystem intro-
duced in [15] and a plaintext – ciphertex pair, we construct an overdetermined
algebraic system of equations in terms of the indeterminates representing key bits
and certain intermediate quantities. The task is to solve the system for the key
bits. The size of the system depends mainly on two parameters: the number b
of simultaneous S-boxes and the number N of encryption rounds used. In the
following table we collect the sizes of the resulting polynomial systems over F2

and compare the timings for their solution with the GBasis5(...) command of
CoCoA(cf. [13]) and with the GLPK package (cf. [29]) applied to the IP problem
of Prop. 8.1.

In this table t denotes the total number of non-linear terms in each system. The
timings were obtained on a small laptop with a 2.0 GHz processor and 2 GB
of RAM. If possible, the systems were constructed to have a unique solution,
as reported in the last column of the table. The construction of the polynomials



M. Kreuzer / Algebraic Attacks Galore! 255

CTC(b,N) n m t time GBasis5 time GLPK sol. unique?

CTC(2,2) 54 98 60 0.3 s 0.2 s yes
CTC(2,3) 78 144 90 2.0 s 1.0 s yes
CTC(3,2) 81 147 90 2.8 s 2.0 s yes
CTC(3,3) 117 216 135 ∞ 12.7 s yes
CTC(3,4) 153 285 180 ∞ 85.8 s no

Table 8.1: Algebraic attacks at the CTC cryptosystem

systems used the implementation of the CTC cryptosystem in [35]. The symbol∞
indicates a running time of more than an hour.

As one can see from the table, for very sparse systems the running time of the
IP attack compare favorably to the running times of a Gröbner basis attack.
Even for examples involving many indeterminates, such as CTC(3,4), the above
timings compete with individually tailored Gröbner basis methods, such as the
ones reported in [1].

When the non-linear part of the polynomial system f1 = · · · = fm = 0 is less
sparse, the effectiveness of the IP attack decreases rapidly. For example, in an
instance of the HFE cryptosystem with m = 50 equations in n = 25 indetermi-
nates, the fact that there are t = 325 quadratic terms means that the method of
Prop. 8.1 is much slower that the Gröbner basis timings given in [42].

In view of this example it is clear that the IP attack is very sensitive to the
number of additional indeterminates we have to introduce. For many symmetric
cryptosystems, the main non-linear contribution to this polynomial system is
derived from the S-box equations. For small S-boxes (i.e. S-boxes involving only
a small number of input and output bits), we can try to improve the IP attack
as follows.

Remark 8.3. Let σ : Fd
2 −→ Fd

2 be a boolean function representing a non-linear
part of an encryption map, e.g. an S-box. Now we proceed as follows.

(1) Form the graph Γ = {(p, σ(p)) | p ∈ Fd
2} of σ in F2d

2 . Let Γ̃ ⊂ {0, 1}2d be
the canonical set of representatives of Γ.

(2) Using a standard convex hull computation (e.g. the algorithm of Avis and
Fukuda, cf. [6]), we calculate a set S of linear inequalities of the form

ai1x1 + · · · + ai 2dx2d ≤ bi with aij, bi ∈ Z such that Γ̃ is the set of integer
solutions of S.

Then we can find a preimage of a point (q1, . . . , qd) ∈ Fd
2 under σ by substituting

the canonical representative of qi for xd+i in S and solving the resulting system
of linear inequalitites.

The time and memory requirements of this procedure are known to grow approx-
imately as (2d)⌊d/2⌋. Thus it is only feasible if d is small. Let us apply it in the



256 M. Kreuzer / Algebraic Attacks Galore!

case of the CTC cryptosystem where we have d = 3.

Example 8.4. An S-box of the CTC cryptosystem is given by the map σ :
F3
2 −→ F3

2 with σ(0, 0, 0) = (1, 1, 1), σ(0, 0, 1) = (1, 1, 0), σ(0, 1, 0) = (0, 0, 0),
σ(0, 1, 1) = (1, 0, 0), σ(1, 0, 0) = (0, 1, 0), σ(1, 0, 1) = (1, 0, 1), σ(1, 1, 0) = (0, 0, 1),

and σ(1, 1, 1) = (0, 1, 1). The the set of representatives Γ̃ of the graph of σ is the
set of integral solutions of the system

x1 + x3 − x4 − x5 − x6 ≤ 0

−2x1 + x3 − x1 − x5 + 2x6 ≤ 0

4x1 + 3x2 − 2x3 + 5x4 + 2x5 − x6 ≤ 6

−2x1 − 3x2 + x3 − 4x4 − x5 + 2x6 ≤ − 3

x1 + 3x2 − 2x3 + 2x4 + 2x5 − x6 ≤ 3

x1 − 2x3 + 2x4 − x5 − x6 ≤ 0

−x2 + 2x3 + 2x4 − x5 − x6 ≤ − 1

3x1 − x2 + 2x3 − 2x4 − x5 + 2x6 ≤ − 1

3x1 + 2x2 − x3 + 4x4 + 2x5 − x6 ≤ 5

−3x1 − 4x2 + 2x3 − 5x4 − x5 + 2x6 ≤ − 4

2x2 − x3 + x4 + 2x5 − x6 ≤ 2

−x2 − x3 + x4 − x5 − x6 ≤ − 1.

When available, e.g. in the case of the CTC cryptosystem mentioned above, this
method should provide a substantial speed-up of the IP attack. For a precise
determination of its pros and contras, further experiments are needed.

At this point we have arrived at the end of the first leg of our journey through
the land of algebraic attacks. By comparing the different approaches, we can
already gain a better understanding of the relative merits and the true difficulties
in attacking cryptosystems via polynomial system solving. In the second part of
this paper, we will also apply methods coming from mathematical logic, numerical
analysis, linear and multilinear algebra, classical algebraic geometry, and some
ad-hoc tricks. Hence the final discussion of the landscape of algebraic attacks
will be delayed until we have completed the voyage. Meanwhile, the readers are
cordially invited to try experimenting themselves: uncovering actual encrypted
messages by applying your favorite mathematical tools is fun!

Acknowledgements. First and foremost, I would like to thank J. Ding (University of

Cincinnati) and S. Pokutta (Technische Universität Darmstadt) for deep and valuable

discussions on the subjects of this paper. Their input was instrumental in bringing

the attacks described in Sections 7 and 8, respectively, to fruition. I am indebted to

my students J. Brandt, J. Limbeck and E. Ullah for implementing various software

packages which aided the experimentation underlying several of the attacks. Moreover,

I thank G. Rosenberger for his encouragement and useful suggestions. The idea for this



M. Kreuzer / Algebraic Attacks Galore! 257

article was born during a stay at Fairfield University for a conference in honor of Ben

Fine. I am very grateful for the generous hospitality I experienced there.

References

[1] M. Albrecht: Algebraic Attacks on the Courtois Toy Cipher, Diploma Thesis,
Universität Bremen (2006).

[2] M. Albrecht, C. Cid: Algebraic techniques in differential cryptoanalysis, in: Fast
Software Encryption (Leuven, 2009), O. Dunkelmann (ed.), Lect. Notes Comput.
Sci. 5665, Springer, Berlin (2009) 193–208.

[3] The ApCoCoA Team: ApCoCoA: Approximate Computations in Commutative Al-
gebra, available at http://www.apcocoa.org .

[4] G. Ars, J.-C. Faugère: An algebraic cryptanalysis of nonlinear filter generators us-
ing Gröbner bases, Rapport de Recherche Inria, HAL-CCSd-CNRS 2003, available
at http://hal.ccsd.cnrs.fr/docs/00/07/18/48/PDF/RR-4739.pdf .

[5] G. Ars, J.-C. Faugère, H. Imai, M. Kawazoe, M. Sugita: Comparison between XL
and Gröbner basis algorithms, in: Advances in Cryptology – ASIACRYPT 2004
(Jeju Island, 2004), P. J. Lee (ed.), Lect. Notes Comput. Sci. 3329, Springer, Berlin
(2004) 338–353.

[6] D. Avais, K. Fukuda: A pivoting algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra, Discrete Comput. Geom. 8 (1992) 295–313.

[7] L. Bettale, J.-C. Faugère, L. Perret: Cryptanalysis of the TRMS signature scheme
of PKC’05, in: Progress in Cryptology – AFRICACRYPT 2008 (Casablanca,
2008), S. Vaudenay (ed.), Lect. Notes Comput. Sci. 5023, Springer, Berlin (2008)
143–155.

[8] L. Bettale, J.-C. Faugère, L. Perret: Hybrid approach for solving multivariate
systems over finite fields, J. Math. Cryptol., to appear.

[9] M. Brickenstein, A. Dreyer: PolyBoRi: A framework for Gröbner basis computa-
tions with Boolean polynomials, J. Symb. Comput. 44 (2009) 1326–1345.

[10] B. Buchberger: Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal, Ph.D. Thesis, Universität Inns-
bruck (1965).

[11] J.-M. Chen, N.T. Courtois, B.-Y. Yang: On asymptotic security estimates in XL
and Gröbner-basis related algebraic cryptoanalysis, in: Information and Commu-
nications Security (Malaga, 2004), J. Lopez, S. Qing, E. Okamoto (eds.), Lect.
Notes Comput. Sci. 3269, Springer, Berlin (2004) 401–413.

[12] C. Cid, G. Leurent: An analysis of the XSL algorithm, in: Advances in Cryptology
– ASIACRYPT 2005 (Chennai, 2005), B. Roy (ed.), Lect. Notes Comput. Sci. 3788,
Springer, Berlin (2005) 333–352.

[13] The CoCoA Team: CoCoA: A System for doing Computations in Commutative
Algebra, available at http://cocoa.dima.unige.it .

[14] N. T. Courtois: Fast algebraic attacks on stream ciphers with linear feedback, in:
Advances in Cryptology – CRYPTO 2003 (Santa Barbara, 2003), D. Boneh (ed.),
Lect. Notes Comput. Sci. 2729, Springer, Berlin (2003) 176–194.



258 M. Kreuzer / Algebraic Attacks Galore!

[15] N. T. Courtois: How fast can be algebraic attacks on block ciphers, in: Symmetric
Cryptography (Dagstuhl, 2007), E. Biham et al. (ed.), Dagstuhl Sem. Proc. 07021,
available at http://drops.dagstuhl.de/opus/volltexte/2007/1013 .

[16] N. T. Courtois, G. V. Bard: Algebraic crytoanalysis of the Data Encryption Stan-
dard, in: Cryptography and Coding (Cirencester, 2007), S. D. Galbraith (ed.),
Lect. Notes Comput. Sci. 4887, Springer, Berlin (2007) 152–169.

[17] N. T. Courtois, A. Klimov, J. Patarin, A. Shamir: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations, in: Advances in Cryp-
tology – EUROCRYPT 2000 (Bruges, 2000), B. Preneel (ed.), Lect. Notes Comput.
Sci. 1807, Springer, Berlin (2000) 392–407.

[18] N. T. Courtois, W. Meier: Algebraic attacks on stream ciphers with linear feedback,
in: Advances in Cryptology – EUROCRYPT 2003 (Warsaw, 2003), E. Biham (ed.),
Lect. Notes Comput. Sci. 2656, Springer, Berlin (2003) 345–359.

[19] N. T. Courtois, J. Pieprzyk: Cryptanalysis of block ciphers with overdefined sys-
tems of equations, in: Y. Zheng (ed.), Advances in Cryptology – ASIACRYPT
2002 (Queenstown, 2002), Lect. Notes Comput. Sci. 2501, Springer, Berlin (2002)
267–287.

[20] J.-M. Chen, B.-Y. Yang: Theoretical analysis of XL over small fields, in: Informa-
tion Security and Privacy (Sydney, 2004), H. Wang, J. Pieprzyk, V. Varadharajan
(eds.), Lect. Notes Comput. Sci. 3108, Springer, Berlin (2004) 277–288.

[21] C. Diem: The XL Algorithm and a conjecture from commutative algebra, in: P. J.
Lee (ed.), Advances in Cryptology – ASIACRYPT 2004 (Jeju Island, 2004), Lect.
Notes Comput. Sci. 3329, Springer, Berlin (2004) 323–337.

[22] J. Ding, J. Buchmann, M. S. Mohamed, W. S. Mohamed, R.-P. Weinmann: Mu-
tantXL, in: Proc. Symbolic Computation and Cryptography (Beijing, 2008) 16-22.

[23] J. Ding, J.E. Gower, D. Schmidt, C. Wolf, Z. Yin: Complexity estimates for the
F4 attack on the Perturbed Matsumoto-Imai cryptosystem, in: Cryptography and
Coding (Cirencester, 2005), N. P. Smart (ed.), Lect. Notes Comput. Sci. 3796,
Springer, Berlin (2005) 262–277.

[24] eSTREAM: ECRYPT stream cipher project, see http://www.ecrypt.eu.org
/stream/ .

[25] J.-C. Faugère: A new efficient algorithm for computing Gröbner bases (F4), J.
Pure Appl. Algebra 139 (1999) 61–88.

[26] J.-C. Faugère: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5), in: Proc. Conf. ISSAC 2002 (Lille, 2002), T. Mora (ed.),
ACM Press, New York (2002) 75–83.

[27] J.-C. Faugère, A. Joux: Algebraic cryptanalysis of Hidden Field Equation (HFE)
cryptosystems using Gröbner bases, in: Advances in Cryptology – CRYPTO 2003
(Santa Barbara, 2003), D. Boneh (ed.), Lect. Notes Comput. Sci. 2729, Springer,
Berlin (2003) 44–60.

[28] J. M. Gash: On Efficient Computation of Gröbner Bases, Ph.D. Thesis, Indiana
University, Bloomington (2008).

[29] GNU Linear Programming Kit, available at http://www.gnu.org/software/glpk
/glpk.html .



M. Kreuzer / Algebraic Attacks Galore! 259

[30] P. Hawkes, G. Rose: Rewriting variables: the complexity of fast algebraic attacks
on stream ciphers, in: Adcances in Cryptology – CRYPTO 2004 (Santa Barbara,
2004), M. K. Franklin (ed.), Lect. Notes Comput. Sci. 3152, Springer, Berlin (2004)
390–406.

[31] A. Kehrein, M. Kreuzer: Computing border bases, J. Pure Appl. Algebra 205
(2006) 279–295.

[32] M. Kreuzer, L. Robbiano: Computational Commutative Algebra 1, Springer,
Berlin (2000).

[33] M. Kreuzer, L. Robbiano: Computational Commutative Algebra 2, Springer,
Berlin (2005).

[34] A. Kipnis, A. Shamir: Cryptanalysis of the HFE public key cryptosystem by re-
linearization, in: Advances in Cryptology – CRYPTO ’99 (Santa Barbara, 1999),
M. Wiener (ed.), Lect. Notes Comput. Sci. 1666, Springer, Berlin (1999) 19–30.

[35] J. Limbeck: Implementation und Optimierung algebraischer Angriffe, Diploma
Thesis, Universität Passau (2008).

[36] B. A. LaMacchia, A. M. Odlyzko: Solving large sparse systems over finite fields,
in: Advances in Cryptology – CRYPTO ’90 (Santa Barbara, 1990), A. J. Menezes
et al. (ed.), Lect. Notes Comput. Sci. 537, Springer, Berlin (1991) 109–133.

[37] M. S. Mohamed, W. S. Mohamed, J. Ding, J. Buchmann: MXL2: Solving polyno-
mial equations over GF(2) using an improved mutant strategy, in: Post-Quantum
Cryptography – PQCrypto 2008 (Cincinnati, 2008), J. Buchmann, J. Ding (eds.),
Lect. Notes Comput. Sci. 5299, Springer, Berlin (2008) 203–215.

[38] P. L. Montgomery: A block Lanczos algorithm for finding dependencies over GF(2),
in: Advances in Cryptology – EUROCRYPT’95 (Saint-Malo, 1995), L. Gouillou,
J.-J. Quisquater (eds.), Lect. Notes Comput. Sci. 921, Springer, Berlin (1995) 106–
120.

[39] B. Mourrain: A new criterion for normal form algorithms, in: Applied Algebra,
Algebraic Algorithms and Error correcting Codes (Honolulu, 1999), M. Fossorier
et al. (ed.), Lect. Notes Comput. Sci. 1719, Springer, Berlin (1999) 440–443.

[40] S. Murphy, M. Robshaw: Comments on the security of the AES and the XSL
technique, Electron. Lett. 39 (2003) 26–38.

[41] C. Pomerance, J. W. Smith: Reduction of huge sparse matrices over finite fields
via created catastrophes, Exp. Math. 1 (1992) 89–94.

[42] A. Steel: Gröbner basis timings page, available at http://magma.maths.usyd.edu
/au/users/allan/gb/ .

[43] T. Stegers: Faugère’s F5 Algorithm Revisited, Diploma Thesis, Technische Uni-
versität Darmstadt (2005).

[44] C. E. Shannon: Communication theory of secrecy systems, Bell Syst. Tech. J. 28
(1949) 656–715.

[45] M. Sugita, M. Kawazoe, H. Imai: Relation between XL algorithm and Gröbner
Bases Algorithms, IEICE Trans. 89A (2006) 11–18.

[46] L. Xiao: Applicability of XSL attacks to block ciphers, Electron. Lett. 39 (2003)
1810–1811.


