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1. Introduction

In [1], Borel discussed discrete arithmetic groups arising from quaternion algebras
over number fields with particular reference to arithmetic Kleinian and arithmetic
Fuchsian groups. In these cases, he described, in each commensurability class,
a class of groups which contains all maximal groups. Developing results on em-
bedding commutative orders of the defining number field into maximal or Eichler
orders in the defining quaternion algebra, Chinburg and Friedman [2] stated nec-
essary and sufficient conditions for the existence of torsion in this class of groups
in terms of the defining arithmetic data. This was more fully explored in the case
of Kleinian groups in [3]. In the case of Fuchsian groups, these results on the ex-
istence of torsion were extended to obtain formulas for the number of conjugacy
classes of finite cyclic subgroups for each group in this class [8, 9]. In this pa-
per, we examine, across the range of arithmetic Fuchsian groups, how widespread
torsion is in maximal Fuchsian groups. Some studies in low genus cases (see e.g.
[7, 12]) indicate that 2-torsion is very prevalent. The results obtained here sub-
stantiate that but we will also obtain maximal arithmetic Fuchsian groups which
are torsion-free. The author is grateful to Alan Reid for conversations on parts
of this paper.

2. Arithmetic Fuchsian groups

Let k be a totally real number field and A a quaternion algebra over k. Let kν
denoted the completion of k at the place ν and set Aν = A ⊗k kν , a quaternion
algebra over kν . The algebra A is said to be ramified at ν if Aν is a division
algebra. The set of ramified places, Ram(A), is finite of even cardinality and is
the union of Ram∞(A), the set of real ramified places, and Ramf (A), the set of
finite or non-Archimedean ramified places, each being defined by a prime ideal
P of k. The isomorphism class of A is determined by k and Ram(A) and for
any totally real field k and finite set of even cardinality of places there exists
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a quaternion algebra over k with that set as its ramified set. [For details on
quaternion algebras and subsequent material in this section, see [1, 10, 11].]

For Fuchsian groups we require that A is ramified at all real places except one so
that there exists an embedding ρ : A → M2(R). An order O in A is a complete
Rk-lattice which is a ring with 1. Let

O1 = {α ∈ O | n(α) = 1}

where n is the (reduced) norm. Then P (ρ(O1)) is a Fuchsian group of finite co-
area and the class of groups commensurable with all such P (ρ(O1)) is the class
of arithmetic Fuchsian groups. The commensurability class is independent of the
choice of order O and only depends, up to conjugation, on the isomorphism class
of the quaternion algebra. Furthermore, since the commensurator of P (ρ(O1)) in
PGL(2,R) is P (ρ(A∗)), we can drop the reference to the representation ρ and take
the commensurability class C(A) to consist of groups in P (A∗) commensurable
with P (O1).

For α ∈ A∗, n(α) ∈ k∗
∞, those elements which are positive at all places in

Ram∞(A). If, in addition, P (α) lies in a Fuchsian group, then n(α) > 0 so
that n(α) ∈ k∗

+, the group of totally positive elements.

3. Maximal arithmetic Fuchsian groups

We now describe the family of groups which includes all maximal Fuchsian groups
in the commensurability class C(A) (see [1, 2, 10]). Let O denote a maximal
order in A so that OP = O ⊗Rk

RP is a maximal order in AP = A ⊗k kP . For
P ∈ Ramf (A), OP is the unique maximal order in AP . Otherwise, AP

∼= M2(kP)
and OP

∼= M2(RP). Furthermore, all maximal orders in M2(kP) are conjugates
of M2(RP) and form the vertices of a tree on which GL(2, kP) acts transitively
by conjugation. An edge joining two adjacent vertices represented by maximal
orders OP ,O′

P corresponds to an Eichler order EP = OP∩O′
P of level P. If O and

O′ are maximal orders in A, then E = O ∩ O′ is an Eichler order of square-free

level S, where S is a finite set of primes disjoint from Ramf (A), if, for P 6∈ S,
OP = O′

P and for P ∈ S, EP = OP ∩ O′
P is an Eichler order of level P.

Let N(O) denote the normaliser of O in A∗ and N(O)+, the subgroup of those
elements with totally positive norm. In the same way, define N(E)+ for E an
Eichler order.

Theorem 3.1 (Borel). Every arithmetic Fuchsian group in P (A∗) is conjugate
to a subgroup of some P (N(O)+) for O a maximal order or of some P (N(E)+)
for E an Eichler order of square-free level.

There are finitely many conjugacy classes of groups P (N(O)+) in C(A) and these
are the groups of smallest co-area in C(A). Furthermore, these groups are all
maximal.
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For E an Eichler order of square-free level S 6= ∅, the group P (N(E)+) may not
be maximal. However, there are infinitely many conjugacy classes of maximal
arithmetic Fuchsian groups in C(A). This can be shown as follows: an element
α ∈ GL(2, kP) is odd or even according as det(α) ∈ Pm with m odd or not. Odd
elements interchange two adjacent vertices in the tree, so that P (N(EP)), the
stabiliser of an edge, contains odd elements while P (N(OP)), the stabiliser of a
vertex, contains only even elements. Then for any P 6∈ Ramf (A), one can use the
Strong Approximation Theorem to construct a group in C(A) which contains an
element which is odd at P. A maximal group containing this group will contain
elements which are odd at a finite set of primes including P. Choosing a prime P ′

outside this collection one can repeat the construction. The newly constructed
group cannot then be conjugate to a subgroup of the maximal group. Thus
maximal groups in infinitely many conjugacy classes are obtained.

The above construction can be modified to construct a torsion-free group in C(A)
which is odd at a given prime. Thus, in the class of torsion-free groups in C(A),
there will be infinitely many conjugacy classes of maximal members. (For all this,
see [1], [10, Chap. 11]).

4. Torsion in P (A∗)

Recall that A is a quaternion algebra over a totally real number field and A
is ramified at all real places except one. To simplify some statements, we will
also assume that A is a division algebra. This only rules out the familiar case
where A = M2(Q) and C(A) consists of groups commensurable with the classical
modular group PSL(2,Z).

If there is to be torsion in any group in C(A), these elements of finite order must
lie in P (A∗). For the converse we have

Theorem 4.1. Let u ∈ A∗ \ k∗. Then P (u) belongs to a maximal Fuchsian

group in C(A) if and only if n(u) ∈ k∗
+ and disc(u)/n(u) ∈ Rk where disc(u) =

tr 2(u)− 4n(u).

(For the proof of this and the following material, see [2], [10, Chap. 12]).

Now P (A∗) contains an element of order m > 2 if and only if 2 cos 2π/m ∈ k
and the field k(e2πi/m) embeds in A. In that case, there is, up to conjugacy, a
unique subgroup of order m in P (A∗) generated by an image of 1 + e2πi/m. For
u = 1 + e2πi/m, n(u) ∈ k∗

+ and disc(u)/n(u) = −2 + 2 cos 2π/m ∈ Rk so such an
element always belongs to some maximal Fuchsian group in C(A).
Elements P (u) of order 2 in P (A∗) are such that u2 ∈ k, u 6∈ k. So u is a pure
quaternion, u2 = −n(u) and L = k(u) embeds in A. Thus provided n(u) ∈ k∗

+,
then P (u) will lie in some maximal Fuchsian group. So there are elements of order
2 in some maximal Fuchsian group in C(A) if and only if there exist quadratic
extension fields L of k which are totally imaginary and embed in A.
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The following classical theorem determines when a quadratic extension field of k
can embed in a quaternion algebra over k.

Theorem 4.2. Let A be a quaternion algebra over the number field k. Let L be

a quadratic extension of k. Then L embeds in A if and only if L⊗k kν is a field

for each place ν ∈ Ram(A).

Theorem 4.3. In every commensurability class of arithmetic Fuchsian groups

there are infinitely many conjugacy classes of maximal groups which contain ele-

ments of order 2.

Proof. Let T = Ω∞ ∪ Ramf (A) where Ω∞ is the set of all real places of k. For
ν ∈ Ω∞, let Lν

∼= C and for P ∈ Ramf (A), let LP be the unique unramified
quadratic extension of kP . For Q a prime ideal not in Ramf (A), let LQ be such
that disc(LQ | kQ) ∈ πR∗

Q where π is a uniformiser in kQ. By the Approximation
Theorem, there exists a quadratic extension L of k such that L⊗k kν ∼= Lν for all
ν ∈ T ∪ {Q}. Then L is totally imaginary and embeds in A. Let L = k(u) with
u2 ∈ k so that n(u) ∈ k∗

+ and P (u) is an element of order 2 which is odd at Q
lying in some maximal group. Then as described in §3, by Borel’s argument, there
will be infinitely many conjugacy classes of such groups which are maximal.

This result is not true for any other orders of torsion.

Example 4.4. Let A be defined over Q with Ramf (A) = {p, q} where p ≡
1(mod 12). The only candidates for finite order elements in P (A∗) are 2,3,4 or 6.
There will be elements of order 3 if Q(e2πi/3) = Q(

√
−3) embeds in A and there

will be elements of order 4 if Q(e2πi/4) = Q(
√
−1) embeds in A. But the ideal

pZ splits in both Q(
√
−3) and Q(

√
−1) so that P (A∗) has no torsion other than

that of order 2.

On the other hand (cf. [10, Chap. 12])

Theorem 4.5. For every m, there exist infinitely many commensurability classes

of arithmetic Fuchsian groups which contain an element of order m.

Proof. Let k0 = Q(cos 2π/m). Choose α ∈ k0 to be totally positive and such
that k = k0(

√
α) is a quadratic extension. By Dirichlet’s Density Theorem, there

are infinitely many primes P ∈ k such that P is inert in L = k(e2πi/m). Let A
be defined over k, be ramified at all real places except one and Ramf (A) = {P}.
Then L embeds in A and some maximal Fuchsian group in C(A) has an element
of order m.

5. Torsion in P (N(E)+)
We now consider more specifically torsion in the groups P (N(E)+). Here E is an
Eichler order of square-free level S and we will allow S = ∅, in which case, E = O
a maximal order. For this we require the following notation.
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In the ideal group Ik, let D denote the subgroup generated by all prime ideals in
Ramf (A), let S denote the subgroup generated by all P ∈ S and I2k the subgroup
generated by all squares of ideals. Also Pk will be the subgroup of principal ideals
and Pk,+ those with a generator in k∗

+.

If we define H(S) = {n(α) | α ∈ N(E)+} then ([9])

H(S) = {x ∈ k∗
+ | xRk ∈ DSI2k}.

Chinburg and Friedman [2] gave necessary and sufficient conditions for an element
u ∈ A∗ to be such that a conjugate of P (u) lies in P (N(E)+). Applying this to
u = 1+ e2πi/m, m > 2 and combining with Theorem 4.2 on embedding k(u) in A
we have

m-torsion: P (N(E)+) has an element of order m if and only if all the following
conditions hold

a) 2 cos 2π/m ∈ k.

b) No P ∈ Ramf (A) splits in L = k(e2πi/m).

c) (2 + 2 cos 2π/m)Rk ∈ DSI2k .
d) For each P ∈ S, at least one of the following conditions must hold:

• (2 + 2 cos 2π/m) is odd at P.
• P splits in L.
• P | (2− 2 cos 2π/m)Rk.

An element P (u) of order 2 in P (N(E)+) has u2 = −n(u) with n(u) ∈ H(S). As
P (u) is only defined up to scalar multiples of u, n(u) only depends on the element
of the finite group F (S) = H(S)/k∗2. Thus in this case we have:

2-torsion: P (N(E)+) has an element of order 2 if and only if for some n ∈ F (S),
the following two conditions hold:

a) No prime P ∈ Ramf (A) splits in L = k(
√−n).

b) For each P ∈ S at least one of the following conditions must hold:
• n is odd at P.
• P splits in L.
• P | 4Rk.

Note that the last conditions inm-torsion and 2-torsion are vacuous when E = O,
a maximal order.

We also note that P (N(E)+) will indeed be maximal (see §3) if there is no proper
subset S ′ of S such that

Pk,+ ∩ DSI2k = Pk,+ ∩ DS ′I2k .

For all this see [9].

Theorem 5.1. Every maximal arithmetic Fuchsian group defined over Q has

2-torsion.
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Proof. Let A be defined overQ with Ramf (A) = {p1, p2, . . . , p2r} and S = {q1, q2,
. . . , qs}. Then F (S) is represented by the positive divisors ofD =

∏

2r
i=1

pi
∏s

j=1
qj.

A divisor d | D contributes an element of order 2 if and only if (−d/pi) 6= 1 for
all i and for each qj either qj | d, (−d/qj) = 1 or qj = 2.

If d = D, then (−D/pi) = 0 for all i and qj | D for all j. Thus there are elements
of order 2 from Q(

√
−D).

It is obvious, and well-known, that if Ramf (A) = ∅, then P (N(O)+), for O a
maximal order, has 2- and 3-torsion. Here we extend that slightly.

Theorem 5.2. If Ramf (A) = ∅ and |S| ≤ 2, then every maximal group P (N(E)+)
where E is an Eichler order of level S has torsion.

Proof. If |S| = 1 and P (N(E)+) is maximal, then Pk,+ ∩ SI2k 6= Pk,+ ∩ I2k . So
there exists x ∈ k∗

+ such that x is odd at P where S = {P}. So x ∈ H(S) and
contributes an element of order 2. If |S| = 2 and P (N(E)+) is maximal, then
there exist elements in k∗

+ which are odd at P1 and ones which are odd at P2

where S = {P1,P2}. But then there must exist at least one element which is odd
at both P1 and P2, thus contributing an element of order 2.

6. Torsion-free maximal arithmetic Fuchsian groups

Using the results of the preceding section, we show here how to construct fam-
ilies of torsion-free maximal arithmetic Fuchsian groups and give some specific
examples (cf. [3]).

Let k be a totally real field with [k : Q] odd. Furthermore choose k so that it
does not contain Q(cos 2π/m) for any m apart from m = 2, 3, 4 or 6. Thus we
need only consider 2-and 3-torsion. We will choose Ramf (A) = {P1,P2} with
the choice of P2 depending on the choice of P1.

Now suppose in addition that k has odd class number and even narrow class
number. Then corresponding to an order 2 subgroup of Ik/Pk,+I

2
k there is a

class field M which is a quadratic extension of k with M | k having no finite
ramification and real ramification at a non-zero set of real places of k. In fact
the real ramification will be at an even number of places since the product of the
local Artin symbols for M | k at the global idele −1 is 1 and is also (−1)r where
r is the number of real ramified places e.g. [6]. Note that, if a prime ideal P of k
is such that ΦM |k(P) is non-trivial in Gal(M | k) where ΦM |k is the Artin map,
then P will be inert in M .

Choose P1 = x1Rk where x1 ∈ k∗
+.

Let F be the subgroup of k∗ defined by

F = {x ∈ k∗ | x is totally positive or totally negative and xRk ∈ D1I
2

k}

where D1 = 〈P1〉. Then F ⊃ k∗2 and F/k∗2 is a finite group. So we have a
Kummer extension L = k({√x : x ∈ F}). Let L′ = L(

√
−3). Then any quadratic
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extension of k which is contained in L′ is of the form k(
√
x) or k(

√
−3x), x ∈ F

and so is either totally real or totally imaginary. In particular, M 6⊂ L′.

Let K be the Galois closure of M and L′ over k. Choose σ ∈ Gal(K | k) so
that σ|M 6= Id and σ|L′ = Id. Then by Tchebotarev’s Density Theorem, we can
choose a prime P2 of k which is inert in M and splits completely in L′.

Let Ramf (A) = {P1,P2}. Elements of order 2 in P (N(O)+) for O a maximal
order arise from those elements n ∈ H = {x ∈ k∗

+ | xRk ∈ DI2k} such that
P1 and P2 do not split in k(

√−n). Now if n ∈ H, then n, and hence −n,
belongs to F . For suppose nRk = P t

1P2J
2. Then P2 = nx−t

1 RkJ
−2 ∈ Pk,+I

2
k and

ΦM |k(P2) = Id. But this is false by construction. So −n ∈ F and by construction
P2 splits in k(

√−n). Thus P (N(O)+) has no elements of order 2. In the same
way, P (N(O)+) has no elements of order 3 since P2 splits in k(

√
−3). Thus

P (N(O)+) is torsion-free.

Note that, for each field k satisfying the initial criteria, there are infinitely many
choices for P1 and infinitely many for P2. Thus there are infinitely many com-
mensurability classes of arithmetic Fuchsian groups defined over k with each
P (N(O)+), for O a maximal order, torsion-free.

Example 6.1. Let k = Q(x) where x3− 4x− 1 = 0. This field has class number
1 and since [R∗

k,+ : R∗
k
2] = 2, has narrow class number 2. Note that ∆k = 229.

Choose P1 = 3Rk. In this case we have M = k(
√
x) since x is a fundamental unit

with signs + − −. We then require to find an ideal P2 which is inert in M but
splits completely in the field generated by

√
−1,

√
x+ 2,

√
3 over k since x+ 2 is

a totally positive unit. Note from the co-area formula for P (N(O)+) [1, 10], that

Co− area of P (N(O)+) = 2π
4ζk(2)∆

3/2
k

(4π2)3
(27− 1)(NP2 − 1)

4
= 2π2(g − 1).

Computing ζk(2) quite precisely, with the help of PARI [4], we find that the

rational (4ζk(2)∆
3/2
k )/(4π2)3 is equal to 1/3. So NP2 − 1 ≡ 0(mod 12). Again

making use of PARI, we search for primes P2 satisfying the required conditions.
One possibility is P2 = (3x + 2)Rk where NP2 = 37 so giving that P (N(O)+)
has signature (40;−). Another is P2 = (4x2 + 4x − 1)Rk so NP2 = 241 and
P (N(O)+) has signature (261;−).

The method above can readily be extended to obtain torsion-free maximal groups
of the form P (N(E)+) where E is an Eichler order of level S 6= ∅, as we now show.

Choose the field k as above and also P1 = x1Rk with x1 ∈ k∗
+. Now also choose

a prime ideal Q = yRk with y ∈ k∗
+ and (Q,P1) = 1. Define F similarily to

above except with D1 = 〈P1,Q〉. As before we can find a prime P2 which is inert
in M and splits completely in the Kummer extension extended by

√
−3. Note

that the first condition a) in 2-torsion fails so there will be no elements of order
2 and likewise no elements of order 3. Thus for E of level S = {Q}, P (N(E)+) is
torsion-free. Note that, since Q ∈ Pk,+ ∩ DSI2k , P (N(E)+) is indeed a maximal



294 C. Maclachlan / Existence and Non-Existence of Torsion in Maximal ...

group. In these cases, P (N(O)+) will also be torsion-free.

One essential feature of the above class of examples is that the degree [k : Q]
is odd. This ensures that the class field M , which has an even number of real
ramified places, is not a subfield of the Kummer extension. This can also be
achieved when the degree is even and we give an example.

Example 6.2. Take k = Q(
√

4 +
√
5) so that [k : Q] = 4 and k is totally

real with ∆k = 4400 and class number 1. The narrow class number is 2 as
[R∗

k,+ : R∗
k
2] = 2. As before, let M be the class field for the group Ik/Pk,+I

2
k .

Note in this case that Q(
√
5) ⊂ k and so there could be elements of prime

orders 2,3 or 5 in P (N(O)+). Thus slightly modifying our construction we choose
F = {x ∈ k∗ | x is totally positive or totally negative and xRk ∈ T I2k} where T
is the subgroup of Ik generated by 3Rk and

√
5Rk. Now F/k∗2 has order 16 with

generators given by −1, u, 3, (5+
√
5)/2 where u is a totally positive fundamental

unit. Let K be the Kummer extension of k corresponding to the subgroup F of
k∗ so that every quadratic extension of k in K has the form k(

√
t) for t taken to

lie in F/k∗2. If t is divisible by 3, then 3Rk divides tRk to an odd power and so is
ramified in k(

√
t) by Hilbert’s Theorem on relative quadratic extensions [5]. If t

is divisible by (5+
√
5)/2, then, since

√
5Rk is the product of two prime ideals of

norm 5, k(
√
t) is ramified at a prime of norm 5 over k. If t is not divisible by 3 or

(5+
√
5)/2 then, up to squares, t = −1, u,−u. Note that 2Rk = P2

4 . With the help
of PARI, we find that P4 is ramified in the extensions k(

√
−1), k(

√
u), k(

√−u).
So all quadratic extensions of k contained in K have finite ramification.

Thus M is not contained in K and by the same argument as before there will
be primes in k which are inert in M and split completely in K. Thus choosing
Ramf (A) = {P} for any such prime, will show that P (N(O)+) is torsion-free.

For a specific example, we note that M = k(
√
v) for some unit v. The group

R∗
k/R

∗
k
2 has order 16 with generators obtained from −1, u1, u2, u3 where u1 =

(1 +
√
5)/2, u2 = α + (3 +

√
5)/2, u3 = α(−1 +

√
5)/2− 2 where α =

√

4 +
√
5.

Again we use PARI to consider the fields k(
√
v) where v is a unit and find that

only the field k(
√−u1) has no finite ramification over k. ThusM will be k(

√−u1).

In this case we calculate that the rational 4ζk(2)∆
3/2/(4π2)4 is equal to 17/30 so

that the co-area of P (N(O)+) = 2π(17/60)(NP − 1). Thus NP ≡ 1(mod 120).
Now 241Rk = PP ′P ′′ where NP = NP ′ = 241 and NP ′′ = 2412. Taking P to
be either of the two primes of norm 241, we find that it is inert in M and splits
completely in K. This then yields that P (N(O)+) has signature (35;−).
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