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Abstract

A Hurwitz group is any non-trivial finite quotient of the (2, 3, 7) triangle group,
that is, any non-trivial finite group generated by elements x and y satisfying x2 =
y3 = (xy)7 = 1. Every such group G is the conformal automorphism group of some
compact Riemann surface of genus g > 1, with the property that |G| = 84(g − 1),
which is the maximum possible order for given genus g. This paper provides an
update on what is known about Hurwitz groups and related matters, following up
the author’s brief survey in Bull. Amer. Math. Soc. 23 (1990).
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1 Introduction

The (2, 3, 7) triangle group is the abstract group ∆ = ∆(2, 3, 7) with presentation

∆(2, 3, 7) = 〈x, y, z | x2 = y3 = z7 = xyz = 1 〉,

and a Hurwitz group is any non-trivial quotient of ∆ — that is, any non-trivial finite group
generated by two elements u and v satisfying u2 = v3 = (uv)7 = 1. The significance of such
groups comes from an 1893 theorem of Hurwitz, which states that any compact Riemann
surface X with genus g > 1 admits at most 84(g − 1) conformal automorphisms — that
is, homeomorphisms of the surface onto itself which preserve the local structure — and
that this upper bound is attained if and only if the conformal automorphism group of X is
isomorphic to the quotient group ∆/K for some normal subgroup K of ∆ (in which case
K is isomorphic to the fundamental group of X).

A brief survey of known properties and examples of Hurwitz groups was given by the author
in [6]. The purpose of this paper is to provide an update on [6], at the request of the chief
editors of this new journal.

One of the key properties of every Hurwitz group G is that it is perfect — its abelianisation
G/G′ is trivial — and hence every Hurwitz group is an extension of some maximal normal
subgroup by a non-abelian simple group. Knowledge about the simple groups that can
arise in this context was fairly limited at the time of writing of [6], but has progressed a
lot since then, and much of it is summarised in Section 2. In particular, much more is now
known about groups of Lie type that are Hurwitz (or not Hurwitz, as the case may be),
and so Section 2 includes recent results about these also. In contrast, relatively little has
been done on the subject of what kinds of group extensions (and covering surfaces) are
possible, however a few pertinent observations are made briefly in Section 3.

Recent results that provide relevant information about the associated surfaces (and arith-
metic curves) are given in Section 4, and some new information about certain finitely-
presented quotients of the (2, 3, 7) triangle group is presented in Section 5. Finally, in
Section 6, some further recent discoveries of interest are described, about actions of groups
on Riemann surfaces and related structures.

2 Simple and linear Hurwitz groups

At the time of writing of [6], the only finite simple groups known to be Hurwitz groups were
all but 64 of the alternating groups An, certain of the projective linear groups PSL2(q), the
Ree groups 2G2(3

p) for all odd primes p, and 11 of the 26 sporadic finite simple groups. It
was also known that PSL3(q) is a Hurwitz group only when q = 2, and that 13 of the other
sporadic finite simple groups are not Hurwitz. Shortly afterwards, related information was
provided also by Lino Di Martino and Chiara Tamburini in a nice survey paper about
generating sets for finite simple groups [13].
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Considerable progress has been made since then.

Following Andrew Woldar’s paper [61] dealing with many of the sporadic finite simple
groups, Rob Wilson proved in [58] that the Baby Monster B is not a Hurwitz group, and
then in [60] that the Monster M is a Hurwitz group. The latter was a remarkable piece of
work, made possible by some clever computations. To begin with, the size of the Monster
and the degree of its smallest faithful representation make calculations very difficult, but
Wilson used carefully coded matrix-vector computations to reduce the time and memory
required. Effectively, by random search he found a pair of elements (u, v) of orders 2 and
3 with product uv of order 7, such that the subgroup H generated by u and v contains
elements of sufficiently many different orders that H cannot be contained in any proper
subgroup of M. As a result, the following is now known, thanks largely to Wilson and
Woldar’s work (in [61, 58, 60] and earlier papers):

Of the 26 sporadic finite simple groups, the following 12 are Hurwitz groups: J1, J2,
J4, Fi22, Fi24′ , Co3, He, Ru, HN, Ly, Th and M; while the other 14 are not.

Quite naturally, attention more recently has focussed on the simple groups of Lie type.

In [32], Gunter Malle used character-theoretic arguments and knowledge about maximal
subgroups to prove that the Chevalley group G2(q) is a Hurwitz group for every prime
power q ≥ 5, and that the Ree group 2G2(3

2m+1) is a Hurwitz group for every m ≥ 1.
(Moreover, he showed also that the remaining groups G2(2), G2(3), G2(4) and 2G2(3) are
not Hurwitz groups, but are still factor groups of the modular group 〈x, y | x2 = y3 = 1 〉.)
The result about the Ree groups was proved independently by Gareth Jones in [23], giving
more detailed information, and explicit generators were subsequently provided also by
Kerope Tchakerian in [49]. Malle went further in [33] to prove that the exceptional simple
group 3D4(p

n) is a Hurwitz group if and only if p 6= 3 and pn 6= 4, and that 2F4(2
2n+1)′ is a

Hurwitz group if and only if n ≡ 1 mod 3.

Taking a quite different approach for other families of linear groups (that are not necessarily
simple), Chiara Tamburini and Salvatore Vassallo considered the groups SL4(q) in [45],
where they used a classification of irreducible groups generated by transvections to prove
that SL4(q) is never a Hurwitz group.

A significant step forward was then taken by Andrea Lucchini, Chiara Tamburini and
John Wilson in [28], proving that most finite simple classical groups of sufficiently large
dimension are Hurwitz groups. Specifically, they proved that if R is a finitely generated
ring with identity, and En(R) is the group of invertible n × n matrices generated by the
set {In + reij: r ∈ R, 1 ≤ i 6= j ≤ n} of elementary transvections, then En(R) can be
(2, 3, 7)-generated for all but finitely many n. Their proof takes the permutation matrices
X and Y coming from particular (2, 3, 7)-generators of the alternating group An (as given
by this author in [5]), and replaces X by an adjusted matrix X̃ with the property that
X̃2 = Y 3 = (X̃Y )7 = In and 〈X̃, Y 〉 = En(R). As corollaries of their main theorem, it
follows that the following are Hurwitz groups: the special linear group SLn(q) and the
projective special linear group PSLn(q) for every n ≥ 287 and every prime-power q; the
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special linear group SLn(Z) for every n ≥ 287; and the derived group of Aut(Fn) for
every n ≥ 329. Further, in [27] Lucchini and Tamburini showed that the classical groups
Sp2n(q), Ω+

2n(q) and SU2n(q) are Hurwitz for every n ≥ 371 and every prime-power q, and
that Ω2n+7(q) and SU2n+7(q) are Hurwitz for every n ≥ 371 and every odd prime-power q.
It follows that simple (projective) quotients of all of these groups are Hurwitz as well.

A nice summary of many of these results was presented by John Wilson in [57], including
an amusing observation that the direct product of 5 million copies of SL1000(7) is a Hurwitz
group. Wilson extended this work to quotients of (2, 3, k) triangle groups for k ≥ 7 in [56].

At about the same time, in [14] Lino Di Martino, Chiara Tamburini and Alexandre Za-
lesskii proved that in contrast, most quasi-simple classical groups of small rank (such as
SLn(q) and SUn(q2) for n ≤ 19 and various q) are not Hurwitz. This was achieved using
representation-theoretic arguments and the application of a necessary condition (due to
Leonard Scott) for 2-element generation of a matrix group in terms of dimensions of the
subspaces fixed pointwise by the generators and their product.

Tamburini and Zalesskii used Scott’s work (and other aspects of linear representation
theory) also to consider (2, 3, k)-generation of subgroups of PSL5(F ) for any algebraically
closed field F of positive characteristic, and proved in [48] that the following 5-dimensional
linear groups are Hurwitz groups, for prime p:

• PSL5(p) if p ≡ 1 mod 5 and p ≡ 1, 2 or 4 mod 7,
• PSL5(p

2) if p ≡ 1 mod 5 and p ≡ 3, 5 or 6 mod 7,
• PSU5(p

2) if p ≡ −1 mod 5 and p ≡ 1, 2 or 4 mod 7,
• PSL5(p

4) if p = 7 or if p ≡ −1 mod 5 and p ≡ 3, 5 or 6 mod 7
or if p ≡ 2 mod 5 and p ≡ 1, 2 or 4 mod 7, and

• PSL5(p
8) if p ≡ 2 mod 5 and p ≡ 3, 5 or 6 mod 7.

For ‘intermediate’ ranks, Lucchini, Tamburini and Wilson proved in [28] that SLn(q) is a
Hurwitz group for 93 values of n < 287 (and all prime powers q), and Maxim Vsemirnov
extended this result to another 60 values of n ≤ 287 in [54], again using (2, 3, 7)-generation
of alternating groups. In particular, it is now known that SL49(q) is Hurwitz for all q.
Analogous results about SLn(q) and SLn(Z) for 50 such small ranks n were obtained by
Sun Yongzhong in [44].

The approach taken in [28] is explained very nicely in a survey chapter in the Handbook of
Algebra on Hurwitz groups and Hurwitz generation [47] by Tamburini and Vsemirnov. It
was taken further also by Nikita Semenov in [38], to prove that the commutator subgroup
of the Weyl group of type Dn is a Hurwitz group for all sufficiently large n (and that the
commutator subgroup of the Weyl group of type Bn is (2, 3, 14)-generated for all n ≥ 168).

A quite different approach was introduced by Wilhelm Plesken and Daniel Robertz in [36],
to construct linear representations of ∆(2, 3, 7) of degree up to 7 in characteristic zero,
which can then be used to find Hurwitz groups embeddable as subgroups of GLn(R) for a
suitable ring R and some n ≤ 7. This approach involves a normalization process for con-
structing irreducible or indecomposable representations (generalising the construction of
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the companion matrix of a univariate polynomial), and the application of an ultraproduct
construction to obtain a link between representations in characteristic zero and representa-
tions in positive characteristic, and then relies heavily on a computational implementation
of Janet’s algorithm [35] for solving polynomial equations (developed in the context of
linear PDEs). Plesken and Robertz showed also in [36] how the same approach can work
when additional relations are added to the presentation for ∆(2, 3, 7), giving, for example,
infinite representations of the groups (2, 3, 7; m) = 〈x, y | x2 = y3 = (xy)7 = [x, y]m = 1 〉
over an algebraic number field, for m = 10, 11, 12, 13 and 17.

Finally in this Section, we note two other pieces of work of related interest. In [15], Amir
Džambić produced an alternative proof of Macbeath’s necessary and sufficient conditions on
q for PSL2(q) to be Hurwitz, using a faithful representation of ∆(2, 3, 7) as a Fuchsian group
derived from a quaternion algebra over Q(ζ + ζ−1), where ζ = e2πi/7, and observations
about principal congruence subgroups. Also in [46], Tamburini and Vsemirnov determined
isomorphism types of the projective images of triples (X, Y, XY ) generating an irreducible
subgroup of SLn(F ), for n ≤ 7 and F an algebraically closed of characteristic p ≥ 0, such
that X2, Y 3, (XY )7 are scalars, and determined which of these are rigid (in the sense of
Strambach and Völklein [42]). The latter approach produced in [46] further new examples
of projective linear Hurwitz groups of small rank, including the following for prime p:

• PSL6(p
m) if p 6= 3, and m is the order of p mod 9, and m is odd,

• PSU6(p
m) if p 6= 3, and m is the order of p mod 9, and m is even,

• PSL7(p
m) if p 6= 7, and m is the order of p mod 49, and m is odd,

• PSU7(p
m) if p 6= 7, and m is the order of p mod 49, and m is even.

3 Covers and extensions

If the Hurwitz group G acts faithfully as a group of 84(g− 1) conformal automorphisms of
a compact Riemann surface X of genus g, and G has a non-trivial proper normal subgroup
N , then X is a smooth cover of some Riemann surface Y of smaller genus g′ (given by
g−1 = |N |(g′−1)), with the factor group H = G/N as its conformal automorphism group.

In certain situations, the group G (and associated surface X) can be constructed from a
given Hurwitz group H and suitable group N . For example, G can be a semi-direct product
of N by H, as in various families of extensions of abelian groups by Hurwitz groups PSL2(q)
discussed in [6, Section 4]. More general conditions for a semi-direct product G = NH to
be a quotient of a given triangle group (when H is known to be such a quotient, and N is
a p-group) were given by Rick Thomas in [50].

It is rare, however, for the normal subgroup N to be cyclic, and for good reason, as follows.

Conjugation by elements of G gives a homomorphism from G to Aut(N) with kernel CG(N).
Hence if N is cyclic, then since Aut(N) is abelian while the Hurwitz group G is perfect, it
follows that G/CG(N) is trivial, and therefore N is central in G. In particular, the index
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in G of its centre Z(G) divides |G : N |. Now by Schur’s theorem on centre-by-finite groups
(see [37] for example), the order of every element of G′ = [G, G] divides |G : N |. But
again, G is perfect, so G = G′, and in particular, G′ contains N . Thus |N | divides |G/N |,
whenever the normal subgroup N of the Hurwitz group G is cyclic.

(A similar argument was used by the author and Ravi Kulkarni (with thanks to Peter
Neumann for pointing out the usefulness of Schur’s theorem) in [9] to prove that whenever
p and q are coprime positive integers, there are only finitely many finite groups that can be
generated by two elements u and v of orders p and q respectively such that uv generates a
subgroup of given index.)

On the other hand, there is no upper bound on the order of abelian groups that can occur
as the centre of a Hurwitz group G. This follows easily from the known fact that SLn(q)
is a Hurwitz group for any given prime power q and sufficiently large n, and was used
by the author to prove in [8] that the centre of a Hurwitz group can be any given finite
abelian group — thereby giving a complete answer to a 1965 question by John Leech. The
proof (which is relatively short) involves simply taking a direct product of suitably chosen
special linear groups, and then factoring out however much of the centre of this product is
surplus to requirements.

4 Information about Hurwitz curves and surfaces

Murray Macbeath presented a very nice account of his experiences with Hurwitz groups
and the curves and surfaces on which they act, in a chapter of the MSRI publication The
eightfold way: the beauty of Klein’s quartic curve (1999); see [30].

In [43], Manfred Streit investigated the complex algebraic curves associated with the Hur-
witz groups PSL2(q), showing that the a minimal field of definition of these Hurwitz curves
is the rational field Q when q = 7 or q = p3 for some prime p ≡ ±2 or ±3 modulo 7, and
Q(ζ + ζ−1) where ζ = e2πi/7 when q = p for some prime p ≡ ±1 modulo 7. He also showed
that in the latter case, the three curves are mutually conjugate under the action of the
absolute Galois group Gal(Q/Q).

The action of automorphisms on the set of Weierstrass points of a Hurwitz curve was
considered by Kay Magaard and Helmut Völklein in [31], where they showed that the
corresponding Hurwitz group does not act transitively on the Weierstrass points of the
curve whenever its genus g is greater than 14. It does for g = 3 (as follows immediately
from the determination of the 24 Weierstrass points of Klein’s quartic by David Singerman
and Paul Watson in [40], and shown also later by Noam Elkies [17]), and for g = 7 (as
shown in [31]), but the question seems to be open for g = 14.

In his 2004 University of Helsinki dissertation [52], Roger Vogeler developed a method to
encode and classify the conjugacy classes of hyperbolic transformations in the extended
(2, 3, 7) triangle group (viewed as the group generated by the reflections about the sides
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of a hyperbolic triangle with angles π
2
, π

3
, π

7
), and provided a method for computing the

lengths of closed geodesics on a Hurwitz surface in order to produce data about their
length spectra. This work was further expanded in [53], where he described a means of
exactly determining a large initial portion of the spectrum of ∆(2, 3, 7) and hence that of
Hurwitz surfaces (having the maximum possible number of conformal automorphisms).

5 Related results about finitely-presented quotients

of ∆(2,3,7)

Families (and individual instances) of quotients of the (2, 3, 7) triangle group can be ob-
tained by adding additional relators to its presentation.

For example, the family of quotients (2, 3, 7; m) = 〈x, y | x2 = y3 = (xy)7 = [x, y]m = 1 〉
has already been mentioned (in observations about linear representations of ∆(2, 3, 7))
in Section 2. These groups are now known to be infinite for all m ≥ 9. For m 6= 11
this was proved by Derek Holt and Wilhelm Plesken using coset diagrams in [20], and
(independently) by Jim Howie and Rick Thomas using notions of asphericity in [22]. The
difficult case m = 11 was resolved by Martin Edjvet using a curvature argument in [16],
and (independently) by Holt, Plesken, and Bernd Souvignier by exhibiting homomorphism
to a Lie group of type G2 over an algebraic number field of degree 10 over Q, in [21].

When m = 84, the group (2, 3, 7; m) is not just infinite, but like ∆(2, 3, 7) itself, has all
but finitely many alternating groups An among its quotients; this was proved (in answer
to a question by Graham Higman) in [7], again using coset diagrams.

As noted in Section 2, the approach taken by Plesken and Robertz in [36] can be used
to produce infinite representations of (2, 3, 7; m) for various values of m. More recently,
Maxim Vsemirnov proved in [55] that for every prime p ≥ 5, the Chevalley group G2(p) is
a quotient of the group (2, 3, 7; 2p).

Other quotients of the form 〈x, y | x2 = y3 = (xy)7 = w(x, y) = 1 〉 where w is a word
of small length in the generators were investigated by the author of this paper in a piece
of joint work with Colin Campbell and Edmund Robertson [4], dedicated to the memory
of John Leech. As with Leech’s own work, this involved a combination of proofs by hand
and the use of coset-enumeration by computer to resolve a number of questions (including
some posed by Leech himself about cases in which w(x, y) has the form ([x, y]r(xy)4s)k).

Finally, we note that a further consequence of the results of Lucchini, Tamburini and
Wilson [28] is that there exist 2ℵ0 quotients of ∆(2, 3, 7) that are infinite simple, and
further, that John Wilson showed in [56] that every countable group can be embedded in
a simple image of ∆(2, 3, 7) — indeed in a simple image of ∆(2, 3, k) for any k ≥ 7. The
latter result generalises work by Gareth Jones and Mary Jones in [25] on infinite quotients
of Fuchsian groups.
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6 Other matters

We complete this paper by outlining some related matters about actions of groups on
Riemann surfaces and other structures.

The strong symmetric genus σo(G) of a finite group G is the smallest genus g of all com-
pact orientable surfaces on which G acts faithfully as a group of orientation-preserving
automorphisms. This was defined by Tom Tucker in [51], although the concept dates back
to Burnside (or earlier). If G does not act faithfully on the sphere (genus 0) or the torus

(genus 1), then by Hurwitz’s theorem |G| ≤ 84(σo(G)− 1), so σo(G) ≥ |G|
84

+ 1. This lower
bound is achieved precisely when G is a Hurwitz group, and if it is not, then more refined
bounds can be obtained using the Riemann-Hurwitz formula (see [51]).

The strong symmetric genus of a large number of groups and families of groups is known,
including all of the alternating and symmetric groups, the groups PSL(2, q), and all of the
sporadic simple groups. For instance, Rob Wilson found the strong symmetric genus of
the Baby Monster B to be |B|

48
+ 1 and that of the Fischer group Fi23 to be |Fi23|

48
+ 1, since

each is (2, 3, 8)-generated [58, 59]. A remarkable recent development is that Coy May and
Jay Zimmerman have proved (by determining the strong symmetric genus of the direct
products Ck ×Dn) that for every non-negative integer g, there exists at least one group G
with σo(G) = g; see [34].

A contiguous stream of research has been carried out on regular maps on surfaces. An
orientably-regular map M is a 2-cell embedding of a graph (or multigraph) into a closed
surface with the property that its group Go of orientation-preserving automorphisms (which
must preserve incidence among vertices, edges and faces) acts transitively on the ordered
edges of M . Such maps have uniform structure, with all faces of the same size p and all
vertices of same valency q, in which case M is said to have type {p, q}, and the group Go is
a quotient of the (2, p, q) triangle group. Thus, for example, every Hurwitz group G is the
group of all orientation-preserving automorphisms of some orientably-regular map of genus
|G|
84

+1. There are numerous papers in the literature on regular maps and their groups. One

such paper by Jozef Širáň [41] deals with representations of the triangle groups in special
linear groups, with applications to maps of arbitrarily large planar width, Hurwitz groups,
vertex-transitive non-Cayley graphs, and arc-transitive graphs of given valency and girth.

Actions of groups on other kinds of surfaces have also been considered.

For example, Mischa Belolipetsky and Gareth Jones have investigated automorphism
groups of compact arithmetic Riemann surfaces (viz. those which are uniformized by an
arithmetic Fuchsian group). It is known, for example, that surfaces for which the Hurwitz
bound is attained are arithmetic. For a non-arithmetic surface of genus g, Belolipetsky
proved in [1] that the largest possible order for the group G of all conformal automor-
phisms is 156

7
(g − 1), attainable if and only if G is a quotient of the (2, 3, 13) triangle

group. On the other hand, by earlier work of Accola and Maclachlan in the late 1960s,
for every positive integer g there exists some compact Riemann surface of genus g having
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at least 8(g + 1) conformal automorphisms, but it is known that all surfaces for which
the Accola and Maclachlan bound is attained are non-arithmetic. In [2], Belolipetsky and
Jones showed that for every g ≥ 2 there exists a compact arithmetic Riemann surface of
genus g with at least 4(g − 1) conformal automorphisms, and that this bound is attained
for infinitely many g (starting with 24).

For non-orientable surfaces, the Hurwitz bound becomes |G| ≤ 84(p − 2) for every group
G of automorphisms of a compact non-orientable surface of genus p, as proved by David
Singerman [39]. Groups meeting this bound are smooth quotients of the extended (2, 3, 7)
triangle group 〈x, y | x2 = y3 = (xy)7 = t2 = (xt)2 = (yt)2 = 1 〉 in which the image of
the reflection t lies in the image of the subgroup generated by x and y — or equivalently,
Hurwitz groups possessing an inner automorphism that inverts the images of the standard
generators x and y of the ordinary (2, 3, 7) triangle group. Examples include all but finitely
many alternating groups An, and infinitely many PSL2(q), by results of this author’s earlier
work. The analogue of the Accola-Maclachlan bound for non-orientable surfaces is more
complicated. Colin Maclachlan, Sanja Todorovic Vasiljevic, Steve Wilson and the author
proved in [10] that if ν(p) is the largest number of automorphisms of a non-orientable
surface of genus p, then ν(p) ≥ 4p if p is odd, and ν(p) ≥ 8(p− 2) if p is even. For various
congruence classes mod 12, these bounds may be improved; for example, if p ≡ 9 mod 12,
then ν(p) ≥ 6(p + 1), and this is sharp for infinitely many such p. Sharp bounds are given
in [10] for all congruence classes of p mod 12 except in the case p ≡ 3 mod 12, for which
it is suspected (but not yet proved) that the bound ν(p) ≥ 4p is sharp.

Group actions on Klein surfaces (which include Riemann surfaces as a special case) are
described in an informative monograph by Emilio Bujalance, Javier Etayo, José Manuel
Gamboa and Grzegorz Gromadzki [3]. Compact Klein surfaces are determined topologi-
cally by three invariants: the topological genus g, the number of boundary components k,
and the orientability. The algebraic genus of any such surface X is defined as p = 2g+k−1
if X is orientable, or p = g + k − 1 if X is non-orientable. Automorphism groups of Klein
surfaces can be investigated via the study of non-Euclidean crystallographic (NEC) groups,
which act on the upper half-plane, preserving or reversing orientation. The maximum pos-
sible order for a group of automorphisms of a Klein surface of algebraic genus p is 12(p−1).
Any group for which this bound is attained is called an M∗-group, and is a quotient of the
extended modular group 〈x, y | x2 = y3 = t2 = (xt)2 = (yt)2 = 1 〉 ∼= PGL2(Z). Accord-
ingly, M∗-groups are to Klein surfaces what Hurwitz groups are to Riemann surfaces, but
it is clear that Hurwitz groups are more rare.

Extension of actions of Hurwitz groups on surfaces (2-manifolds) to 3-manifolds was con-
sidered by Monique Gradolato and Bruno Zimmermann in [19], with special focus on the
Hurwitz actions of the groups PSL2(q).

Finally, there is now an analogue of Hurwitz’s theorem for 3-manifolds.

An orientable n-dimensional hyperbolic manifold is the quotient space M = Hn/Λ, where
Λ is some torsion-free discrete subgroup of group Isom+(Hn) of all orientation-preserving
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isometries of n-dimensional hyperbolic space Hn. The group Isom+(M) of all orientation-
preserving isometries of the manifold M is then isomorphic to Γ/Λ where Γ is the normalizer
of Λ in Isom+(Hn). Letting O be the orientable n-dimensional orbifold Hn/Γ, we have
vol(O) = vol(M)/|Isom+(M)| and O = Hn/Γ ∼= (Hn/Λ)/(Γ/Λ) ∼= M/Isom+(M), and so

the ratio |Isom+(M)|
vol(M)

is largest precisely when O = Hn/Γ is of minimum possible volume.

When n = 2, the minimum value of vol(H2/Γ) is attained precisely when Γ is isomorphic
to the (2, 3, 7) triangle group — this is Hurwitz’s theorem.

The discrete subgroup of Isom(H3) of uniquely smallest co-volume has recently been shown
by Fred Gehring, Gaven Martin and Tim Marshall in a series of papers culminating in [18]
to be the normaliser in Isom(H3) of a subgroup isomorphic to the [3, 5, 3]-Coxeter group

[3, 5, 3] = 〈 a, b, c, d | a2 = b2 = c2 = d2 = (ab)3 = (bc)5 = (cd)3 = (ac)2 = (ad)2 = (bd)2 = 1 〉,

obtainable by adjoining the involutory graph automorphism t that interchanges a with d
and b with c. Its orientation-preserving subgroup is isomorphic to the index 2 subgroup Φ
generated by ab, bc, cd and t, which is a split extension of 〈ab, bc, cd〉 = [3, 5, 3]+ by 〈t〉 ∼= C2.

It follows that the ratio |Isom+(M)|
vol(M)

is maximized for an orientable hyperbolic 3-manifold M

precisely when Isom+(M) is a smooth quotient of the latter group Φ.

Gareth Jones and Sasha Mednykh have shown that the smallest such quotient of Φ is
PGL2(9), of order 720, and investigated the 3-manifolds associated with these and a number
of other such quotients of small order in [26]. In joint work with Gaven Martin and Anna
Torstensson [11], the author of this paper has proved the following:

(A) For every prime p there is some q = pk (with k ≤ 8) such that either PSL2(q) or
PGL2(q) is a quotient of Φ by some torsion-free normal subgroup.

(B) For all but finitely many n, both the alternating group An and the symmetric group Sn

are quotients of both Φ and its normalizer in Isom+(H3), by torsion-free normal subgroups.

These results give two infinite families of hyperbolic 3-manifolds with the maximum possible
number of orientation-preserving automorphisms with respect to volume.

The situation for hyperbolic 4-manifolds is still open . . .
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