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SOME INTEGRAL OPERATORS WHICH PRESERVE A
SUBCLASS OF UNIFORMLY QUASICONVEX FUNCTIONS

MUGUR ACU

Abstract. In this paper we define a subclass of uniformly quasiconvex func-
tions and show that this class is preserved under the Alexander and Bernardi
integral operators.
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1. INTRODUCTION

Let H(U) be the set of functions which are regular in the unit disc U,
={f € HU) : f(0) = f/(0)—1 =0}, and S = {f € A : f is univa-

lent in U}.
Denote by I the Alexander integral operator [ : A — A,
Fs) = If(z / 0 g (1)
and by . the Bernardi integral operator I.: A — A,
F(z) = Lf(z) = 120/# () dt, c=1,2,3,... . (2)

0

2. PRELIMINARY RESULTS

We denote by R™ the Ruscheweyh operator (see [11]) defined as

2 ()™
a—pm ="

R"f(z) = , z€U, neN,

where % is the convolution product.

Remark 2.1. If h € A, h(z) = 2+ Y a;z7, z € U, then

j=2
R"h(z) =z + Z Cryiqa;2
=2
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Let D™ be the S’al’agean differential operator (see [9]) defined as
D":A— A neN, and D°f(z) = f(2),
D'f(z) = Df(z) = 2f'(z), D"f(z) =D (D""'f(2)).

Definition 2.1 ([4], [5]). Let n € N and f € A. We say that f is the class
UK,(0), 6 €[-1,1),if

RnJrlf(Z) RnJrlf(Z)
fte ( R (2) ) = ‘ ")
RHlf(2)

Remark 2.2. Geometric interpretation: f € UK, () if and only if )

takes all values in the domain included in right halfplane €25 which is bounded
by the parabola v? = 2(1 — §)u — (1 — 6%). The Carathéodory function is

Qs(2) = 1+ 2(17; %) (log i - g) , zel. (3)

Thus f € UK,(d) if and only if %{S) < s, where by < we denote the

—1‘%—6, zeU.

relation of subordination.

The function Qj is convex and Re Q5 > 12

T.
Remark 2.3. Taking n=0 in Definition 2.1, we obtain U Ky(0) =SP (1—55, 1—;5),
where SP(a,3), a >0, (€ [0,1) is the class of functions f € S which satisfy

the condition
2f'(2) 2f'(2)
f(z) f(2)
The class SP(a, ) was introduced by Rgnning in [10].

—(a+pB)| <Re

+a—p0, zel.

Remark 2.4. Taking n =1 and § = % in Definition 2.1 we obtain U K; (%) =
US°¢, where US® is the class of uniformly convex functions introduced by Good-
man in [3].

Definition 2.2 ([4], [5]). Let f € A. We say that f is an n-uniformly starlike
function of order ¢ and type « if

n+1 n+1
e (L0 5 [
Drf(z) D f(2)
where « >0, § € [-1,1), a4+ >0, n € N. We denote this class by US,,(«, 9).

+0, ze€U,

Definition 2.3 ([2]). Let f € A. We say that f is an n-uniformly close to
convex function of order ¢ and type a with respect to the n-uniformly starlike
function g(z) of order § and type «, where « >0, 6 € [-1,1), a4+ >0, if

where « > 0, 6 € [-1,1), a+d > 0, n € N. We denote this class by
UCC,(a,9).

—1‘+5, zeU,
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Remark 2.5. We have UCC,,(«,d) C CC, where CC is the class of close to
convex functions defined by Kaplan which are univalent.

Remark 2.6. Taking n = 0 and a = 1 in Definition 2.2, we obtain USy(1,d) =
SP (52,142
20 2 )
Theorem 2.1 ([4], [5]). If f(z) € UK,(0), withn € N, ¢ € [-1,1) and
c € C with Re ¢ > %, then F(z) = I.f(z) € UK,(), where 1. is the
Bernardi integral operator defined in (2).

Theorem 2.2 ([1)). If f(z) € UK,(6), withn € N, § € [-1,1) and § > "=
then F(z) = If(z) € UK, (9), where I is the Alezander integral operator defined
in (1).

The next theorem is a result of the so-called “admissible functions method”
introduced by P. T. Mocanu and S. S. Miller (see [6], [7], [8]).

Theorem 2.3. Let q be convex in U and j : U — C with Re[j(z)] > 0,
zeU. If pe H(U) and satisfies p(z) + j(z) - 2p'(2) < q(2), then p(z) < q(2).

3. MAIN RESULTS

Definition 3.1. Let n € N and f € A. We say that f is in the class UQ,(0),
§ € [—1,1), with respect to the function g(z) € UK, (d), § € [-1,1) if

R”Hf(z) Rn+1f(z)
e () 2 [Tt Y+ 2ev

Rn+1f(2)
Rrg(z)
where ¢g(z) € UK, (0), takes all values in the domain 25 which is bounded by
the parabola v? = 2(1—§)u—(1—4§?). The Carathéodory function Qs defined in
(3) is convex and Re Qs > 122, Thus f € UQ,(8) with respect to the function

n+1f()
TRg(z) =< Qs(2).

Remark 3.2. Taking n = 0 in Definition 3.1, we obtain that the subclass
UQo(5), d € [—1,1), is the class of functions f € A such that

() |2f(2)
o) | 9@

where g € UK (0) = USy(1,6) = SP (152, 1£2) (see Remarks 2.3 and 2.6). But
this class is the class UCCy(1,d) and thus from Remark 2.5 we have that the
functions from UQ(d) are univalent.

Remark 3.1. Geometric interpretation: f € UQ,(d) if and only if

g € UK, (9) if and only if ———=

Re — 1|44, zeU,

Remark 3.3. Is easy to see that the function id(z) = z, z € U, satisfies
id(z) € UK, (9) for all n € N and § € [—1,1). It follows that id(z) € UQ,(0)
with respect to the function id(z) € UK,(0) for all n € N and 6 € [—1,1).
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Theorem 3.1. ]f (z) € UQ,(5) with respect to the function g(z) € UK,(0),
withn € N, § € [—1 )a (52”—+1 then F(z) = 1f(z) € UQ,(9) with respect
to the function G(z ) Ig(z) € UK,(0), where I is the Alexander integral

operator defined by (1).

Proof. By Theorem 2.2 we have G(z) = I¢g(z) € UK,,(9) in the conditions from
the hypothesis.

If we consider w(z) =z + > a;27, z € U, then

j=2
W(z) =Iw(z) =2+ f: %ajzj, zeU. (4)
=2
By Remark 2.1 we have
R'w(z) =z + ngﬂlajzj, neN, zel. (5)
=2

Using (4) and (5) by simple calculations we obtain

(n+ 1)R"Mw(z2) — nR"w(z) = 2 (R"w(2)), n €N, (6)
and
2(R"W(2)) = R"w(z), neN, zecU. (7)
From here we have
(n+1)R"™W(2) —nR"W(z) = R"w(z), neN, zeU, (8)
; R"W(z) _ R'w(z)
(n‘i‘l)m—n—m, nGN, zeU. (9)
With notation %ZES) = p(z) and %CES) = h(z) we have
2 (2) = z- (R™1F(2)) _R™F(z) z- (R"G(2))
R"G(z) R"G(z) R"G(z)

and from (7) with w(z) = f(z), W(z) = F(z) and w(z) = g(z), W(z) = G(2)

we have

oy BTf(z) R'g(z)
PR = et P9 RGe)
_RUYE) RG) L RU()
B O CC RN TEE) o)
From (9) with w(z) = ¢g(2) and W(z) = G(z) we have
79) (1) h) =, (11)

R"G(z)
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Now, (10) and (11) imply

Nl
/() = [+ DRG:) = [T = )
> RUIA() 1 ,
TRiglz) p(z) + D) —n zp'(2). (12)
n—+1 =
By Remarks 3.1 and 2.2 we have %%Tj(z)) < Qs(z) and h(z) < Qs(2),

where Q5(2) is given by (3) and is convex with Re Q;(z) > 2. Using this
results and the hypothesis we obtain Re[(n +1)h(z) —n] > 0, z € U and
p(z) + - z2p'(2) < Qs(2), with Qs(2) convex in U.

n

Rn+1F(Z)
— = . Th

G p(z) < Qs(2) us,
by Remark 3.1, we conclude that F(z) = If(z) € UQ,(6) with respect to the

function G(z) = Ig(z) € UK,(9), with n € N, § € [-1,1) and § > 2. O

Theorem 3.2. If f(z) € UQ,(0) with respect to the function g(z) € UK, (9),
with n € N, § € [-1,1) and ¢ € C with Re ¢ > w, then F(z) =
I.f(z) € UQy(S) with respect to the function G(z) = I.g(z) € UK, (J), where
I. is the Bernardi integral operator defined by (2).

By Theorem 2.1 we have G(z) = I.g(z) € UK,(d) in the conditions of the
hypothesis.

(n+1)h(z) —

In the conditions of Theorem 2.3 we have

o0

If we consider w(z) =z + Y a;27, z € U, then we have
i=2
“c+1
Wi(z) =1.w(z) =2+ -a;z’, zeU. 13
(= ) =2+ 3 e (13

In a similar way, with the proof of the Theorem 3.1 (see relations (5), (6)),
we obtain

(c+ 1)R"w(z) — cR"W(z) = 2 (R"W(2)), n€N, (14)
and
(c+ DR w(z) = (n+ 1)R" MW (2) + (c —n)R"W(z), n€N. (15)
From (15) we have
R"w(z) R"MW (2)
1 — N 4 (e N . 1
(c+ )R"W(z) (n+1) RV (2) +(c—n), neN, zeU (16)
n+1F n+1
With the notations RRT(S:) = p(z) and RRTC(:S) = h(z), in a similar way
as in the proof of the above theorem we have
Rn+1 z 1
BTE e+ p(2). a7)

Rrg(z) (n+1h(z) + (¢ =n)



6 MUGUR ACU

Rn+1f(2,)
By Remarks 3.1 and 2.2 we have “Rglz) < Qs(z) and h(z) < Qs(z), where
Qs(z) is given by (3) and is convex with Re Qs(z) > 12i5. Using this results and
the hypothesis, we obtain Re[(n + 1)h(z) + ¢ —n] >0, z € U, and

p(z) + L 2p'(2) < Qs(2),

(n+ 1)h(z) + (c—n)
with Qs(z) convex in U.

R F(2)
R"G(2)

In the conditions of Theorem 2.3 we have

=p(z) < Qs(z), and

thus the proof is complete.
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