
Georgian Mathematical Journal
Volume 11 (2004), Number 1, 7–26

LINEARIZATION AND HIGHER ORDER NONLINEAR
OSCILLATION THEOREMS USING COMPARISON METHODS

RAVI P. AGARWAL, SAID R. GRACE, AND DONAL O’REGAN

Abstract. We establish some new oscillation criteria for higher order non-
linear differential equations. The main idea involves comparing our equation
with the related linear second order differential equations so that the known
oscillation theorems from the literature can be employed directly.

2000 Mathematics Subject Classification: 34C10, 34C15.
Key words and phrases: Linearization, oscillation, nonoscillation, nonlin-
ear, comparison.

1. Introduction

In this paper we shall deal with the oscillatory behavior of all solutions of the
functional differential equation

Lnx(t) + q(t)f(x[g(t)]) = 0, (1.1)

where n ≥ 2, and




L0x(t) = x(t),

Lkx(t) =
1

ak(t)

d

dt
(Lk−1x(t)) , k = 1, 2, . . . , n− 1,

Lnx(t) =
d

dt
([Ln−1x(t)]α) .

(1.2)

In what follows we shall assume that
(i). ai(t) ∈ C([t0,∞),R+ = (0,∞)), t0 ≥ 0,

∞∫
ai(s)ds = ∞, i = 1, 2, . . . , n− 1, (1.3)

(ii). q(t) ∈ C([t0,∞),R+),
(iii). g(t) ∈ C([t0,∞),R = (−∞,∞)) and limt→∞ g(t) = ∞,
(iv). f ∈ C(R,R) and xf(x) > 0 for x 6= 0, and
(v). α is the quotient of positive odd integers.
The domain D(Ln) of Ln is defined to be the set of all functions x : [tx,∞) →

R, tx ≥ t0, such that Ljx(t), j = 0, 1, . . . , n, exist and are continuous on
[tx,∞). Our attention is restricted to those solutions x ∈ D(Ln) of equation
(1.1) which satisfy sup{|x(t)| : t ≥ T} > 0 for every T ≥ tx. We make the
standing hypothesis that equation (1.1) does possess such solutions. A solution
of equation (1.1) is called oscillatory if it has arbitrarily large zeros; otherwise,
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it is called nonoscillatory. Equation (1.1) is called oscillatory if all its solutions
are oscillatory.

Our interest in this paper is to relate the oscillation of the nonlinear higher
order equation (1.1), when f is not required to be a monotone function, to an
appropriate linear second order ordinary differential equation. This enables us
to employ numerous known results from the literature, see [4], [5].

In addition we establish some new oscillation criteria for higher order nonlin-
ear equations of type (1.1). The obtained results are extended to obtain new
oscillation criteria for neutral equations of the form

Ln(x(t) + p(t)x[h(t)]) + q(t)f(x[g(t)]) = 0,

where Ln and the functions g, q and f are as in equation (1.1), p(t) ∈
C([t0,∞),R+ ∪ {0}) and h(t) ∈ C([t0,∞),R) and limt→∞ h(t) = ∞.

Finally in Section 4 we consider a special case of equation (1.1), namely, the
equation

d

dt

(
x(n−1)(t)

)α
+ q(t)f(x[g(t)]) = 0.

We note that linearization of nonlinear oscillation theorems has been the
subject of intensive study and for some interesting results, we refer to Grace
[7]–[8], Kwong and Wong [9] and Philos [11]. We also remark that several other
related results are available in [2], [3].

2. Preliminaries

To formulate our results we shall use the following notation: Let ai(t) ∈
C([t0,∞),R), i = 1, 2, . . . , we define I0 = 1,

Ii(t, s; ai, ai−1, . . . , a1) =

t∫

s

ai(u)Ii−1(u, s; ai−1, . . . , a1)du, i = 1, 2, . . . .

It is easy to verify from the definition of Ii that

Ii(t, s; a1, . . . , ai) = (−1)iIi(s, t; ai, . . . , a1)

and

Ii(t, s; a1, . . . , ai) =

t∫

s

ai(u)Ii−1(t, u; a1, . . . , ai−1)du.

We shall need the following lemmas.

Lemma 2.1. Suppose condition (1.3) holds. If x ∈ D(Ln) where Ln is
Ln defined by (1.2) with α = 1, is eventually of one sign, then there exist a
tx ≥ t0 ≥ 0 and an integer `, 0 ≤ ` ≤ n with n + ` even for x(t)Lnx(t)
nonnegative eventually, or n + ` odd for x(t)Lnx(t) nonpositive eventually
and such that for every t ≥ tx,{

` > 0 implies x(t)Lkx(t) > 0, k = 0, 1, . . . , `,

` ≤ n− 1 implies (−1)`−kx(t)Lkx(t) > 0, k = `, ` + 1, . . . , n.
(2.1)
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This lemma generalizes a well-known lemma of Kiguradze and can be proved
similarly.

It will be convenient to make use of the following notation in the remainder
of this paper. For any T ≥ t0 and all t ≥ T, we let

w`[t, T ] = a1(t)

t∫

T

I`−2(t, s; a2, . . . , a`−1)a`(s)In−`−1(t, s; an−1, . . . , a`+1)ds

for 2 ≤ ` ≤ n− 1,

w[t, T ] = min
2≤`≤n−1

w`[t, T ],

w`[t, T ] =

t∫

T

I`−1(t, s; a1, . . . , a`−1)a`(s)In−`−1(t, s; an−1, . . . , a`+1)ds,

1 ≤ ` ≤ n− 1,

w[t, T ] = min
1≤`≤n−1

w`[t, T ].

For t ≥ s ≥ T, we let

w1[t, s] = a1(s)In−2(t, s; an−1, . . . , a2),

wλ[t, T ] = min {w1[t, λt], w`[λt, T ], 2 ≤ ` ≤ n− 1 and 0 < λ < 1}
for t ≥ T/λ,

w0[t, s] = In−1(t, s; an−1, . . . , a1), w∗
0[t, T ] = max

1≤i≤n−1
Ii(t, T ; a1, . . . , ai)

and
w0[t, s] = a1(s)In−2(t, s; an−1, . . . , a2).

The following two lemmas can be found in [1,6].

Lemma 2.2. Let x ∈ D(Ln) be eventually positive with condition (1.3)
holding. Then

(i1). For 1 ≤ ` ≤ n− 1 and all t ≥ T ≥ t0,

x(t) ≥ w[t, T ]Ln−1x(t). (2.2)

(i2). For 2 ≤ ` ≤ n− 1 and all t ≥ T ≥ t0,

x′(t) ≥ w[t, T ]Ln−1x(t). (2.3)

(i3). For 1 ≤ ` ≤ n− 1, and λ a constant with 0 < λ < 1, there exists a
T ∗ ≥ T/λ such that

x′[λt] ≥ wλ[t, T ]Ln−1x(t) for t ≥ T ∗. (2.4)

Lemma 2.3. Let x ∈ D(Ln) be eventually positive with condition (1.3)
holding and let x(t) satisfy (2.1) with ` = 0. Then for t ≥ s ≥ T ≥ t0,

x(s) ≥ w0[t, s]Ln−1x(t) (2.5)

and
−x′(s) ≥ w0[t, s]Ln−1x(t). (2.6)
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Next, we shall need the following notation and a lemma due to Mahfoud [10].
Let

Rt0 =

{
(−∞,−t0] ∪ [t0,∞) if t0 > 0

(−∞, 0) ∪ (0,∞) if t0 = 0

and

CB(Rt0) = {f ∈ C(R,R) : f is of bounded variation

on any interval [a, b] ⊂ Rt0}.
Lemma 2.4. Suppose t0 > 0 and f ∈ C(R,R). Then, f ∈ CB(Rt0)

if and only if f(x) = H(x)G(x) for all x ∈ R, where G : Rt0 → R+ is
nondecreasing on (−∞,−t0) and nonincreasing on (t0,∞) and H : Rt0 → R
is nondecreasing on Rt0 .

We shall also need the following lemma.

Lemma 2.5 ([4], [11]). Let r(t) ∈ C([T,∞),R+), T ≥ t0. If there exists a
function w(t) ∈ C1([T,∞),R) such that

q(t) ≤ −w′(t)− r(t)w2(t) for every t ≥ T,

then the second order linear ordinary differential equation(
x′(t)
r(t)

)′
+ q(t)x(t) = 0

is nonoscillatory.

3. Oscillation of the even order equation (1.1)

Here, we shall present oscillation criteria of comparison type for equation
(1.1), when n is even. For this, we shall assume that there exists a function
σ(t) ∈ C1([t0,∞),R) such that

σ(t) ≤ inf{t, g(t)}, σ′(t) > 0 for t ≥ t0 and lim
t→∞

σ(t) = ∞. (3.1)

For all large T ≥ t0 with σ(t) > T/λ, 0 < λ < 1, we let

w∗(t) = λσ′(t)wλ[σ(t), T ]wα−1[λσ(t), T ].

Theorem 3.1. Let α ≥ 1, f ∈ C(Rt0), t0 ≥ 0, and let G and H be a pair
of continuous components of f with H being the nondecreasing one (and G
as described in Lemma 2.4) satisfying

H(x)sgn x ≥ |x|β for x 6= 0, (3.2)

where β is the quotient of two positive odd integers. Moreover, assume that
the conditions (i)–(v), (1.3) and (3.1) hold. Equation (1.1) is oscillatory if there
exists a function ρ(t) ∈ C1([t0,∞),R+) and a constant λ ∈ (0, 1) such that
for all T ≥ t0 with σ(t) > T/λ, the linear second order ordinary differential
equation (

1

C(t)
z′(t)

)′
+ p(t)z(t) = 0 (3.3)
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is oscillatory, where

p(t) = ρ(t)q(t)G(cw∗
0[g(t), T ]) +

1

2

(
ρ′(t)

ρ(t)C(t)

)′
− 1

4C(t)

(
ρ′(t)
ρ(t)

)2

,

c is any positive constant, and

ρ(t)

βw∗(t)
C(t)=





c1, c1 is any positive constant, when β > α,

1, when β = α,

c2(w
∗
0[λσ(t), T ])β−α, c2 is any positive constant, when β<α.

Proof. Let x(t) be an eventually positive solution of equation (1.1), say, x(t) >
0 for t ≥ t0 ≥ 0. It is easy to see that the sign of Ln and Ln are the same,
where Ln is Ln defined by (1.2) with α = 1. Since n is even, there exist
t1 ≥ t0 and an integer ` ∈ {1, 3, . . . , n− 1} such that (2.1) holds. There exist
a t2 ≥ t1 and a constant b1 > 0 such that Ln−1x(t) ≤ b1 for t ≥ t2.
Integrating the above inequality n − 1 times, there exist a t3 ≥ t2 and a
constant b > 0 such that

x[g(t)] ≤ bw∗
0[g(t), t2] for t ≥ t3. (3.4)

From equation (1.1), it follows that

−Lnx(t) = q(t)f(x[g(t)]) = q(t)G(x[g(t)])H(x[g(t)])

≥ q(t)G(bw∗
0[g(t), t2])x

β[σ(t)] for t ≥ t3. (3.5)

Define

w(t) = ρ(t)
Lα

n−1x(t)

xβ[λσ(t)]
for t ≥ t3, λ ∈ (0, 1).

Then, for t ≥ t3 we have

w′(t) ≤ −ρ(t)q(t)G(bw∗
0[g(t), t2]) +

ρ′(t)
ρ(t)

w(t)

− λβ
σ′(t)
ρ(t)

w2(t)
x′[λσ(t)]

Lα
n−1x(t)

xβ−1[λσ(t)]. (3.6)

By Lemma 2.2 there exists a t4 ≥ t3 such that for all t ≥ t4/λ,

x[λσ(t)] ≥ w[λσ(t), t3]Ln−1x(t) (3.7)

and

x′[λσ(t)] ≥ wλ[σ(t), t3]Ln−1x(t). (3.8)

Using (3.7) and (3.8) in (3.6), we have

w′(t) ≤ −ρ(t)q(t)G(bw∗
0[g(t), t2]) +

ρ′(t)
ρ(t)

w(t)

− β

ρ(t)
w∗(t)xβ−α[λσ(t)]w2(t) for t ≥ t4/λ. (3.9)

Now, we consider the following three cases:
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Case 1. β > α. Since x′(t) > 0 eventually, there exist a constant k1 > 0 and
a t5 ≥ t4/λ such that

x[λσ(t)] ≥ k1 for t ≥ t5. (3.10)

Thus, inequality (3.9) becomes

w′(t) ≤ −ρ(t)q(t)G(bw∗
0[g(t), t2]) +

ρ′(t)
ρ(t)

w(t)

− βkβ−α
1

ρ(t)
w∗(t)w2(t) for t ≥ t5. (3.11)

Case 2. β = α. In this case inequality (3.9) becomes

w′(t) ≤ −ρ(t)q(t)G(bw∗
0[g(t), t2]) +

ρ′(t)
ρ(t)

w(t)

− β

ρ(t)
w∗(t)w2(t) for t ≥ t5. (3.12)

Case 3. β < α. As in the above proof, there exist a constant k2 > 0 and a
t6 ≥ t4/λ such that

x[λσ(t)] ≤ k2w
∗
0[λσ(t), t4] for t ≥ t6. (3.13)

Using (3.13) in (3.9), we have

w′(t) ≤ −ρ(t)q(t)G(bw∗
0[g(t), t2]) +

ρ′(t)
ρ(t)

w(t)

− βkβ−α
2

ρ(t)
(w∗

0[λσ(t), t4])
β−αw∗(t)w2(t) for t ≥ t6. (3.14)

Choose T1 ≥ max{t5, t6}, from inequalities (3.11), (3.12) and (3.14), we get

w′(t) ≤ −ρ(t)q(t)G(bw∗
0[g(t), t2]) +

ρ′(t)
ρ(t)

w(t)− C(t)w2(t), t ≥ T1, (3.15)

where C(t) here is given by

ρ(t)

βw∗(t)
C(t) =





kβ−α
1 when β > α,

1 when β = α,

kβ−α
2 (w∗

0[λσ(t), t4])
β−α when β < α.

Clearly, C(t) > 0 for t ≥ T1. Now,

w′(t) ≤ −ρ(t)q(t)G(bw∗
0[g(t), t2])− C(t)

[
w2(t)− ρ′(t)

ρ(t)C(t)
w(t)

]

= −ρ(t)q(t)G(bw∗
0[g(t), t2])− C(t)

[
w(t)− ρ′(t)

2ρ(t)C(t)

]2

+
1

4C(t)

(
ρ′(t)
ρ(t)

)2

for t ≥ T1,
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or(
w(t)− ρ′(t)

2ρ(t)C(t)

)′
≤ −ρ(t)q(t)G(bw∗

0[g(t), t2])−
(

ρ′(t)
2ρ(t)C(t)

)′

+
1

4C(t)

(
ρ′(t)
ρ(t)

)2

− C(t)

[
w(t)− ρ′(t)

2ρ(t)C(t)

]2

, t ≥ T1.

Set

y(t) = w(t)− ρ′(t)
2ρ(t)C(t)

, t ≥ T1

so we have

y′(t) ≤ −
[
ρ(t)q(t)G(bw∗

0[g(t), t2]) +

(
ρ′(t)

2ρ(t)C(t)

)′

− 1

4C(t)

(
ρ′(t)
ρ(t)

)2
]
− C(t)y2(t) for t ≥ T1,

or

y′(t) ≤ −p(t)− C(t)y2(t) for t ≥ T1, (3.16)

where p(t) is given by

p(t) = ρ(t)q(t)G(bw∗
0[g(t), t2]) +

(
ρ′(t)

2ρ(t)C(t)

)′
− 1

4C(t)

(
ρ′(t)
ρ(t)

)2

.

Applying Lemma 2.5 to inequality (3.16), we conclude that the linear equation
(3.3) is nonoscillatory, which is a contradiction. This completes the proof. ¤

Next, we shall consider equation (1.1) with 0 < α ≤ 1 and prove the
following result.

Theorem 3.2. Let 0 < α ≤ 1, f ∈ C(Rt0), t0 ≥ 0 and let G and H be a
pair of continuous components of f with H being the nondecreasing one (and
G as described in Lemma 2.4). Moreover, assume that the conditions (i)–(v),
(1.3), (3.1) and (3.2) hold. Equation (1.1) is oscillatory if there exist a function
ρ(t) ∈ C1([t0,∞),R+) and a constant λ, 0 < λ < 1 such that for all T ≥ t0
with σ(t) > T/λ, the linear second order ordinary differential equation

(
1

Q∗(t)
y′(t)

)′
+ P (t)y(t) = 0 (3.17)

is oscillatory, where

Q∗(t) = λβσ′(t)ρ−1/α(t)wλ[σ(t), T ]Q(1/α)−1(t)c(t),

Q(t) = ρ(t)

∞∫

t

q(s)G(c∗w∗
0[g(s), T ])ds,

P (t) = ρ(t)q(t)G(c∗w∗
0[g(t), T ]) +

1

2

(
ρ′(t)

ρ(t)Q∗(t)

)′
− 1

4Q∗(t)

(
ρ′(t)
ρ(t)

)2
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c∗ is any positive constant and

c(t) =





c1, c1 > 0 is any constant, when β > α,

1, when β = α,

c2 (w∗
0[λσ(t), T ])(β/α)−1 , c2 > 0 is any constant, when β < α.

Proof. Let x(t) be an eventually positive solution of equation (1.1), say, x(t) >
0 for t ≥ t0 ≥ 0. Define the function w(t) as in the proof of Theorem 3.1
and obtain (3.4) – (3.8) for t ≥ t4. Now, one can easily obtain

w′(t) ≤ −ρ(t)q(t)G(bw∗
0[g(t), t2]) +

ρ′(t)
ρ(t)

w(t)

− λβσ′(t)ρ−1/α(t)wλ[σ(t), t3]w
2(t)w(1/α)−1(t)x(β/α)−1[λσ(t)]. (3.18)

As a result(
w(t)

ρ(t)

)′
=

1

ρ(t)

[
w′(t)− ρ′(t)

ρ(t)
w(t)

]
≤ −q(t)G(bw∗

0[g(t), t2]), t ≥ t3. (3.19)

Integrating (3.19) from t ≥ t3 to u and letting u →∞, we have

w(t) ≥ Q(t) for t ≥ t3. (3.20)

Using (3.20) in (3.18), we obtain

w′(t) ≤ −ρ(t)q(t)G(bw∗
0[g(t), t2]) +

ρ′(t)
ρ(t)

w(t)

− Q∗(t)
c(t)

x(β/α)−1[λσ(t)]w2(t) for t ≥ t4. (3.21)

The rest of the proof is similar to that of Theorem 3.1 and hence omitted. ¤
The following corollaries are immediate.

Corollary 3.1. Let α ≥ 1, f ∈ C(Rt0), t0 ≥ 0, and let G and H be a
pair of continuous components of f with H being the nondecreasing one (and
G as described in Lemma 2.4). Moreover, assume that the conditions (i)–(v),
(1.3), (3.1) and (3.2) hold. If for some constant λ, 0 < λ < 1, and all large
T ≥ t0 with σ(t) > T/λ, the second order linear equation

(
1

a(t)
y′(t)

)′
+ p(t)y(t) = 0 (3.22)

is oscillatory, where

p(t) = q(t)G(cw∗
0[g(t), T ]), c is any positive constant,

a(t) = βw∗(t)c(t)

and

c(t) =





c1, c1 > 0 is any constant, when β > α,

1, when β = α,

c2 (w∗
0[λσ(t), T ])β−α , c2 > 0 is any constant, when β < α,
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then equation (1.1) is oscillatory.

Corollary 3.2. Let 0 < α ≤ 1, f ∈ C(Rt0), t0 ≥ 0, and let G and H be a
pair of continuous components of f with H being the nondecreasing one (and
G as described in Lemma 2.4). In addition, assume that the conditions (i)–(v),
(1.3), (3.1) and (3.2) hold. Equation (1.1) is oscillatory if for some constant
λ, 0 < λ < 1, and all large T ≥ t0 with σ(t) > T/λ, the second order linear
equation (

1

a(t)
z′(t)

)′
+ p(t)z(t) = 0 (3.23)

is oscillatory, where p(t) is as in equation (3.22),

a(t) = λβσ′(t)wλ[σ(t), T ]




∞∫

t

p(s)ds




(1/α)−1

c(t)

and

c(t) =





c1, c1 > 0 is any constant, when β > α,

1, when β = α,

c2 (w∗
0[λσ(t), T ])(β/α)−1 , c2 > 0 is any constant, when β < α.

The proof of Corollaries 3.1 and 3.2 can be obtained from that of Theorems
3.1 and 3.2, respectively, by letting ρ(t) = 1. The details are omitted.

Corollary 3.3. Let α = 1, f ∈ C(Rt0), t0 ≥ 0, and let G and H be a
pair of continuous components of f with H being the nondecreasing one (and
G as described in Lemma 2.4). Moreover, assume that the conditions (i)–(v),
(1.3), (3.1) and (3.2) hold. Equation (1.1) is oscillatory if there exist a function
ρ(t) ∈ C1([t0,∞),R+) and a constant λ, 0 < λ < 1, such that for all large
T ≥ t0 with σ(t) > T/λ, the second order linear equation

(
1

r(t)
y′(t)

)′
+ p(t)y(t) = 0 (3.24)

is oscillatory, where

r(t) = λβ
σ′(t)
ρ(t)

wλ[σ(t), T ]c(t),

p(t) = ρ(t)q(t)G(c∗w∗
0[g(t), T ]) +

1

2

(
ρ′(t)

r(t)ρ(t)

)′
− 1

4r(t)

(
ρ′(t)
ρ(t)

)2

,

c∗ > 0 is any constant, and

c(t) =





c1, c1 > 0 is any constant, when β > 1,

1, when β = 1,

c2 (w∗
0[λσ(t), T ])β−1 , c2 > 0 is any constant, when β < 1.
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Corollary 3.4. Let α = 1, f ∈ C(Rt0), t0 ≥ 0, and let G and H be a
pair of continuous components of f with H being the nondecreasing one (and
G as described in Lemma 2.4). In addition, suppose that the conditions (i)–(v),
(1.3), (3.1) and (3.2) hold. Equation (1.1) is oscillatory if for some constant λ,
0 < λ < 1, and all large T ≥ t0 with σ(t) > T/λ, the second order linear
equation (

1

r(t)
y′(t)

)′
+ p(t)y(t) = 0 (3.25)

is oscillatory, where p(t) is as in equation (3.22),

r(t) = λβσ′(t)wλ[σ(t), T ]c(t)

and c(t) is as in Corollary 3.3.

Remark 1. We note that the above results can be applied to equations of
type (1.1) with f being any of the following functions:

(i) f(x) is a nondecreasing function. In this case we let f(x) = H(x) and
G(x) = 1,

(ii) f(x) =
|x|β−1x

1 + |x|γ , where β and γ are positive constants,

(iii) f(x) = |x|β−1x exp(−|x|γ), where β and γ are positive constants,
(iv) f(x) = |x|β−1x sech x, where β is a positive constant.

Remark 2. In all of the above results we require the oscillation of linear second
order ordinary differential equations of the form

(a(t)x′(t))′ + q(t)x(t) = 0, (3.26)

where a(t) ∈ C([t0,∞),R+) and q(t) ∈ C([t0,∞),R), so, it would be of
interest if we give some oscillation criteria for equation (3.26).

Each of the following conditions is sufficient for the oscillation of (3.26).

(I1)

∞∫
1

a(s)
ds = ∞ and

∞∫
q(s)ds = ∞,

(I2) lim inf
t→∞

A(t)Q(t) >
1

4
, where A(t) =

t∫

t0

1

a(s)
ds and Q(t) =

∞∫

t

q(s)ds,

(I3) there exists a function ρ(t) ∈ C1([t0,∞),R+) such that

lim sup
t→∞

t∫

t0

[
ρ(s)q(s)− (ρ′(s))2

4a(s)ρ(s)

]
ds = ∞.

For more oscillation results for equation (3.26), we refer the reader to the
monograph by Agarwal et. al. [4].
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4. Oscillation of the Odd Order Equation (1.1)

In this section, we shall present oscillation criteria of comparison type for
equation (1.1) when n is odd.

Theorem 4.1. Let α ≥ 1, f ∈ C(Rt0), t0 ≥ 0, and let G and H be a pair of
continuous components of f with H being the nondecreasing one (and G as
described in Lemma 2.4). Moreover, suppose that the conditions (i)–(v), (1.3),
(3.1) and (3.2) hold. Every unbounded solution of equation (1.1) is oscillatory
if there exists a function ρ(t) ∈ C1([t0,∞),R+) such that for all large T ≥ t0
with σ(t) > T and all constant c > 0, the linear second order ordinary
differential equation (

1

r(t)
y′(t)

)′
+ p(t)y(t) = 0 (4.1)

is oscillatory, where

r(t) = β
σ′(t)
ρ(t)

w[σ(t), T ]wα−1[σ(t), T ]c(t),

p(t) = ρ(t)q(t)G(cw∗
0[g(t), T ]) +

1

2

(
ρ′(t)

r(t)ρ(t)

)′
− 1

4r(t)

(
ρ′(t)
ρ(t)

)2

and

c(t) =





c1, c1 > 0 is any constant, when β > α,

1, when β = α,

c2 (w∗
0[σ(t), T ])β−α , c2 > 0 is any constant, when β < α.

Proof. Let x(t) be an unbounded eventually positive solution of equation
(1.1), say, x(t) > 0 for t ≥ t0 ≥ 0. By Lemma 2.1 there exist an integer
` ∈ {2, 4, . . . , n − 1} and a t1 ≥ t0 such that (2.1) holds. As in the proof of
Theorem 3.1, we obtain (3.5) for t ≥ t3. Define

w(t) = ρ(t)
Lα

n−1x(t)

xβ[σ(t)]
, t ≥ t3.

Then, for t ≥ t3 we have

w′(t) ≤ −ρ(t)q(t)G(bw∗
0[g(t), t2]) +

ρ′(t)
ρ(t)

w(t)

− β
σ′(t)
ρ(t)

x′[σ(t)]

Lα
n−1x(t)

xβ−1[σ(t)]w2(t). (4.2)

By Lemma 2.2, there exists a t4 ≥ t3 such that σ(t) > t3 for t ≥ t4,

x[σ(t)] ≥ w[σ(t), t3]Ln−1x(t), t ≥ t4, (4.3)

and

x′[σ(t)] ≥ w[σ(t), t3]Ln−1x(t), t ≥ t4. (4.4)
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Using (4.3) and (4.4) in (4.2) for t ≥ t4, we have

w′(t) ≤ −ρ(t)q(t)G(bw∗
0[g(t), t2]) +

ρ′(t)
ρ(t)

w(t)

− β
σ′(t)
ρ(t)

w[σ(t), t3]w
α−1[σ(t), t3]x

β−α[σ(t)]w2(t).

The rest of the proof is similar to that of Theorem 3.1 and hence omitted. ¤

Theorem 4.2. Let 0 < α ≤ 1, f ∈ C(Rt0), t0 ≥ 0, and let G and H
be a pair of continuous components of f with H being the nondecreasing
one (and G as described in Lemma 2.4). Moreover, assume that the conditions
(i)–(v), (1.3), (3.1) and (3.2) hold. Every unbounded solution of equation (1.1)
is oscillatory if there exists a function ρ(t) ∈ C1([t0,∞),R+) such that for all
large T ≥ t0 with σ(t) > T, the linear second order ordinary differential
equation (

1

r(t)
y′(t)

)′
+ p(t)y(t) = 0 (4.5)

is oscillatory, where

r(t) = βσ′(t)ρ−1/α(t)w[σ(t), T ]Q(1/α)−1(t)c(t),

Q(t) = ρ(t)

∞∫

t

q(s)G(cw∗
0[g(s), T ])ds, c is any positive constant,

p(t) = ρ(t)q(t)G(cw∗
0[g(t), T ]) +

1

2

(
ρ′(t)

r(t)ρ(t)

)′
− 1

4r(t)

(
ρ′(t)
ρ(t)

)2

and

c(t) =





c1, c1 > 0 is any constant, when β > α,

1, when β = α,

c2 (w∗
0[σ(t), T ])(β/α)−1 , c2 > 0 is any constant, when β < α.

The proof can be modelled on that of Theorem 3.2 and hence omitted.
Next, we are concerned with the oscillatory behavior of all bounded solutions

of equation (1.1).
For any function g(t) ∈ C([t0,∞),R), we put

Rg = {t ∈ [t0,∞), g(t) < t}.
We also introduce the notation: τ(t) = max{min{s, g(s)} : t0 ≤ s ≤ t} and
note that the following inequality holds g(s) ≤ τ(t) for τ(t) < s < t.

Now, we present the following results.

Theorem 4.3. Let f ∈ C(Rt0), t0 ≥ 0, and let G and H be a pair of
continuous components of f with H being the nondecreasing one (and G as
described in Lemma 2.4). In addition, suppose that the conditions (i)–(v), (1.3),
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(3.1) and (3.2) hold. Every bounded solution of equation (1.1) is oscillatory if
for every constant ξ > 0 either

lim sup
t→∞

t∫

τ(t)

q(s)wα
0 [τ(t), g(s)]ds > ξ when α = β, (4.6)

or

lim sup
t→∞

t∫

τ(t)

q(s)wβ
0 [τ(t), g(s)]ds > 0 when α > β. (4.7)

Remark 3. Of course in Theorem 4.3 for (4.6) to hold we need the left hand
side of the inequality in (4.6) to be infinity. However we can improve (4.6) if we
know a little more about G. For example if G is a constant (say G(x) = a0 > 0)
then it is enough to assume (4.6) only for ξ = 1

a0
.

Proof. Let x(t) be a bounded nonoscillatory solution of equation (1.1), say,
x(t) > 0 for t ≥ t0 ≥ 0. By Lemma 2.1, there exists a t1 ≥ t0 such that
inf{g(t) : t ≥ t1} > t0 and

(−1)iLjx(t) > 0, 0 ≤ j ≤ n on [t1,∞). (4.8)

By Lemma 2.3 there exists a t2 ≥ t1 such that

x[g(s)] ≥ w0[τ(t), g(s)]Ln−1x[τ(t)] for t ≥ s ≥ t2. (4.9)

Since x(t) is bounded on [t0,∞), there exist a constant b > 0 and a t3 ≥ t2
such that

x[g(t)] ≤ b for t ≥ t3. (4.10)

Using condition (3.2), (4.9) and (4.10) in equation (1.1), we have

− d

ds
(Ln−1x(s))α = q(s)f(x[g(s)]) = q(s)G(x[g(s)])H(x[g(s)])

≥ q(s)G(b)xβ[g(s)] ≥ q(s)G(b)wβ
0 [τ(t), g(s)]Lβ

n−1x[τ(t)]

for t ≥ s ≥ t3.

Integrating both sides of the above inequality from τ(t) to t, we have

Lα
n−1x[τ(t)] ≥ Lβ

n−1x[τ(t)]

t∫

τ(t)

q(s)wβ
0 [τ(t), g(s)]G(b)ds. (4.11)

Now, we consider the following two cases:
Case 1. α = β. In this case (4.11) reduces to

Lα
n−1x[τ(t)]

[ t∫

τ(t)

q(s)wα
0 [τ(t), g(s)]G(b)ds− 1

]
≤ 0 for t ≥ t1.

But this is inconsistent with (4.6).
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Case 2. α > β. It follows from (4.11) that

Lα−β
n−1 x[τ(t)] ≥

t∫

τ(t)

q(s)wβ
0 [τ(t), g(s)]G(b)ds. (4.12)

Taking lim sup of both sides of (4.12) as t → ∞, we see that the left-hand
side approaches zero, which contradicts (4.7). This completes the proof. ¤

Theorem 4.4. Let the hypotheses of Theorem 4.3 hold with g(t) < t for
t ≥ t0 and conditions (4.6) and (4.7) are replaced, respectively, by

lim sup
t→∞

t∫

g(t)

In−2(v, g(t); an−2, . . . , a1)an−1(v)




t∫

v

q(u)du




1/α

dv > ξ,

when α = β (4.13)

ξ > 0 is any constant, or

lim sup
t→∞

t∫

g(t)

In−2(v, g(t); an−2, . . . , a1)an−1(v)




t∫

v

q(u)du




1/α

dv > 0

when α > β. (4.14)

Then the conclusion of Theorem 4.3 holds.

Proof. Let x(t) be a bounded nonoscillatory solution of equation (1.1), say,
x(t) > 0 for t ≥ t0 ≥ 0. There exists a t1 ≥ t0 such that (4.8) holds for
t ≥ t1. Choose a t2 > t1 such that inf{g(t) : t ≥ t2} > t1. By Taylor’s
formula with remainder it is easy to see that

x[g(t)] ≥
t∫

g(t)

In−2(v, g(t);an−2, . . . , a1)an−1(v)(Ln−1x(v))dv

for t > g(t) ≥ t2. (4.15)

As in the proof of Theorem 4.3, we obtain (4.10) and from equation (1.1), we
have

−d

dt
(Lα

n−1x(t)) ≥ q(t)G(b)xβ[g(t)] for t ≥ t3 ≥ t2. (4.16)

Integrating (4.16) from v to t, we obtain

Ln−1x(v) ≥
( t∫

v

q(u)G(b)xβ[g(u)]du

)1/α

for t ≥ v ≥ t3. (4.17)

Substituting (4.17) in (4.15), we have

x[g(t)] ≥ G(b)

t∫

g(t)

In−2(v, g(t); an−1, . . . , a1)an−1(v)

( t∫

v

q(u)du

)1/α

xβ/α[g(t)]dv.
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The rest of the proof is similar to that of Theorem 4.3 and hence omitted. ¤
Theorem 4.5. Let the hypotheses of Theorem 4.3 hold with 0 < β < α and

condition (4.7) is replaced by∫

Rg

q(s)wβ
0 [s, g(s)]ds = ∞. (4.18)

Then the conclusion of Theorem 4.3 holds.

Proof. Let x(t) be a bounded nonoscillatory solution of equation (1.1), say,
x(t) > 0 for t ≥ t0 ≥ 0. There exists a t1 ≥ t0 such that (4.8) holds for
t ≥ t1. Choose a t2 ≥ t1 such that inf{g(t) : t ≥ t2} > t1. As in the proof of
Theorem 4.3, we obtain (4.10) and

x[g(t)] ≥ w0[t, g(t)]Ln−1x(t) for t ∈ Rg ∩ [t2,∞). (4.19)

Using condition (3.2), (4.10) and (4.19) and letting u(t) = Ln−1x(t) > 0 on
Rg ∩ [t2,∞), we have

−du(t)

dt
≥ q(t)G(b)wβ

0 [t, g(t)]uβ/α(t) for t ∈ Rg ∩ [t2,∞).

Choose T ≥ t2 arbitrarily. Dividing both sides of the above inequality by
uβ/α(t) and integrating on Rg ∩ [t2, T ], we find

∫

Rg∩[t2,T ]

q(s)wβ
0 [s, g(s)]ds ≤ 1

G(b)

t2∫

T

u−β/α(s)u′(s)ds =
1

G(b)

u(t2)∫

u(T )

u−β/αdu

=
1

G(b)

(
α

α− β

) [
u1−(β/α)(t2)− u1−(β/α)(T )

]
.

Letting T →∞, we conclude that∫

Rg∩[t2,∞)

q(s)wβ
0 [s, g(s)]ds ≤ 1

G(b)

(
α

α− β

)
u1−(β/α)(t2) < ∞,

which contradicts condition (4.18). This completes the proof. ¤
Now, we are ready to state oscillation theorems for the odd order equation

(1.1).

Theorem 4.6. Let α ≥ 1, f ∈ C(Rt0), t0 ≥ 0, and let G and H be a pair of
continuous components of f with H being the nondecreasing one (and G as
described in Lemma 2.4). Moreover, assume that conditions (i)–(v), (1.3), (3.1)
and (3.2) hold with 0 < β ≤ α. Equation (1.1) is oscillatory if there exists a
function ρ(t) ∈ C1([t0,∞),R+) such that for all large T ≥ t0 with σ(t) > T
and all positive constants c and ξ, the linear equation (4.1) is oscillatory
where r(t) and p(t) are as in Theorem 4.1 and

c(t) =

{
1 when α = β,

c2 (w∗
0[σ(t), T ])β−α , where c2 > 0 is any constant, when α > β
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and condition (4.6) or (4.13) holds when α = β or condition (4.7) or (4.14)
or (4.18) holds when α > β.

Theorem 4.7. Let α ≤ 1, f ∈ C(Rt0), t0 ≥ 0, and let G and H be a pair
of continuous components of f with H being the nondecreasing one (and G
as described in Lemma 2.4). In addition, assume that conditions (i)–(v), (1.3),
(3.1) and (3.2) hold with 0 < β ≤ α. Equation (1.1) is oscillatory if there
exists a function ρ(t) ∈ C1([t0,∞),R+) such that for all large T ≥ t0 with
σ(t) > T and all positive constants c and ξ, the linear equation (4.5) is
oscillatory, where r(t) and p(t) are as in Theorem 4.2 and

c(t) =

{
1 when α = β,

c2 (w∗
0[σ(t), T ])(β/α)−1 , where c2 > 0 is any constant, when α > β

and either condition (4.6) or (4.13) holds when α = β or condition (4.7) or
(4.14) or (4.18) holds when α > β.

Next, we state an interesting special case of Theorem 4.6.

Corollary 4.1. Let α = 1, conditions (i)–(v), (1.3) and (3.1) hold and f
satisfies the condition

f(x)sgn x ≥ |x|β for x 6= 0,

where β is the quotient of two positive odd integers. If for all large T ≥ t0
with σ(t) > T, the linear equation

(
1

a(t)
y′(t)

)′
+ p(t)y(t) = 0

is oscillatory, where

a(t) = βσ′(t)w[σ(t), T ]c(t), p(t) = q(t)

and

c(t) =

{
1 when β = 1,

c2 (w∗
0[σ(t), T ])β−1 , where c2 > 0 is any constant, when β < 1.

Moreover, assume that either

lim sup
t→∞

t∫

τ(t)

q(s)wα
0 [τ(t), g(s)]ds > 1,

or g(t) < t for t ≥ t0, and

lim sup
t→∞

t∫

g(t)

In−2(v, g(t); an−2, . . . , a1)an−1(v)




t∫

v

q(s)ds




1/α

ds > 1 when β = 1,

or condition (4.7) or (4.14) or (4.18) holds when 0 < β < 1, then equation
(1.1) is oscillatory.
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5. Applications

In this section, we shall extend our previous results to neutral equations of
the type

Ln(x(t) + p(t)x[h(t)]) + q(t)f(x[g(t)]) = 0, (5.1)

where q(t), g(t), f(x) and Ln are as in equation (1.1), p(t) ∈ C([t0,∞),R+∪
{0}) and h(t) ∈ C([t0,∞),R), h′(t) > 0 for t ≥ t0 and limt→∞ h(t) = ∞.

Set

y(t) = x(t) + p(t)x[h(t)], t ≥ t0 ≥ 0. (5.2)

Then for t ≥ t0, we have

d

dt
(Lα

n−1y(t)) + q(t)f(x[g(t)]) = 0. (5.3)

Now, if x(t) is a nonoscillatory solution of equation (5.1), say, x(t) > 0,
x[h(t)] > 0 and x[g(t)] > 0 for t ≥ t0 ≥ 0. Then y(t) > 0 for t ≥ t0 and
there exists a t1 ≥ t0 such that either (I1). y′(t) > 0, or (I2). y′(t) < 0 for
t ≥ t1.
(I1). Suppose y′(t) > 0 for t ≥ t1. This case occurs when n is even, or when
we are concerned with unbounded solutions of odd order equation (5.1).

We shall examine the following two cases for p(t) and h(t):

(I). {0 ≤ p(t) ≤ 1, h(t) < t} and (II). {p(t) ≥ 1, h(t) > t}.
For the case (I), we assume that

0 ≤ p(t) ≤ 1, h(t) < t and p(t) 6≡ 1 eventually. (5.4)

Now, we have for t ≥ t1,

x(t) = y(t)− p(t)x[h(t)] = y(t)− p(t)[y[h(t)]− p[h(t)]x[h ◦ h(t)]]

≥ y(t)− p(t)y[h(t)] ≥ (1− p(t))y(t). (5.5)

Next, if f ∈ C(Rt0), t0 ≥ 0, then f(x) = G(x)H(x). Now, if condition (3.2)
holds, then equation (5.3) becomes

0 = Lny(t) + q(t)f(x[g(t)])

= Lny(t) + q(t)G(x[g(t)])H(x[g(t)])

≥ Lny(t) + q(t)G(x[g(t)])(1− p[g(t)])βyβ[g(t)] for t ≥ t1.

Using the fact that x(t) ≥ y(t), there exist a constant b > 0 and a t2 ≥ t1
such that

y[g(t)] ≤ bw∗
0[g(t), t2] for t ≥ t3 for some t3 ≥ t2.

Thus, we see that

Lny(t) + q(t)(1− p[g(t)])βG(bw∗
0[g(t), t2])y

β[g(t)] ≤ 0 for t ≥ t3. (5.6)

Next, for the case (II), we assume that

p(t) ≥ 1, τ(t) > t and p(t) 6≡ 1 eventually. (5.7)
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We also let

p∗(t) =
1

p[h−1(t)]

(
1− 1

p[h−1 ◦ h−1(t)]

)
for all large t,

where h−1 is the inverse function of h. Now, we have

x(t) =
1

p[h−1(t)]

(
y[h−1(t)]− x[h−1(t)]

)

=
y[h−1(t)]

p[h−1(t)]
− 1

p[h−1(t)]

(
y[h−1 ◦ h−1(t)]

p[h−1 ◦ h−1(t)]
− x[h−1 ◦ h−1(t)]

p[h−1 ◦ h−1(t)]

)

≥ y[h−1(t)]

p[h−1(t)]
− y[h−1 ◦ h−1(t)]

p[h−1(t)]p[h−1 ◦ h−1(t)]

≥ 1

p[h−1(t)]

(
1− 1

p[h−1 ◦ h−1(t)]

)
y[h−1(t)]

= p∗(t)y[h−1(t)] for t ≥ t2. (5.8)

As before, one can easily obtain

Lny(t) + q(t)f(p∗[g(t)])βG(bw∗
0[g(t), t2])y

β[h−1 ◦ g(t)] ≤ 0 for t ≥ t3. (5.9)

Now, it is easy to restate results similar to Theorems 3.1, 3.2, 4.1 and 4.2 for
equation (5.1) when either (I), or (II) holds. Such formulations are left to the
reader.
(I2). Suppose y′(t) < 0 for t ≥ t1. This occurs when we are concerned with
bounded solutions of odd order equation (5.1). Here, we can examine the two
cases:

(III). {0 ≤ p(t) ≤ 1, h(t) > t} and (IV ). {p(t) ≥ 1, h(t) < t}.
One can proceed as above and obtain similar results. Here, we omit the details.

Next, we shall consider a special case of equation (1.1), namely, the equation

d

dt

(
x(n−1)(t)

)α
+ q(t)f(x[g(t)]) = 0. (5.10)

In this case one can easily compute the following: For all large T ≥ t0 and
t ≥ s ≥ T, we have

w`[t, T ] =
(t− T )n−2

(n− 2) (`− 2)! (n− `− 1)!
, w1[t, s] =

(t− s)n−2

(n− 2)!
.

Now, it is easy to see that for some λ, 0 < λ < 1,

wλ[t, T ] = min{w1[t, λt], w`[t, T ], ` ∈ {1, 2, . . . , n− 1}}

≥ (λ(1− λ))n−2

(n− 2)!
tn−2 for all large t
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(see also, Philos [11]). Inequalities (2.2), (2.3) and (2.4) in Lemma 2.2 take,
respectively, the form

x(t) ≥ λ

(n− 1)!
tn−1x(n−1)(t), (2.2)′

x′(t) ≥ λ

(n− 2)!
tn−2x(n−1)(t) (2.3)′

and

x′[λt] ≥ (λ(1− λ))n−2

(n− 2)!
tn−2x(n−1)(t). (3.4)′

Also, we find

w0[t, s] =
(t− s)n−1

(n− 1)!
, w∗

0[t, T ] =
(t− T )n−1

(n− 1)!
,

w`[t, T ] =
(t− T )n−1

(n− 1)(`− 1)!(n− `− 1)!
and

w[t, T ] =
λ

(n− 1)!
tn−1 for some λ,

0 < λ < 1 and all large t.
As an example, we restate Theorem 3.1 for equation (5.10). The formulation

of other results for equation (5.10) can be done similarly.
Theorem 3.1′. Let the hypotheses of Theorem 3.1 hold with ai = 1, i =

1, . . . , n−1. Equation (5.10) is oscillatory if equation (3.3) is oscillatory where

p(t) = ρ(t)q(t)G(cgn−1(t)) +
1

2

(
ρ′(t)

ρ(t)C(t)

)′
− 1

4C(t)

(
ρ′(t)
ρ(t)

)2

,

c is any positive constant and

ρ(t)

βσ′(t)
σ1−(n−1)α(t)C(t)

=





c1, c1 is any positive constant, when β > α,

1, when β = α,

c2σ
(n−1)(β−α)(t), c2 is any positive constant, when β < α.
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