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EXPLICIT SOLUTIONS OF THE BASIC BOUNDARY VALUE
PROBLEMS OF STATICS OF THE ELASTIC MIXTURE

THEORY FOR AN ANNULUS

M. BASHELEISHVILI

Abstract. Using the complex representation formulae of regular solutions of
equations of statics of the theory of elastic mixtures, we construct the explicit
solutions of the Dirichlet and Neumann type boundary value problems for
an annulus in the form of absolutely and uniformly convergent series.
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1. Basic Equations and Some Auxiliary Questions

The basic homogeneous equations of statics of the elastic mixture theory are
written in terms of displacement components as follows [1]:

a1∆u′ + b1 grad div u′ + c∆u′′ + d grad div u′′ = 0,

c∆u′ + d grad div u′ + a2∆u′′ + b2 grad div u′′ = 0;
(1.1)

here ∆ is a two-dimensional Laplace operator, u′ = (u′1, u
′
2) and u′′ = (u′′1, u

′′
2)

are partial displacements,

a1 = µ1 − λ5, a2 = µ2 − λ5, c = µ3 + λ5,

b1 = µ1 + λ1 + λ5 − α2

ρ∗
ρ2, b2 = µ2 + λ2 + λ5 +

α2

ρ∗
ρ1,

d = µ3 + λ3 − λ5 − α2

ρ∗
ρ1 ≡ µ3 + λ4 − λ5

α2

ρ∗
ρ2,

ρ∗ = ρ1 + ρ2, α2 = λ3 − λ4,

where µ1, µ2, µ3, λ1, λ2, λ3, λ4, λ5, ρ1, ρ2 are the constants characterizing the
physical properties of a mixture and satisfying certain inequalities [2].

System (1.1) can be rewritten as

a1∆u′ + c∆u′′ + b1 grad θ′ + d grad θ′′ = 0,

c∆u′ + a2∆u′′ + d grad θ′ + b2 grad u′′ = 0,
(1.2)

where

θ′ =
∂u′1
∂x1

+
∂u′2
∂x2

, θ′′ =
∂u′′1
∂x1

+
∂u′′2
∂x2

. (1.3)
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Introducing the variables z = x1+ix2, z = x1−ix2, where x1 = z+z
2

, x2 = z−z
2i

,
we have

∂

∂x1

=
∂

∂z
+

∂

∂z
,

∂

∂x2

= i
( ∂

∂z
− ∂

∂z

)
,

∂

∂z
=

1

2

( ∂

∂x1

− i
∂

∂x2

)
,

∂

∂z
=

1

2

( ∂

∂x1

+ i
∂

∂x2

)
.

(1.4)

By elementary calculations we obtain

∆ = 4
∂2

∂z ∂z
, θ′ =

∂U1

∂z
+

∂U1

∂z
, θ′′ =

∂U2

∂z
+

∂U2

∂z
, (1.5)

where
U1 = u1 + iu2, U2 = u3 + iu4,

u1 = u′1, u2 = u′2, u3 = u′′1, u4 = u′′2.
(1.6)

Taking into account formulas (1.4), (1.5), and (1.6), we rewrite system (1.2)
in the complex form

2a1
∂2U1

∂z ∂z
+ 2c

∂2U2

∂z ∂z
+ b1

∂θ′

∂z
+ d

∂θ′′

∂z
= 0,

2c
∂2U1

∂z ∂z
+ 2a2

∂2U2

∂z ∂z
+ d

∂θ′

∂z
+ b2

∂θ′′

∂z
= 0.

Using (1.5), we find

(2a1 + b1)
∂2U1

∂z ∂z
+ (2c + d)

∂2U2

∂z ∂z
+ b1

∂2U1

∂z 2
+ d

∂2U2

∂z 2
= 0,

(2c + d)
∂2U1

∂z ∂z
+ (2a2 + b2)

∂2U2

∂z ∂z
+ d

∂2U1

∂z 2
+ b2

∂2U2

∂z 2
= 0,

from which we obtain
∂2U

∂z ∂z
+ εT ∂2U

∂z 2
, (1.7)

where U = (U1, U2) = (u1 + iu2, u3 + iu4), U1 and U2 are defined by (1.6),

εT =

[
ε1, ε3

ε2, ε4

]
,

δ0ε1 = 2(a2b1 − cd) + b1b2 − d2, δ0ε2 = 2(da1 − cb1),

δ0ε3 = 2(da2 − cb2), δ0ε4 = 2(a1b2 − cd) + b1b2 − d2,

δ0 = (2a1 + b1)(2a2 + b2)− (2c + d)2 ≡ 4∆0d1d2 > 0, (1.8)

∆0 = m1m3 −m2
2, m1 = l1 +

l4
2

, m2 = l2 +
l5
2

, m3 = l3 +
l6
2

,

d1 = (a1 + b1)(a2 + b2)− (c + d)2 > 0, d2 = a1a2 − c2 > 0,

l1 =
a2

d2

, l2 = − c

d2

, l3 =
a1

d2

, l1 + l2 =
a2 + b2

d1

,

l2 + l5 = −c + d

d1

, l3 + l6 =
a1 + b1

d1

.
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The expression for εT can be rewritten as

εT = −1

2
lm−1, (1.9)

with

l =

[
l4, l5
l5, l6

]
, m =

[
m1, m2

m2, m3

]
, (1.10)

where lj (j = 4, 5, 6) and mj (j = 1, 2, 3) are defined by (1.8).
Equation (1.7) is the basic homogeneous equation of statics of the elastic

mixture theory in the complex form.
Applying the results obtained in [1], the vector U can be represented as

U = mϕ∗(z) +
l

2
z ϕ′∗(z) + ψ∗(z),

where m and l are defined by (1.10); ϕ∗(z) and ψ∗(z) are arbitrary analytic
vectors.

For the stress vector TU we have

TU =

(
(TU)2 − i(TU)1

(TU)4 − i(TU)3

)

=
∂

∂s(x)

[
(A− 2E)ϕ∗(z) + Bz ϕ′∗(z) + 2µ ψ∗(z)

]
, (1.11)

where

A = 2µm, B = µl, µ =

[
µ1, µ3

µ3, µ2

]
,

∂

∂s(x)
= n1

∂

∂x2

− n2
∂

∂x1

,

n = (n1, n2) is an arbitrary unit vector.
The main goal of this investigation is to construct explicitly, in the form of

absolutely and uniformly convergent series, the solutions of the basic boundary
value problems (BVP) of the linear theory of elastic mixtures for an annulus. In
particular, we will consider the so-called the first (i.e., the Dirichlet type) and
the second (i.e., the Neumann type) BVPs with prescribed displacement and
stress vectors on the boundary of the annulus, respectively. Similar problems
in the classical theory of elasticity have been studied by Muskhelishvili in [4].

2. Solution of the First Boundary Value Problem for an
Annulus

Let (ρ, ϕ) be the polar coordinates in the plane Ox1x2. Denote by Sj (j = 1, 2)
the circumference with center at the origin and radius Rj, R2 > R1.

We are to find a regular solution of equation (1.7) in an annulus R1 < ρ < R2

satisfying on S1 and S2 the Dirichlet type conditions:

(U)ρ=R1 = f(ϕ), (U)ρ=R2 = F (ϕ), (2.1)

where f and F are known vectors having the definite smoothness.
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We seek for a solution of the first (Dirichlet type) boundary value problem
posed in the following form:

U = h0 +
∞∑

n=1

(R1

ρ

)n(
e−inϕhn + einϕh−n

)

− εT ρ2 −R2
1

ρ2

∞∑
n=1

n
(R1

ρ

)n

ei(n+2)ϕhn

+ g0 +
∞∑

n=1

( ρ

R2

)n(
e−inϕgn + einϕg−n

)

− εT R2
2 − ρ2

R2
2

∞∑
n=0

(n + 2)
( ρ

R2

)n

e−inϕg−(n+2)

+ X ln
ρ

R2

− εT

2
e2iϕ X, (2.2)

where hk, gk and X are the sought for constant vectors.
The some of the first three terms in (2.2) is a regular solution of the first

boundary value problem outside the circle of radius R1, the sum of the next
three terms is a regular solution inside the circle of radius R2, while the last two
terms are helpful in obtaining a solution of the first boundary value problem
inside the annulus R1 < ρ < R2.

Introduce the notation

λ =
R1

R2

. (2.3)

We have 0 < λ < 1, ln λ < 0.
Passing to the limit in (2.2) when ρ → R1 and ρ → R2, we have

h0 +
∞∑

n=1

(
e−inϕhn + einϕh−n

)
+ g0 +

∞∑
n=1

λn
(
e−inϕgn + einϕg−n

)

− εT (1− λ2)
∞∑

n=1

(n + 2)λne−2nϕg−(n+2)

− 2εT (1− λ2)g−2 + X ln λ− εT

2
e2iϕX = f(ϕ), (2.4)

h0 +
∞∑

n=1

λn
(
e−inϕhn + einϕh−n

)
+ g0 +

∞∑
n=1

(
e−inϕgn + einϕg−n

)

− εT (1− λ2)
∞∑

n=1

nλnei(n+2)ϕ hn − εT

2
e2iϕ X = F (ϕ). (2.5)
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For the sought for coefficients gn, hn, g−n, h−n, n = 0, 1, 2, . . . , (2.4) and (2.5)
yield the following equations:

h0 + g0 −X ln λ− 2εT (1− λ2)g−2 = f0, h0 + g0 = F0,

h−2 + λ2g−2 − εT

2
X = f−2, λ2h−2 + g−2 − εT

2
X = F−2,

(2.6)

h−1 + λg−1 = f−1, λh−1 + g−1 = F−1, (2.7)

hn + λngn − εT (1− λ2)(n + 2)λng−(n+2) = fn,

λnhn + gn = Fn, n ≥ 1,
(2.8)

λnh−n + g−n − εT (1− λ2)(n− 2)λn−2hn−2 = F−n,

h−n + λng−n = f−n, n ≥ 3.
(2.9)

Here fn and Fn, n = 0,±1,±2, . . . , are the Fourier coefficients of the vectors f
and F :

fn =
1

2π

2π∫

0

f(t)eintdt, Fn =
1

2π

2π∫

0

F (t)eintdt.

Let us first consider system (2.6). By elementary calculations we obtain

(1− λ4)h−2 =
εT

2
(1− λ2)X + f−2 − λ2F−2,

(1− λ4)g−2 =
εT

2
(1− λ2)X + F−2 − λ2f−2.

Substituting the value g−2 into (2.6), we have

[
E ln λ− (εT )2 1− λ2

1 + λ2

]
X = f0 − F0 + 2εT F−2 − λ2F−2

1 + λ2
,

where

E =

[
1, 0
0, 1

]
.

Introduce the notation

D0 = E ln λ− (εT )2 1− λ2

1 + λ2
.

It is easy to show that

det D0 =
(

ln λ− k2
1

1− λ2

1 + λ2

)(
ln λ− k2

2

1− λ2

1 + λ2

)
,

where k2
1 < 1, k2

2 < 1, k1 and k2 are defined in [3] (formula (1.15)). It obviously
follows that

det D0 > 0.
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From (2.6) we have

h−2 =
1

1− λ4

{
f−2 − λ2F−2

+
1− λ2

2

[
εT ln λ− k1k2

[
ε4, −ε3

−ε2, ε1

]
1− λ2

1 + λ2

]
(f0 − F0)

det D0

}
,

g−2 =
1

1− λ4

{
F−2 − λ2f−2

+
1− λ2

2

[
εT ln λ− k1k2

[
ε4, −ε3

−ε2, ε1

]
1− λ2

1 + λ2

]
(f0 − F0)

det D0

}
.

(2.10)

Thus system (2.6) is solved.
Further, from (2.7) we obtain

g−1 =
F−1 − λf−1

1− λ2
, h−1 =

f−1 − λF−1

1− λ2
(2.11)

From (2.8) we have

(1−λ2n)hn−εT (1−λ2)(n+2)λn g−(n+2) =fn−λnFn

(1−λ2n)gn+εT (1−λ2)(n+2)λ2n g−(n+2) =Fn−λnfn

}
n ≥ 1, (2.12)

while (2.9) implies

(1− λ2n+4)h−(n+2) + εT (1− λ2)nλ2n−2hn

= f−(n+2) − λn+2F−(n+2)

(1− λ2n+4)g−(n+2) − εT (1− λ2)nλnhn

= F−(n+2) − λn+1f−(n+2)





n ≥ 1. (2.13)

By the second equation we define g−(n+2) and substitute it into the first equation
in (2.12). We obtain[

(1− λ2n)(1− λ2n+4)E − (εT )2(1− λ2)2n(n + 2)λ2n
]
hn

= (1− λ2n+4)(fn − λnFn)

+ εT (1− λ2)(n + 2)(E−(n+2) − λn+2f−(n+2)), n ≥ 1. (2.14)

Denote

Dn = (1− λ2n)(1− λ2n+4)E − (εT )2(1− λ2)2n(n + 2)λ2n.

After some calculations we find

det Dn =
[
(1− λ2n)(1− λ2n+4)− k2

1(1− λ2)2n(n + 2)λ2n
]

× [
(1− λ2n)(1− λ2n+4)− k2

2(1− λ2)2n(n + 2)λ2n
]

> 0, n ≥ 1.

Moreover, lim
n→+∞

Dn = 1.
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From (2.14) we obtain

hn =
1

det Dn

[
(1− λ2n)(1− λ2n+4)E

−
[

ε4, −ε3

−ε2, ε1

]
(1− λ2)2n(n + 2)λ2n

][
(1− λ2n+4(fn − λnFn)

+ εT (1− λ2)(n + 2)(F−(n+2) − λn+2f−(n+2))
]

> 0, n = 1, 2, . . . .

Substituting the value hn into (2.13), we uniquely define g−(n+2) and h−(n+2).
Thus we have uniquely defined all the sought for coefficients. Let us substitute

the values of these coefficients into (2.2). Then we obtain a solution of the first
boundary value problem in the form of a series. For these series together with
their first derivatives to be absolutely and uniformly convergent it is sufficient
that the functions f ′(ϕ) and F ′(ϕ) satisfy the Hölder condition with an exponent
α > 1

2
. Solutions obtained under such conditions are regular in an annulus.

Thus we have proved the following

Theorem 1. The Dirichlet type BVP (1.7), (2.1) is uniquely solvable in the
class of regular vectors, and the solution is represented in the form of absolutely
and uniformly convergent series (2.2), where the constant vectors hk and gk

(k = 0,±1, . . . ) solve the system of equations (2.6)–(2.9), if the boundary data
f and F are from the space C1,α with α > 1

2
.

3. Solution of the Second Boundary Value Problem for an
Annulus

In this paragraph we will construct an explicit solution of the boundary value
problem for equation (1.7) when stresses are assumed to be given on the con-
centrical circumferences S1 and S2:

(TU)ρ=R1 = f, (TU)ρ=R2 = F, (3.1)

where the vector TU is defined by (1.11).
We seek the stress vector in the annulus R1 < ρ < R2 in the following form:

TU =
R1

ρ
h0 +

∞∑
n=1

(R1

ρ

)n+1(
e−inϕhn + einϕh−n

)

+
1

∆2

[
H1, H2

H3, H4

]
ρ2 −R2

1

ρ2

∞∑
n=0

(n + 2)
(R1

ρ

)n+1

ei(n+1)ϕhn

+
∞∑

n=1

( ρ

R2

)n−1(
e−inϕgn + einϕh−n

)

+
1

∆2

[
H1, H2

H3, H4

]
R2

2 − ρ2

R2
2

∞∑
n=1

n
( ρ

R2

)n−1

e−inϕ g−(n+2), (3.2)

where ∆2 = det(A − 2E) > 0 and H1, H2, H3, H4 are the definite complex
constants [3].
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Here h0, hn, h−n, gn, g−n (n = 1, 2, . . . ) are the constant vectors to be found.
Using the boundary conditions (3.1), we have

h0 +
∞∑

n=1

(
e−inϕhn + einϕh−n

)
+

∞∑
n=1

λn−1
(
e−inϕgn + einϕg−n

)

+
1

∆2

[
H1, H2

H3, H4

]
(1− λ2)

∞∑
n=1

nλn−1e−inϕg−(n+2) = f(ϕ),

λh0 +
∞∑

n=1

λn+1
(
e−inϕhn + einϕh−n

)
+

∞∑
n=1

(
e−inϕgn + einϕg−n

)

+
1

∆2

[
H1, H2

H3, H4

]
(1− λ2)

∞∑
n=1

(n + 2)λn+1ei(n+2)ϕhn = F (ϕ),

where f and F are the given vectors.
Using (3.1) and standard approach for the coefficients h0, hn, h−n, gn, g−n we

obtain the algebraic equations

h0 = f0, λh0 = F0, (3.3)

h−1 + g−1 = f−1, λ2h−1 + g−1 = F−1, (3.4)

hn+λn−1gn+
1

∆2

[
H1, H2

H3, H4

]
(1−λ2)nλn−1g−(n+2) =fn

λn+1hn + gn = Fn





n ≥ 1, (3.5)

λn+1h−n + g−n +
n

∆2

[
H1, H2

H3, H4

]
λn−1hn−1 = Fn

h−n + λn−1g−n = f−n





n ≥ 2, (3.6)

where fn and Fn (n = 0,±1,±2, . . . ) are the Fourier coefficients of the functions
f and F , respectively.

From (3.3) it follows that λf0 = F0, i.e., R1f0 = R2F0, which fact coincides
with the stress equilibrium condition (the principal stress vector is equal to
zero). Therefore we can write

h0 =
F0

λ
= f0.

Let us rewrite (3.4) as

h−1 + g−1 = f−1, R2
1h−1 + R2

2g−1 = R2
2F−1.

Since the principal stress moment is to be equal to zero, i.e., R2
1f−1 = R2

2F−1,
we obtain

g−1 = 0, h−1 = f−1 =
R2

2

r2
1

F−1.

Thus we have defined g−1 and h−1.



EXPLICIT SOLUTIONS OF THE BASIC BOUNDARY VALUE PROBLEMS 57

Using equation (3.6), we obtain

h−1 =
1

1− λ4

[
f−2 − λF−2 +

2

∆2

[
H1, H2

H3, H4

]
(1− λ2)λ2f0

]
,

g−1 =
1

1− λ4

[
F−2 − λ3f−2 − 2

∆2

[
H1, H2

H3, H4

]
(1− λ2)λf0

]
.

From (3.5) and (3.6) we have

(1−λ2n)hn+
n

∆2

[
H1, H2

H3, H4

]
(1−λ2)λn−1 g−(n+2) =fn−λn−1Fn

(1−λ2n)gn− n

∆2

[
H1, H2

H3, H4

]
(1−λ2)λ2n g−(n+2) =Fn−λn+1fn





n ≥ 1, (3.7)

(1−λ2n)h−n− n

∆2

[
H1, H2

H3, H4

]
(1−λ2)λ2n−2 hn−2 =f−n−λn−1F−n

(1−λ2n)g−n− n

∆2

[
H1, H2

H3, H4

]
(1−λ2)λn−1 hn−1 =F−n−λn+1f−n





n ≥ 3. (3.8)

From the second equation of (3.8) we can write{
(1− λ2n)(1− λ2n+4)E − 1

∆2
2

[
H1, H2

H3, H4

]
(1− λ2)2n(n + 2)λ2n

}
hn

= − 1

∆2

[
H1, H2

H3, H4

]
(1−λ2)n

(
F−(n+2)−λn+3f−(n+2)

)
+(1−λ2n+4)(fn−λn−1Fn),

where E is the unit matrix.
Thus we have obtained one vector relation for defining hn. Denote

Dn = (1− λ2n)(1− λ2n+4)E − 1

∆2
2

[
H1, H2

H3, H4

]
(1− λ2)2n(n + 2)λ2n.

After some calculations we find

det Dn =

[
(1− λ2n)(1− λ2n+4)− (1− λ2)n(n + 2)λ2n

][
(1− λ2n)(1− λ2n+4)

− (1− λ2)n(n + 2)λ2n − 4λ5(a0b + b0∆1)(1− λ2)2n(n + 2)λ2n

d2d2
1

]
,

where λ5 < 0, a0 = a1 + a2 + 2c ≡ µ1 + µ2 + 2µ3 > 0, b0 = b1 + b2 + 2d =
b1−λ5+b2−λ5+2(d+λ5) > 0, ∆1 = µ1µ2−µ2

3 > 0, d2 = a1a2−c2 = ∆1−λ5a0,
d1 = (a1 + b1)(a2 + b2)− (c + d)2 ≡ ∆1 + a + b, a = µ1(b2 − λ5) + µ2(b1 − λ5)−
2µ3(d + λ5) > 0, b = (b1 − λ5)(b2 − λ5)− (d + λ5)

2 > 0.
We prove

(1− λ2n)(1− λ2n+4)− (1− λ2)n(n + 2)λ2n > 0, n ≥ 1,

and therefore det Dn > 0, n ≥ 1. Moreover, limn→+∞ Dn = 1.
Thus

hn =
1

det Dn

[
(1− λ2n)(1− λ2n+4)E − 1

∆2
2

[
H1, H2

H3, H4

]2

(1− λ2)2n(n + 2)λ2n

]
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×
[
− n

∆2

[
H1, H2

H3, H4

]
(1− λ2)2λn+1

(
F−(n+2) − λn+3f−(n+2)

)

+ (1− λ2n+4)(fn − λn−1Fn).

Substituting the expression of hn into (3.8), we can define g−n and h−n for
any n ≥ 3. Finally, using (3.7) we define gn for n ≥ 1.

Thus we have defined all the unknown coefficients gn, hn, g−n, h−n.
To conclude, note that all sought for coefficients are defined uniquely if the

principal vector and the principal moment of stresses are equal to zero.
Substituting the defined coefficients into formula (3.1), we obtain the stress

vector in the form of series for the annulus R1 < ρ < R2. Series (3.2) is
absolutely and uniformly convergent if the given vectors f and F satisfy the
Hölder condition with an exponent α > 1

2
.

Thus we have proved the following

Theorem 2. The Neumann type BVP (1.7), (3.1) is solvable and the cor-
responding stress vector is represented in the form of absolutely and uniformly
convergent series (3.2), where the constant vectors hk and gk (k = 0,±1, . . . )
solve the system of equations (3.3)–(3.6), if the boundary data f and F belong
to the space C0,α with α > 1

2
and the corresponding principal (resultant) vector

and moment are equal to zero.
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