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COMMON FIXED POINTS ITERATION PROCESSES FOR A
FINITE FAMILY OF ASYMPTOTICALLY NONEXPANSIVE

MAPPINGS

JUI-CHI HUANG

Abstract. Let E be a uniformly convex Banach space which satisfies Opial’s
condition or its dual E∗ has the Kadec–Klee property, C a nonempty closed
convex subset of E, and Tj : C → C an asymptotically nonexpansive mapping
for each j = 1, 2, . . . , r. Suppose {xn} is generated iteratively by

x0 ∈ C, xn+1 =(1− αn(r))xn + αn(r)
1

n + 1

n∑

i=0

T i
rUn(r−1)xn, n=0, 1, 2, . . . ,

where Un(j) = (1−αn(j))I+αn(j)
1

n+1

∑n
i=0 T i

jUn(j−1), j = 1, 2, . . . , r, Un(0) =
I, I is the identity map and {αn(j)} is a suitable sequence in [0, 1]. If the
set ∩r

j=1F (Tj) of common fixed points of {Tj}r
j=1 is nonempty, then weak

convergence of {xn} to some p ∈ ∩r
j=1F (Tj) is obtained.
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1. Introduction

Let C be a nonempty closed convex subset of a real Banach space E and
let T be a mapping of C into itself. Then, we denote by F (T ) the set of fixed
points of T . A mapping T of C into itself is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ (1.1)

for all x, y ∈ C and a mapping T of C into itself is said to be asymptotically
nonexpansive with Lipschitz constants {kn} if limn→∞kn ≤ 1 and

‖T nx− T ny‖ ≤ kn‖x− y‖ (1.2)

for all x, y ∈ C and n = 0, 1, 2, . . . .
In 1998, Atsushiba and Takahashi [1] introduced an iteration procedure of

Mann’s type for approximating common fixed points of two nonexpansive map-
pings S and T as follows:

x0 ∈ C, xn+1 = (1−αn)xn + αn
1

(n+1)2

n∑
i,j=0

SiT jxn, n = 0, 1, 2, . . . , (1.3)

where {αn}∞n=0 is a sequence in [0, 1]. More precisely, they proved the following
theorem:
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Theorem A (see [1, Theorem 1]). Let E be a uniformly convex Banach space
which satisfies Opial’s condition or whose norm is Fréchet differentiable. Let C
be a nonempty closed convex subset of E. Let S and T be nonexpansive mappings
of C into itself such that ST = TS and F (S)∩F (T ) 6= ∅. Suppose that x0 ∈ C
and {xn}∞n=0 is given by (1.3). If {αn}∞n=0 is chosen so that 0 < a ≤ αn ≤ 1 for
some constant a, then {xn}∞n=0 converges weakly to a common fixed point of S
and T .

Let C be a nonempty convex subset of a Banach space E. Let Tj : C → C
be a given mapping for each j = 1, 2, . . . , r. In this paper, we consider the
following iteration scheme generated by T1, T2, . . . , Tr:

Un(1) = (1− αn(1))I + αn(1)
1

n + 1

n∑
i=0

T i
1Un(0),

Un(2) = (1− αn(2))I + αn(2)
1

n + 1

n∑
i=0

T i
2Un(1),

...

Un(r) = (1− αn(r))I + αn(r)
1

n + 1

n∑
i=0

T i
rUn(r−1),

x0∈C, xn+1 = (1−αn(r))xn+αn(r)
1

n+1

n∑
i=0

T i
rUn(r−1)xn, n=0, 1, 2, . . . , (1.4)

where T 0
j = Un(0) := I, I is the identity map, and {αn(j)}∞n=0 is a sequence

in [0, 1] for each j = 1, 2, . . . , r. Using this scheme we improve Theorem A
by removing the assumption that ST = TS and extending the two nonexpan-
siveness mappings to a finite family of asymptotically nonexpansive mappings.
Since the duals of reflexive Banach spaces with a Fréchet differentiable norm
have the Kadec–Klee property (see [4] or [5]), we consider our main theorems
under the assumption that E is a uniformly convex Banach space such that its
dual E∗ has the Kadec–Klee property.

2. Preliminaries

Throughout this paper, E is a real Banach space and E∗ is the dual space of
E. We use the notation lim = lim sup and lim = lim inf, denote by N the set
of all nonnegative integers, denote max{a, 0} by (a)+ for a real number a, and
put Bd = {x ∈ E : ‖x‖ ≤ d} for d > 0.

A Banach space E is said to be uniformly convex if the modulus of convexity
of E

δE(ε) = inf
{

1− 1

2
‖x + y‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
> 0 (2.1)

for all 0 < ε ≤ 2. It is well-known that a uniformly convex Banach space is
reflexive. We say that E satisfies Opial’s condition [9] if for each sequence {xn}
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of E converging weakly to x, x 6= y implies

lim
n→∞

‖xn − x‖ < lim
n→∞

‖xn − y‖, (2.2)

and E is said to have the Kadec–Klee property (KK-property) [8] if whenever
xn → x weakly with ‖xn‖ → ‖x‖, it follows that xn → x strongly. The norm
‖.‖ of E is said to be Fréchet differentiable if for all x ∈ S(E), the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.3)

exists uniformly for all y ∈ S(E) where S(E) = {x ∈ E : ‖x‖ = 1}. Note
that duals of reflexive Banach spaces with Fréchet differentiable norms have the
KK-property (see [4] or [5]) and there exist uniformly convex Banach spaces
which have neither a Fréchet differentiable norm nor the Opial property but
their duals do have the KK-property (see [6, Example 3.1]).

In the sequel we shall need the following lemmas.

Lemma 2.1 (see [3, Lemma 3]). Let {ψn}∞n=0 and {ϕn}∞n=0 be sequences of
nonnegative real numbers satisfying the inequality

ψn+1 ≤ (1 + ϕn)ψn, n = 0, 1, 2, . . . . (2.4)

If
∑∞

n=0 ϕn < ∞, then limn→∞ ψn exists.

Lemma 2.2 (see [10, Lemma 3]). Let C be a nonempty closed convex subset
of a uniformly convex Banach space E. Let T be an asymptotically nonexpansive
mapping from C into itself such that F (T ) is nonempty. Then for each r > 0,
there holds

lim
m→∞

lim
n→∞

sup
x∈C∩Bd

∥∥∥∥∥
1

n + 1

n∑
i=0

T ix− Tm
( 1

n + 1

n∑
i=0

T ix
)∥∥∥∥∥ = 0. (2.5)

Lemma 2.3 (see [6, Lemma 3.2]). Let E be a uniformly convex Banach space
such that its dual E∗ has the KK-property. Suppose that {xn}∞n=0 is a bounded
sequence such that limn→∞ ‖txn + (1− t)f1 − f2‖ exists for all t ∈ [0, 1] and f1,
f2 ∈ ωw(xn). Then ωw(xn) is a singleton. Here, ωw(xn) denotes the set of weak
subsequential limits of {xn}.

Lemma 2.4 (see [2, Lemma 1.1]). Let E be a uniformly convex Banach
space, K be a nonempty bounded closed convex subset of E. Then there exists
a strictly increasing, continuous and convex function g : [0,∞) → [0,∞) with
g(0) = 0 such that, for any Lipschitzian continuous mapping V : K → E, x,
y ∈ K and t ∈ [0, 1], the following inequality holds

‖V (tx+(1− t)y)−(tV x+(1− t)V y)‖ ≤ Lg−1(‖x−y‖−L−1‖V x−V y‖), (2.6)

where L ≥ 0 is the Lipschitz constant of V .

Lemma 2.5 (see [13, Theorem 2]). Let E be a uniformly convex Banach
space and d > 0. Then there exists a continuous, strictly increasing and convex
function g : [0,∞) → [0,∞) such that g(0) = 0 and

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖) (2.7)
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for all x, y ∈ Bd and λ ∈ [0, 1].

3. Main Results

For our main results, we need the following lemmas.

Lemma 3.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and Sn : C → C be Lipschitzian mapping with the Lipschitz
constant Ln ≥ 1 such that

∑∞
n=0(Ln − 1) < ∞ and ∩∞n=0F (Sn) 6= ∅. Suppose

that {xn} is given by xn+1 = Snxn for all n ∈ N. Then limn→∞ ‖txn + (1 −
t)f1 − f2‖ exists for all f1, f2 ∈ ∩∞n=0F (Sn) and t ∈ [0, 1].

Proof. This is basically the proof of Lemma 2.2 of Tan and Xu [12]. For com-
pleteness and without the assumption that C is bounded, we sketch the details.
By Lemma 2.1 of Tan and Xu [12], we know that limn→∞ ‖xn−f‖ exists for each
f ∈ ∩∞n=0F (Sn). Therefore, there exists d > 0 such that supn∈N{‖xn−f1‖} ≤ d.
Take K = {x ∈ C : ‖x − f1‖ ≤ d}. Then K is a nonempty bounded closed
convex subset of E. Set

Vn,m = Sn+m−1Sn+m−2 · · ·Sn

for all n, m ≥ 0. Then Vn,mxn = xn+m and for all x, y ∈ C

‖Vn,mx− Vn,my‖ ≤ Mn‖x− y‖
where Mn =

∏∞
j=n Lj. Since

∑∞
n=0(Ln − 1) < ∞, we have Mn → 1 as n →∞.

Setting

bn,m = ‖Vn,m(txn + (1− t)f1)− (tVn,mxn + (1− t)Vn,mf1)‖,
then it follows from Lemma 2.4 that

bn,m ≤ Mng−1(‖xn − f1‖ −M−1
n ‖Vn,mxn − Vn,mf1‖)

= Mng−1(‖xn − f1‖ −M−1
n ‖xn+m − f1‖). (3.1)

Since limn→∞ ‖xn − f1‖ exists, fixing m ≥ 0 and letting n → ∞ in (3.1), we
obtain bn,m → 0 as n →∞. Set an(t) = ‖txn + (1− t)f1 − f2‖. Then we have

an+m(t) ≤ ‖Vn,m(txn + (1− t)f1)− f2‖+ bn,m

≤ Mnan(t) + bn,m. (3.2)

Fixing n and then, letting m →∞ in (3.2), we get

lim
m→∞

an+m(t) ≤ Mn[an(t) + g−1(‖xn − f1‖ −M−1
n lim

m→∞
‖xn+m − f1‖)] (3.3)

and letting n →∞ in (3.3), we have

lim
n→∞

an(t) ≤ lim
n→∞

an(t) + g−1(0) = lim
n→∞

an(t).

This completes the proof. ¤
Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly convex

Banach space E. Let T : C → C be an asymptotically nonexpansive mapping.
Suppose that {xn} is in C such that xn → x weakly and limm→∞limn→∞‖Tmxn−
xn‖ = 0. Then x = Tx.
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Proof. Since {xn} converges weakly to x ∈ C, {xn} is a bounded sequence
in C. Therefore, there exists d > 0 such that {xn} ⊂ K = C ∩ Bd. Then
K is a nonempty bounded closed convex subset in C. Since T : C → C is
asymptotically nonexpansive and thus T : K → C is also an asymptotically
nonexpansive mapping. Then the rest of the proof follows as in the proof of
Lemma 2.3 of Tan and Xu [11] and is therefore omitted. ¤

In the sequel, let

dn(j) :=
1

n + 1

n∑
i=0

ki(j) and en(j) :=
∥∥∥ 1

n + 1

n∑
i=0

T i
jUn(j−1)xn − xn

∥∥∥

for each j = 1, 2, . . . , r.

Lemma 3.3. Let E be a Banach space and let C be a nonempty closed convex
subset of E. Let Tj : C → C be an asymptotically nonexpansive mapping
with sequence {kn(j)}∞n=0 such that

∑∞
n=0(

1
n+1

∑n
i=0 ki(j) − 1)+ < ∞ for each

j = 1, 2, . . . , r and ∩r
j=1F (Tj) 6= ∅. Suppose that x0 ∈ C and {xn}∞n=0 is given

by (1.4). Then, limn→∞ ‖xn − p‖ exists for all p ∈ ∩r
j=1F (Tj).

Proof. Let p ∈ ∩r
j=1F (Tj). Then, we have

‖xn+1−p‖ = ‖Un(r)xn − p‖

=

∥∥∥∥∥(1− αn(r))(xn − p) + αn(r)

( 1

n + 1

n∑
i=0

T i
rUn(r−1)xn − p

)∥∥∥∥∥
≤ (1− αn(r))‖xn − p‖+ αn(r)dn(r)‖Un(r−1)xn − p‖
...

≤
[
1+αn(r)(dn(r)−1)++

r−1∑
j=1

( r∏

l=j

αn(l)

)( r∏

l=j+1

dn(l)

)
(dn(j)−1)+

]
‖xn−p‖, (3.4)

for all n ∈ N. Since (dn(j) − 1)+ → 0 as n → ∞ for each j = 1, 2, . . . , r, it
implies that each j, {dn(j)}∞n=0 is bounded. Thus, there exists D > 0 such that

max
1≤j≤r

{
sup
n∈N

{dn(j)}
}
≤ D.

So, we have

‖xn+1 − p‖ ≤
[
1 + (dn(r) − 1)+ +

r−1∑
j=1

Dr−j(dn(j) − 1)+

]
‖xn − p‖

= (1 + ϕn)‖xn − p‖, (3.5)

for all n ∈ N where ϕn := (dn(r)−1)++
∑r−1

j=1 Dr−j(dn(j)−1)+. Since
∑∞

n=0(dn(j)−
1)+ < ∞ for each j = 1, 2, . . . , r, we have

∑∞
n=0 ϕn < ∞. Thus, limn→∞ ‖xn−p‖

exists by Lemma 2.1. This completes the proof of Lemma 3.3. ¤
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Lemma 3.4. Let C be a nonempty closed convex subset of a uniformly
convex Banach space E and let Tj : C → C be an asymptotically nonexpansive
mapping with sequence {kn(j)}∞n=0 such that

∑∞
n=0(

1
n+1

∑n
i=0 ki(j)− 1)+ < ∞ for

each j = 1, 2, . . . , r and ∩r
j=1F (Tj) 6= ∅. Let {αn(j)}∞n=0 be a sequence in [0, 1]

satisfying the following conditions:

0 < a ≤ αn(r) ≤ 1; 0 < b ≤ αn(j) ≤ c < 1

for all j = 1, 2, . . . , r − 1 and some constants a, b, and c.
Suppose that x0 ∈ C and {xn}∞n=0 is given by (1.4). Then,

lim
m→∞

lim
n→∞

‖Tm
j xn − xn‖ = 0 for each j = 1, 2, . . . , r.

Proof. Let p ∈ ∩r
j=1F (Tj) 6= ∅. By Lemma 3.3 and the hypotheses of Lemma

3.4 imply that {xn}∞n=0 and {dn(j)}∞n=0 are bounded for each j = 1, 2, . . . , r.
Then, there exists a constant d > 0 such that

r⋃
j=1

{ 1

n + 1

n∑
i=0

T n
j Un(j−1)xn − p, Un(j)xn

}∞
n=0

⋃ {
xn − p

}∞
n=0

⊆ Bd. (3.6)

By Lemma 2.5, there exists a continuous, strictly increasing and convex function
g : [0,∞) → [0,∞) such that g(0) = 0, and

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖) (3.7)

for all x, y ∈ Bd and λ ∈ [0, 1]. Using (3.7), we have

‖xn+1−p‖2 = ‖Un(r)xn − p‖2

=

∥∥∥∥∥(1− αn(r))(xn − p) + αn(r)

(
1

n + 1

n∑
i=0

T i
rUn(r−1)xn − p

)∥∥∥∥∥

2

≤ (1− αn(r))‖xn − p‖2 + αn(r)

∥∥∥∥∥
1

n + 1

n∑
i=0

T i
rUn(r−1)xn − p

∥∥∥∥∥

2

− αn(r)(1− αn(r))g
(∥∥∥ 1

n + 1

n∑
i=0

T i
rUn(r−1)xn − xn

∥∥∥
)

≤ (1− αn(r))‖xn − p‖2 + αn(r)d
2
n(r)‖Un(r−1)xn − p‖2 − αn(r)(1− αn(r))g(en(r))

...

≤ ‖xn−p‖2

+

[
αn(r)(d

2
n(r)−1)++

r−1∑
j=1

( r∏

l=j

αn(l)

)( r∏

l=j+1

d2
n(l)

)
(d2

n(j)−1)+

]
‖xn−p‖2

−
[
αn(r)(1−αn(r))g(en(r))+

r−1∑
j=1

( r∏

l=j

αn(l)

)( r∏

l=j+1

d2
n(l)

)
(1−αn(j))g(en(j))

]
(3.8)
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for all n = 0, 1, 2, . . .. Since each j, (dn(j) − 1)+ → 0 as n →∞, it implies that
{dn(j)}∞n=0 is bounded and there exists a positive integer Nj such that d2

n(j) ≥ 1
2

for all n ≥ Nj. Now, put

M := max
1≤j≤r

{
sup
n∈N

{dn(j) + 1, d2
n(j)}

}
< ∞

and
D := sup

n∈N
{‖xn − p‖} < ∞.

Then, by (3.8), we have

‖xn+1−p‖2 ≤ ‖xn − p‖2 +

[
M(dn(r)−1)++

r−1∑
j=1

M r−j+1(dn(j) − 1)+

]
D

−
[
a(1−αn(r))g(en(r))+a(1−c)

r−1∑
j=1

(br−j)
(1

2

)r−j

g(en(j))

]
(3.9)

for all n ≥ N where N := max1≤j≤r{Nj}. Hence by Lemma 3.3 and (dn(j) −
1)+ → 0 as n →∞ for each j = 1, 2, . . . , r, we have

[
a(1− αn(r))g(en(r)) + a(1− c)

r−1∑
j=1

(br−j)
(1

2

)r−j

g(en(j))

]

≤ ‖xn−p‖2−‖xn+1−p‖2+

[
M(dn(r) − 1)+ +

r−1∑
j=1

M r−j+1(dn(j) − 1)+

]
D → 0

as n →∞. Thus,

(1− αn(r))g(en(r)) → 0 as n →∞
and

g(en(j)) → 0 as n →∞ for each i = 1, 2, . . . , r − 1.

Since g is a continuous and strictly increasing function with g(0) = 0, we
have

lim
n→∞

(1− αn(r))

∥∥∥∥∥
1

n + 1

n∑
i=0

T i
jUn(r−1)xn − xn

∥∥∥∥∥ = lim
n→∞

(1− αn(r))en(r) = 0 (3.10)

and

lim
n→∞

∥∥∥∥∥
1

n + 1

n∑
i=0

T i
jUn(j−1)xn − xn

∥∥∥∥∥ = lim
n→∞

en(j) = 0 (3.11)

for each j = 1, 2, . . . , r − 1.
Observe that for all m = 1, 2, . . .

‖Tm
r xn+1− xn+1‖ ≤

∥∥∥∥∥Tm
r xn+1 − Tm

r

( 1

n + 1

n∑
i=0

T i
rUn(r−1)xn

)∥∥∥∥∥
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+

∥∥∥∥∥Tm
r

( 1

n + 1

n∑
i=0

T i
rUn(r−1)xn

)
− 1

n + 1

n∑
i=0

T i
rUn(r−1)xn

∥∥∥∥∥

+

∥∥∥∥∥
1

n + 1

n∑
i=0

T i
rUn(r−1)xn − xn+1

∥∥∥∥∥

≤ (km(r) + 1)

∥∥∥∥∥xn+1 − 1

n + 1

n∑
i=0

T i
rUn(r−1)xn

∥∥∥∥∥

+

∥∥∥∥∥Tm
r

( 1

n + 1

n∑
i=0

T i
rUn(r−1)xn

)
− 1

n + 1

n∑
i=0

T i
rUn(r−1)xn

∥∥∥∥∥

= (km(r) + 1)(1− αn(r))

∥∥∥∥∥xn − 1

n + 1

n∑
i=0

T i
rUn(r−1)xn

∥∥∥∥∥

+

∥∥∥∥∥Tm
r

( 1

n+1

n∑
i=0

T i
rUn(r−1)xn

)
− 1

n+1

n∑
i=0

T i
rUn(r−1)xn

∥∥∥∥∥ (3.12)

and

‖Tm
j xn−xn‖ ≤

∥∥∥∥∥Tm
j xn − Tm

j

( 1

n + 1

n∑
i=0

T i
jUn(j−1)xn

)∥∥∥∥∥

+

∥∥∥∥∥Tm
j

( 1

n + 1

n∑
i=0

T i
jUn(j−1)xn

)
− 1

n + 1

n∑
i=0

T i
jUn(j−1)xn

∥∥∥∥∥

+

∥∥∥∥∥
1

n + 1

n∑
i=0

T i
jUn(j−1)xn − xn

∥∥∥∥∥

≤ (km(j) + 1)

∥∥∥∥∥xn − 1

n + 1

n∑
i=0

T i
jUn(j−1)xn

∥∥∥∥∥

+

∥∥∥∥∥Tm
j

( 1

n+1

n∑
i=0

T i
jUn(j−1)xn

)
− 1

n+1

n∑
i=0

T i
jUn(j−1)xn

∥∥∥∥∥ (3.13)

for each j = 1, 2, . . . , r − 1. Hence, by (3.10)−(3.13) and Lemma 2.2, we have

lim
m→∞

lim
n→∞

‖Tm
j xn − xn‖ = 0 (3.14)

for each j = 1, 2, . . . , r. This completes the proof of Lemma 3.4. ¤

We will now prove our main theorems.

Theorem 3.5. Let C be a nonempty closed convex subset of a uniformly
convex Banach space E which satisfies Opial’s condition or its dual E∗ has
the KK-property and Tj : C → C be an asymptotically nonexpansive mapping
with sequence {kn(j)}∞n=0 such that

∑∞
n=0(

1
n+1

∑n
i=0 ki(j) − 1)+ < ∞ for each

j = 1, 2, . . . , r and ∩r
j=1F (Tj) 6= ∅. Let {αn(j)}∞n=0 be a sequence in [0, 1]
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satisfying the following conditions:

0 < a ≤ αn(r) ≤ 1; 0 < b ≤ αn(j) ≤ c < 1

for all j = 1, 2, . . . , r − 1 and some constants a, b, and c.
Suppose that x0 ∈ C and {xn}∞n=0 is given by (1.4). Then, {xn}∞n=0 converges

weakly to a common fixed point of T1, T2, . . . , Tr.

Proof. Define a mapping Sn : C → C by Snx = Un(r)x, x ∈ C. Then, xn+1 =
Snxn and ∩r

j=1F (Tj) ⊆ F (Sn). Moreover, for all x, y ∈ C, we have

‖Snx−Sny‖ = ‖Un(r)x− Un(r)y‖

≤ (1− αn(r))‖x− y‖+ αn(r)
1

n + 1

n∑
i=0

‖T i
rUn(r−1)x− T i

rUn(r−1)y‖

≤ (1− αn(r))‖x− y‖+ αn(r)dn(r)‖Un(r−1)x− Un(r−1)y‖
...

≤
[
1+αn(r)(dn(r)−1)++

r−1∑
j=1

( r∏

l=j

αn(l)

)( r∏

l=j+1

dn(l)

)
(dn(j)−1)+

]
‖x−y‖

≤ (1 + ϕn)‖x− y‖, (3.15)

where ϕn is as in the proof of Lemma 3.3 and
∑∞

n=0 ϕn < ∞. Thus, Sn is
Lipschitzian with the Lipschitz constant Ln := 1+ϕn such that

∑∞
n=0(Ln−1) =∑∞

n=0 ϕn < ∞ and ∩∞n=0F (Sn) ⊇ ∩r
j=1F (Tj) 6= ∅.

It follows from Lemmas 3.4 and 3.2 that ωw(xn) ⊆ ∩r
j=1F (Tj). So to show

that {xn} converges weakly to a common fixed point of T1, T2, . . . , Tr, it suffices
to show that ωw(xn) consists of just one point. In case E∗ has the KK-property,
it is easy to see from Lemmas 3.1 and 2.3 that the theorem is true. So, we
suppose next that E satisfies Opial’s condition. This follows basically as in the
proof of Theorem 1 of [1] using Lemmas 3.3, 3.4, and 3.2. This completes the
proof of Theorem 3.5. ¤

As a consequence of Theorem 3.5, we obtain the following result.

Theorem 3.6. Let C be a nonempty closed convex subset of a uniformly
convex Banach space E which satisfies Opial’s condition or its dual E∗ has the
KK-property and Tj : C → C be nonexpansive mapping for each j = 1, 2, . . . , r
such that ∩r

j=1F (Tj) 6= ∅. Let {αn(j)}∞n=0 be a sequence in [0, 1] satisfying the
following conditions:

0 < a ≤ αn(r) ≤ 1; 0 < b ≤ αn(j) ≤ c < 1

for all j = 1, 2, . . . , r − 1 and some constants a, b, and c.
Suppose that x0 ∈ C and {xn}∞n=0 is given by (1.4). Then, {xn}∞n=0 converges

weakly to a common fixed point of T1, T2, . . . , Tr.
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6. J. Garćıa Falset, W. Kaczor, T. Kuczumow, and S. Reich, Weak convergence
theorems for asymptotically nonexpansive mappings and semigroups. Nonlinear Anal.
43(2001), No. 3, Ser. A: Theory Methods, 377–401.

7. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive
mappings. Proc. Amer. Math. Soc. 35(1972), 171–174.

8. K. Goebel and W. A. Kirk, Topics in metric fixed point theory. Cambridge Studies in
Advanced Mathematics, 28. Cambridge University Press, Cambridge, 1990.

9. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpan-
sive mappings. Bull. Amer. Math. Soc. 73(1967), 591–597.

10. N. Shioji and W. Takahashi, Strong convergence of averaged approximants for asymp-
totically nonexpansive mappings in Banach spaces. J. Approx. Theory 97(1999), No. 1,
53–64.

11. K.-K. Tan and H.-K. Xu, The quadratic minimum spanning tree problem. Naval Res.
Logist. 39(1992), No. 3, 399–417.

12. K.-K. Tan and H.-K. Xu, Fixed point iteration processes for asymptotically nonexpan-
sive mappings. Proc. Amer. Math. Soc. 122(1994), No. 3, 733–739.

13. H. K. Xu, Inequalities in Banach spaces with applications. Nonlinear Anal. 16(1991),
No. 12, 1127–1138.

(Received 4.09.2003; revised 4.12.2003)

Author’s address:

Center for General Education
Kuang Wu Institute of Technology
Peito, Taipei, Taiwan, 11271
R.O.C.
E-mail: juichi@kwit.edu.tw


