
Georgian Mathematical Journal
Volume 11 (2004), Number 1, 93–98

VARIETIES OF UNIVERSAL ALGEBRAS WITH NORMAL
LOCAL PROJECTIONS

Z. JANELIDZE

Abstract. In this paper we characterize varieties of universal algebras in
which every fibre Pt(B) of the fibration of points has normal product pro-
jections, i.e., (X × Y )/X ≈ Y holds in every fibre Pt(B).
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Introduction

As defined in [5], a pointed category C is said to have normal projections if
every product projection in C is a normal epimorphism; equivalently, for any
two objects X and Y in C, the canonical morphism (X × Y )/X → Y is an
isomorphism. In [5] we have characterized the varieties of universal algebras
satisfying this condition. In particular, it holds in every Jónsson–Tarski variety
[7] (more generally, in every unital category in the sense of D. Bourn [2]) and
in every pointed subtractive variety in the sense of A. Ursini [11].

In the present paper, in a similar way as in [5], we will characterize the
varieties satisfying the following ‘local version’ of the above condition.

Definition 0.1. A category C is said to have normal local projections if
every fibre Pt(B) of the fibration of points has normal projections.

If C is a pointed category, then this condition implies the previous one. This
is because in the case B = 0 the fibre Pt(B) = Pt(0) is isomorphic to C. The
converse is not true, as, for instance, the category of monoids (commutative or
not) does not satisfy the condition of Definition 0.1. However, this condition
holds in every Mal’cev category [4], and hence in every Mal’cev variety [10]. As
we will show using our characterization theorem, it also holds in the category
of lattices and in the category of implication algebras.

1. The Characterization Theorem

Let C be a category with finite limits and coequalizers. Let B be an object
in C; recall the following:

(a) The objects in Pt(B) are all triples (A,α, β), where A is an object in C and
α : A → B, β : B → A morphisms with αβ = 1B. A morphism f : (A,α, β) →
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(A′, α′, β′) in Pt(B) is a morphism f : A → A′ in C such that α′f = α and
fβ = β′.

(b) Pt(B) is a pointed category, with the zero object (B, 1B, 1B). The zero
morphism 0 : (A,α, β) → (A′, α′, β′) (i.e. the morphism that factors through
the zero object) is the composite β′α.

(c) Consider the pullback

A×B A′ π2 //

π1

²²

A′

α′
²²

A
α // B

and let [β, β′] : B → A ×B A′ be the canonical morphism. The triple (A ×B

A′, απ1, [β, β′]) is the product of (A,α, β) and (A′, α′, β′) in Pt(B), with the
product projections π1 and π2.

By Definition 0.1, C has normal local projections if and only if for any object
B in C and X = (A, α, β), Y = (A′, α′, β′) in Pt(B), the product projection
π2 : X ×Y → Y is a normal epimorphism, i.e. π2 is the cokernel of the product
injection ι1 = [1X , 0] : X → X × Y . Since the forgetful functor Pt(B) → C
creates coequalizers, this means that

A
[1A,β′α]

//

[β,β′]α
// A×B A′ π2 // A′

is a coequalizer diagram in C; if C is a variety of universal algebras, then this
is equivalent to the following:

∀a∈A,a′∈A′,α(a)=α′(a′)∃n∈N((a, a′), (βα(a), a′)) ∈ Rn, (1)

where N is the set of natural numbers, and R is the smallest reflexive and sym-
metric homomorphic relation on A×B A′ containing the relation {((a, β′α(a)),
(βα(a), β′α(a)))|a ∈ A}.

Let F [x, y] and F [x] be the free algebras on the sets {x, y} and {x}, re-
spectively, and let p : F [x, y] → F [x] be the morphism induced by the unique
function {x, y} → {x}. We write F [x, y]×F [x] F [x, y] to denote the pullback

F [x, y]×F [x] F [x, y] //

²²

F [x, y]

p

²²
F [x, y]

p // F [x]

Proposition 1.1. The following conditions are equivalent:

1. C has normal local projections;
2. There exists a natural number n such that ((y, y), (x, y)) ∈ Qn, where Q

is the reflexive homomorphic relation on F [x, y] ×F [x] F [x, y] generated
by the set {((y, x), (x, x)), ((x, x), (y, x))}.
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Proof. It is easy to see that condition 2 of Proposition 1.1 is a special case of (1),
where A = A′ = F [x, y], B = F [x], α = α′ = p and β = β′ = i : F [x] → F [x, y]
is the inclusion. This leaves to prove that condition 2 implies condition 1.
Suppose 2 holds; we have to show that (1) holds (for all A,A′, . . . ). Let a ∈ A
and a′ ∈ A′, with α(a) = α′(a′), and let R be as in (1); we must show that
((a, a′), (βα(a), a′)) is in Rn. Let f : F [x, y] → A and g : F [x, y] → A′ be
the morphisms of algebras induced by the assignments y 7→ a, x 7→ βα(a) and
y 7→ a′, x 7→ β′α′(a′) = β′α(a), respectively, and let h : F [x] → B be the
morphism which takes x to α(a) = α′(a′). Then there is an induced morphism

F [x, y]×F [x] F [x, y]
c // A×B A′ .

It is easy to see that the image of Qn under c × c lies in Rn; hence, from
((y, y), (x, y)) ∈ Qn we obtain ((a, a′), (βα(a), a′)) = (c(y, y), c(x, y)) ∈ Rn. ¤

Theorem 1.2. A variety C has normal local projections if and only if the
corresponding theory contains

• binary terms t1, . . . , tm, u1, . . . , um;
• (m + 2)-ary terms v1, . . . , vn;

and the following identities hold in C:

• y = v1(t1(x, y), . . . , tm(x, y), y, x) = vn(t1(y, x), . . . , tm(y, x), y, x);
• y = vi(u1(x, y), . . . , um(x, y), x, x), for each i ∈ {1, . . . , n}.
• vi+1(t1(x, y), . . . , tm(x, y), y, x) = vi(t1(x, y), . . . , tm(x, y), x, y), for each

i ∈ {1, . . . , n− 1};
• tj(x, x) = uj(x, x), for each j ∈ {1, . . . , m}.

Proof. According to Proposition 1.1, C has normal local projections if and only
if the pair ((y, y), (x, y)) is in Qn. This is the case if and only if there exist
s1, . . . , sn+1 ∈ F [x, y] such that s1 = y, sn+1 = x, and for each i ∈ {1, . . . , n}
the pair ((si, y), (si+1, y)) is in Q. The latter holds if and only if

(si, y) = vi((t1, u1), . . . , (tm, um), (y, x), (x, x)),

(si+1, y) = vi((t1, u1), . . . , (tm, um), (x, x), (y, x)),

for binary terms t1, . . . , tm, u1, . . . , um and some (m + 2)-ary term vi, such that
tj(x, x) = uj(x, x) for each j ∈ {1, . . . , m}. Equivalently, ((si, y), (si+1, y)) ∈ Q
if and only if

si = vi(t1, . . . , tm, y, x), si+1 = vi(t1, . . . , tm, x, y), y = vi(u1, . . . , um, x, x).

Moreover, we can assume that t’s, u’s and the number m are the same for each
i ∈ {1, . . . , n}. Reformulating this without s’s, which are expressed by v’s, we
obtain the desired characterization. ¤

Remark 1.3. condition 2 of Proposition 1.1 used to prove this theorem is
similar to 2(c) of [5] used to prove Theorem 3 in [5], which characterizes pointed
varieties with normal projections. Moreover, if we write 0’s in the place of x’s
in Theorem 1.2, we obtain a reformulation of Theorem 3 in [5].



96 Z. JANELIDZE

Remark 1.4. As it has already been mentioned, the category of monoids,
commutative or not, does not have normal local projections. This is easy to see
from the identities in the characterization theorem.

Example 1.5. Let C be a variety of universal algebras for which we could
take n = 1 in 1.2. The theory corresponding to such C has an (m+2)-ary term
v and binary terms t1, . . . , tm, u1, . . . , um, which satisfy the identities

y = v(t1(x, y), . . . , tm(x, y), y, x) = v(t1(y, x), . . . , tm(y, x), y, x),
y = v(u1(x, y), . . . , um(x, y), x, x),
tj(x, x) = uj(x, x) for each j ∈ {1, . . . ,m}.

If, in addition, for each j, every one of the terms tj = tj(x1, x2) and uj =
uj(x1, x2) is equal to either the first variable x1, or the second variable x2, an
easy argument shows that we can rewrite these identities as

y = w(x, x, y, y, y, x) = w(y, y, x, x, y, x) = w(x, y, y, x, x, x).

If the term w = w(x1, x2, x3, x4, x5, x6) depends only on x3, x4 and x5, then we
can write w(x1, x2, x3, x4, x5, x6) = p(x3, x4, x5) and the identities become

y = p(x, x, y) = p(y, x, x),

which defines a Mal’cev variety [10]. On the other hand, w(x1, x2, x3, x4, x5, x6)=
p(x2, x3, x5) would give

y = p(x, y, y) = p(y, x, y) = p(y, y, x).

An example of a variety which contains such p (called the Jónsson term, see [6],
[8]) is the category of lattices, where we could take p(x, y, z) = (x ∨ y) ∧ (y ∨
z) ∧ (z ∨ x).

Example 1.6. An implication algebra is a triple (A, 1,→), where A is a set,
1 is a 0-ary operation on A, and → is a binary operation on A satisfying:

(y → x) → y = y,
(y → x) → x = (x → y) → y,
y → (x → z) = x → (y → z),
x → x = 1

(see [1],[9]). The variety of implication algebras has normal local projections.
Indeed, take n = m = 2, t1(x, y) = u1(x, y) = u2(x, y) = y, t2(x, y) = x in 1.2,
then the identities there become

y = v1(y, x, y, x) = v2(x, y, y, x),
y = v1(y, y, x, x) = v2(y, y, x, x),
v2(y, x, y, x) = v1(y, x, x, y).

Rewriting these identities for v1(x, y, z, t) = v2(y, x, z, t) = p(x, z, t), we get

y = p(y, y, x) = p(y, x, x),
p(x, y, x) = p(y, x, y).

Thus, if a variety C contains a ternary term p satisfying the above identities,
then C has normal local projections. In the case of the variety of implication
algebras, we can put p(x, y, z) = (y → z) → x.
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2. Additional Remarks

Let C be a pointed category with finite limits, containing all intersections of
subobjects.

Definition 2.1. Let n be a natural number. A regular epimorphism f : A →
B in C is said to be n-normal if the kernel relation of f is Sn, where S is the
symmetric and reflexive relation on A, generated by the relation (ker(f), 0) :
Ker(f) ⇒ A.

For n = 1 we can formulate this definition in a pointed category C having
just finite limits as follows:

Definition 2.2. A regular epimorphism f : A → B in C is said to be
1-normal, if the canonical morphisms

Ker(f)
(ker(f),0)

// A×B A, Ker(f)
(0,ker(f))

// A×B A,

A
(1A,1A)

// A×B A

are strongly epimorphic.

Using Proposition 1.1 above and Proposition 2 of [5], we obtain

Corollary 2.3. A variety C has normal local projections if and only if there
exists a natural number n such that every fibre Pt(B) of the fibration of points
has n-normal product projections. A pointed variety C has normal projections
if and only if for some n, C has n-normal product projections.

In particular, pointed varieties with 1-normal product projections are exactly
Jónsson-Tarski varieties [7]. This is a special case of the proposition below,
which follows easily from Theorem 1.2.13 and Proposition 1.2.17 of [3].

Proposition 2.4. A pointed category C with finite limits is unital if and
only if it has 1-normal product projections.

Since Mal’cev categories are exactly those categories for which every fibre
Pt(B) of the fibration of points is a unital category (see [2]), we obtain:

Corollary 2.5. A category C with finite limits is a Mal’cev category if
and only if every fibre Pt(B) of the fibration of points has 1-normal product
projections.

Let us assign to each variety C with normal local projections the least natural
number n such that all fibres of the fibration of points have n-normal product
projections. Then by 2.5, Mal’cev varieties are exactly those varieties for which
n = 1. From this it also follows that in other situations considered in 1.5, and
in particular for the category of lattices, the corresponding n is equal to 2. In
the case of the varieties considered in 1.6, one has 2 ≤ n ≤ 4.
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