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THE BELLMAN EQUATION RELATED TO THE MINIMAL
ENTROPY MARTINGALE MEASURE
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Abstract. We derive a backward stochastic differential equation and a Bell-
man equation characterizing the minimal entropy martingale measure for
market models, where asset prices are driven by Markov diffusion processes.
A relation between these equations is established.
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1. Introduction

The problem of finding the minimal entropy martingale measure is dual to the
problem of maximizing the expected exponential utility from terminal wealth
and is used to determine an optimal strategy by exponential hedging of con-
tingent claims (see [4] and [15]). The minimal entropy martingale measure is
defined as the martingale measure minimizing its relative entropy with respect
to the basic probability measure. It is known (see [7] and [13]), that, for a
locally bounded semimartingale, the minimal entropy martingale measure al-
ways exists, is unique and, if there is a martingale measure with finite relative
entropy, then, it is equivalent to the basic measure. Having in mind its role
in the contingent claims pricing, we focus our attention on finding the minimal
entropy martingale measure and on studying its structure.

This paper specializes the results obtained by the authors in [12] in a con-
tinuous semimartingale setting to the case where the price process is a Markov
diffusion process. In Section 2 we formulate, in a form suitable for diffusion
processes, the basic statement of [12] which characterizes the minimal entropy
martingale measure in terms of the corresponding value process shown to be the
unique solution of a backward stochastic differential equation (BSDE). In fact,
here we aim at establishing a connection between the semimartingale backward
equation for the value process and the classical Bellman equation for the value
function related to the same problem in the case of Markov diffusion processes.
Since in this case the value process can be represented as a space-transformation
of an asset price process by means of the value function, the problem is to de-
rive the differentiability properties of the value function from the fact that the
value process satisfies the corresponding BSDE. The key role connecting the
above mentioned equations is played by the statements describing all invariant
space-transformations of diffusion processes, studied in [2] and adapted here to
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financial market models. This approach enables us to prove that there exists
a solution (in a certain sense) of the Bellman equation and that this solution
is differentiable (in a generalized sense) under mild assumptions on the model
coefficients. Although, in our case, the generalized derivative at t and second
order generalized derivatives at x do not exist separately in general (we prove
existence of a generalized L-operator), these derivatives do not participate in
the construction of the optimal martingale measure and the optimal strategy
is explicitly given in terms of first order derivatives of the value function. It
is worth noticing that in the theory of viscosity solutions, usually applied to
such problems (see, e.g., [5]), the differentiability of the value function goes in
general beyond the reach of the method.

Moreover, we study two specific extreme cases (considered in [14], [11], [1]
in relation to the variance-optimal martingale measures), where the Bellman
equation admits an explicit solution and provides an explicit construction of
the minimal entropy martingale measure.

2. The Market Model Driven by an Itô Process

We consider a diffusion model for the financial market as in [9] and [11].
W = (W 1, . . . , W n) is an n-dimensional standard Brownian motion defined
on a complete probability space (Ω,F , P ) equipped with the P -augmentated
filtration generated by W , F = (Ft, t ∈ [0, T ]), F = FT . W l = (W 1, . . . , W d)
and W⊥ = (W d+1, . . . ,W n) are d- and (n − d)-dimensional Brownian motion,
respectively.

Assume that there are d risky assets (stocks) and a bond traded on the
market. For simplicity, the bond price is assumed to be 1 at all times and the
stock price dynamics is given by

dXt = diag(Xt)(µtdt + σtdW l
t ), t ∈ [0, T ], (2.1)

where diag(X) denotes the diagonal d × d-matrix with diagonal elements
(X1, . . . , Xd).

The market coefficients: the d-dimensional vector process µ of stock appreci-
ation rates and the d× d volatility matrix σ are progressively measurable with
respect to F . We also require that for any t ∈ [0, T ] the volatility matrix be
nonsingular almost surely. We take n > d so that there are more sources of
uncertainty than the stocks available for trading and the market is incomplete.

Let us denote by θ the market price of risk σ−1µ and assume that the mean

variance tradeoff
∫ T

0
‖θs‖2ds is finite a.s.

Let us call Me the set of equivalent martingale measures of X, i.e., the set
of measures equivalent to P under which X is a local martingale. Denoting by

K(σ) the class of F -predictable Rn−d valued processes ν such that
∫ T

0
‖νt‖2dt <

∞ a.s., by the integral representation property, the density of any martingale
measure P ν is expressed as an exponential martingale

Zν
t = Et

(
−

.∫

0

θ′sdW l
s +

.∫

0

ν ′sdW⊥
s

)
, t ∈ [0, T ], (2.2)
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for some ν ∈ K(σ) (see [16]). Let

KEnt(σ) = {ν ∈ K(σ) : EZν
T = 1, EZν

T ln Zν
T < ∞}

and consider the subclass of equivalent martingale measures Me
Ent defined by

Me
Ent = {P ν : dP ν/dP = Zν

T , ν ∈ KEnt(σ)} (2.3)

We can now express the minimal entropy martingale measure as a solution
of the following optimization problem

inf
ν∈KEnt(σ)

EZν
T ln Zν

T . (2.4)

As shown in [7], if Me
Ent is not empty (or equivalently, if KEnt(σ) 6= ∅),

then there exists a unique solution of (2.4) which gives a martingale measure
equivalent to P .

Let us assume that

A) there exists a martingale measure, P ν , that satisfies the reverse Hölder
REnt-inequality, i.e. the corresponding density process Zν is a strictly positive
uniformly integrable martingale and there is a constant C such that, for every
stopping time τ ,

E

(
Zν

T

Zν
τ

ln
Zν

T

Zν
τ

|Fτ

)
≤ C.

Remark . Note that condition A) is satisfied if the mean variance tradeoff is
bounded.

According to Corollary 3.2 from [12], problem (2.4) is equivalent to

1

2
inf

ν∈KEnt(σ)
Eν

T∫

0

(‖θs‖2 + ‖νs‖2)ds (2.5)

and the corresponding value process takes the form

Vt =
1

2
ess inf

ν∈KEnt(σ)
Eν

( T∫

t

(‖θs‖2 + ‖νs‖2)ds|Ft

)
. (2.6)

The next statement proved in [12] is adapted here to diffusion processes.

Theorem 1. Let condition A) be satisfied. Then the value process V is the
unique bounded positive solution of the BSDE

Vt = V0−
t∫

0

[1

2
‖θs‖2−θ′sϕs−1

2
‖ϕ⊥s ‖2

]
ds+

t∫

0

ϕ′sdW l
s+

t∫

0

ϕ⊥
′

s dW⊥
s , VT = 0 (2.7)

and the martingale part of the value process belongs to the class BMO (for
BMO-martingales refer to [10]).

Moreover, ν∗ is optimal if and only if

ν∗t = −ϕ⊥t dt× dP -a.e., (2.8)
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i.e., the density of the minimal entropy martingale measure is of the form

Zν∗
T = ET

(
−

.∫

0

θ′sdW l
s −

.∫

0

ϕ⊥
′

s dW⊥
s

)
. (2.9)

Remark . In [12], the unicity of the solution of (2.7) was proved assuming the
existence of the minimal martingale measure satisfying the reverse Hölder REnt-
inequality. But this statement remains true if the reverse Hölder REnt-inequality
is satisfied for some martingale measure.

3. Stochastic Volatility Models

Considering a stochastic volatility model similar to [14], we will assume that
the dynamics of the assets price process is determined by the following system
of stochastic differential equations:

dXt = diag(Xt)(µ(t,Xt, Yt)dt + σl(t,Xt, Yt)dW l
t ), (3.1)

dYt = b(t,Xt, Yt)dt + δ(t,Xt, Yt)dW l
t + σ⊥(t,Xt, Yt)dW⊥

t . (3.2)

Assume that
B1) the coefficients µ, b, δ, σl, σ⊥ are measurable and bounded;
B2) the n × n− matrix function σσ′ is uniformly elliptic, i.e., there is a

constant c > 0 such that

(σ(t, x, y)λ, σ(t, x, y)λ) ≥ c|λ|2
for all t ∈ [0, T ], x ∈ Rd

+, y ∈ Rn−d and λ ∈ Rn, where σ is defined by

σ(t, x, y) =

(
σl(t, x, y) 0
δ(t, x, y) σ⊥(t, x, y),

)
.

In addition we assume that
B3) system (3.1), (3.2) admits a unique strong solution.
Let us introduce the value function

V (t, x, y)

=
1

2
inf

ν∈KM
Ent(σ)

Eν

( T∫

t

(‖θ(s,Xs, Ys)‖2 + ‖ν(s,Xs, Ys)‖2)ds
/
Xt = x, Yt = y

)
,

where θ = σl−1
µ and KM

Ent(σ) is the class of feedback controls from KEnt(σ),
i.e., controls ν ∈ KEnt(σ) expressed in the form ν(t,Xt, Yt) for some measurable
function ν(t, x, y), t ∈ [0, T ], x ∈ Rd

+, y ∈ Rn−d.

Remark . Theorem 1 enables us to weaken condition B1), but our aim is
now to prove the solvability of the Bellman equation without any regularity
assumption on the coefficients. Note also that we need to assume B3) only for
the financial interpretation of the model and that for the validity of Theorem 2
(and Proposition A) the existence of a unique weak solution of (3.1) and (3.2),
guaranteed by B1) and B2), is sufficient.
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Theorem 2. Let condition B1), B2) and B3) be satisfied. Then the value
function V (t, x, y) admits all first order generalized derivatives Vx and Vy, a
generalized L-operator LV (in the sense of Definition A in the Appendix) and
is the unique bounded solution of equation

LV (t, x, y)− θ′(t, x, y)δ′(t, x, y)Vy(t, x, y) + V ′
y(t, x, y)b(t, x, y) +

1

2
‖θ(t, x, y)‖2

+ inf
ν∈Rn−d

[1

2
‖ν‖2 + ν ′σ⊥

′
(t, x, y)Vy(t, x, y)

]
= 0 dtdxdy-a.s. (3.3)

with the boundary condition

V (T, x, y) = 0. (3.4)

Moreover, ν∗ = −σ⊥
′
Vy and the density of the minimal entropy martingale

measure is of the form

Z∗
T = ET

(
−

·∫

0

θ′(s,Xs, Ys)dW l
s −

·∫

0

(σ⊥
′
Vy)

′(s,Xs, Ys)dW⊥
s

)
.

Proof. Existence. Since (X, Y ) is a Markov process, the feedback controls are
sufficient and the value process is expressed by

Vt = V (t,Xt, Yt) a.s. (3.5)

(one can show this fact, e.g., similarly to [2]).
As the value process satisfies equation (2.7), it is an Itô process. It is bounded

because of assumptions B1), B2) and by Theorem 1 its martingale part belongs
to the space BMO. Hence the finite variation part of Vt has the integrable
variation. Thus from (3.5) we have that V (t,Xt, Yt) is an Itô process of the
form (4.1) (see the Appendix). Proposition A of the Appendix implies that the
function V (t, x, y) admits a generalized L-operator, all first order generalized
derivatives and can be represented as

V (t,Xt, Yt) = V0 +

t∫

0

(
V ′

x(s, Xs, Ys) diag(Xs)σ
l(s,Xs, Ys) + V ′

y(s,Xs, Ys)

×δ(s,Xs, Ys)
)
dW l

s +

t∫

0

V ′
y(s,Xs, Ys)σ

⊥(s, Xs, Ys)dW⊥
s +

t∫

0

LV (s,Xs, Ys)ds

+

t∫

0

(
V ′

x(s,Xs, Ys) diag(Xs)µ(s,Xs, Ys) + V ′
y(s,Xs, Ys)b(s,Xs, Ys)

)
ds, (3.6)

where LV is the generalized L-operator defined in the Appendix (Definition A).
On the other hand, the value process is a solution of (2.7) and by the unique-

ness of the canonical decomposition of semimartingales, comparing the martin-
gale parts of (3.6) and (2.7), we have that dt× dP -a.e.

ϕt = σl′(t,Xt, Yt) diag(Xt)Vx(t,Xt, Yt) + δ′(t,Xt, Yt)Vy(t,Xt, Yt), (3.7)
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ϕ⊥t = σ⊥
′
(t, Xt, Yt)Vy(t,Xt, Yt). (3.8)

Then, equalizing the processes of bounded variation of the same equations,
taking into account (3.7) and (3.8), we derive

t∫

0

[
V ′

y(s,Xs, Ys)b(s,Xs, Ys) +
1

2
‖θ(s,Xs, Ys)‖2

− θ′(s,Xs, Ys)δ
′(s,Xs, Ys)Vy(s,Xs, Ys) + LV (s,Xs, Ys)

+ inf
ν∈Rn−d

(
1

2
‖ν‖2 + ν ′σ⊥

′
(s,Xs, Ys)Vy(s,Xs, Ys))

]
ds = 0.

It follows that V (t, x, y) solves the Bellman equation (3.3).
Unicity. Let Ṽ (t, x, y) be a bounded positive solution of (3.3), (3.4), from

the class V L. Then using the generalized Itô formula (Proposition A of the
Appendix) and equation (3.3) we obtain that Ṽ (t,Xt, Yt) is a solution of (2.7);
hence Ṽ (t,Xt, Yt) coincides with the value process V by Theorem 1. Therefore
Ṽ (t,Xt, Yt) = V (t,Xt, Yt) a.s. and Ṽ = V , dtdxdy a.e.

It is evident that Theorem 1 and equality (2.8) imply that ν∗ = −σ⊥
′
Vy. ¤

Remark . Since the infimum in (3.3) is attained for ν∗ = −σ⊥
′
Vy, we can

rewrite this equation as

LV (t, x, y) +
1

2
‖θ(t, x, y)‖2

+ b′(t, x, y)Vy(t, x, y)− θ′(t, x, y)δ′(t, x, y)Vy(t, x, y)

− 1

2
‖σ⊥′(t, x, y)Vy(t, x, y)‖2 = 0 dtdxdy-a.s. (3.9)

Now we consider two particular cases where equation (3.3) admits an explicit
solution.

Case 1. Suppose that the price process X is described by the PDE

dXt = diag(Xt)(µ(t,Xt)dt + σl(t,Xt)dW l
t ), t ∈ [0, T ], (3.10)

where σl satisfies the uniform ellipticity condition, µ and σl are bounded, mea-
surable and such that equation (3.10) admits a unique strong solution. Then

F l
t = FX

t (3.11)

and the market price of risk θ(t,Xt) is F l
t -measurable.

It is well known (see, e.g., [14]) that in this case the minimal entropy martin-
gale measure coincides with the minimal martingale measure Qmin. Let Emin be
the mathematical expectation with respect to the minimal martingale measure.
By Girsanov’s theorem the process

W̃ l
t =

t∫

0

θ(s,W l)ds + W l
t (3.12)
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is a Brownian motion with respect to the measure Qmin and by the integral
representation theorem (and the Bayes rule) any Qmin-local martingale adapted
to F l is represented as a stochastic integral and hence

T∫

0

‖θs‖2ds = Emin

T∫

0

‖θs‖2ds +

T∫

0

ψ̃′sdW̃ l
s. (3.13)

It is easy to verify that the triple (K, ψ, ψ⊥), where ψ = 1
2
ψ̃, ψ⊥ = 0 and

Kt =
1

2
Emin

( T∫

t

‖θs‖2ds|F l
t

)
,

characterizes the unique solution of (2.7). Therefore Vt = Kt and the Markov
property of X implies that Vt = V (t,Xt) a.s., where

V (t, x) =
1

2
Emin

( T∫

t

‖θ(s, Xs)‖2ds/Xt = x

)
.

Since the conditions of Theorem 2 are satisfied, V (t, x) is the unique bounded
solution of the equation

LV (t, x) +
1

2
‖θ(t, x)‖2 = 0, V (T, x) = 0 (3.14)

in the class V L.
Under suitable regularity conditions on µ and σl, (see, e.g., [6]), the value

function V (t, x) is the unique bounded solution of (3.14) from the class C1,2

and

LV =
∂V

∂t
+

1

2
tr(diag(x)σlσl′ diag(x)Vxx).

Case 2. Let us consider the stochastic volatility model

dXt = diag(Xt)(µ(t, Yt)dt + σl(t, Yt)dW l
t ),

dYt = b(t, Yt)dt + σ⊥(t, Yt)dW⊥
t ,

(3.15)

where equation (3.15) admits a unique strong solution. We assume that the
coefficients of (3.15) satisfy B1) and B2). We have that F⊥ = F Y and the
market price of risk θ(t, Yt) is F⊥

t adapted.
Since θ is F⊥ adapted, by the integral representation theorem there exists an

F⊥ adapted process g such that

exp

{
− 1

2

T∫

0

‖θs‖2ds

}
= E exp

{
− 1

2

T∫

0

‖θs‖2ds

}
+

T∫

0

g′sdW⊥
s , (3.16)

where g ·W⊥ is a bounded martingale.
Using the Itô formula one can see that the triple (K, ψ, ψ⊥), where

ψ = 0, ψ⊥t = − gt

E exp{−1
2

∫ T

0
‖θs‖2ds}+

∫ t

0
g′sdW⊥

s
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and

Kt =
1

2
E

( T∫

t

(‖θs‖2 − ‖ψ⊥s ‖2)ds|F⊥
t

)

is the unique solution of (2.7).
Therefore, the process K coincides with the value process V and hence the

value function does not depend on x, i.e., V (t, x, y) = V (t, y). Thus, by Theo-
rem 2, V (t, y) is the unique bounded solution in the class V L of the equation

LV (t, y) +
1

2
‖θ(t, y)‖2 + V ′

y(t, y)b(t, y)

− 1

2
‖σ⊥′(t, y)Vy(t, y)‖2 = 0 dtdy-a.s, (3.17)

V (T, y) = 0. (3.18)

For U(t, y) = e−V (t,y) equation (3.17) can be reduced to a linear SDE

LU(t, y) + b′(t, y)Uy(t, y) +
1

2
‖θ(t, y)‖2U(t, y) = 0.

Under additional smoothness conditions on the coefficients µ, σl, b and σ⊥ (see
[6]) this equation with the boundary condition U(T, y) = 1 has the unique solu-
tion in the class C1,2 with LV being the usual L-operator. By the Feynmann–
Kac formula the value admits a representation

V (t, y) = − ln E

[
exp

{
1

2

T∫

t

|θ(s, Ys)|2ds|
}
|Yt = y

]
.

Remark . The solvability of (3.3) (or (3.9)) in the class C1,2 is apparently an
open problem. The value function can be characterized as a viscosity solution
of (3.3), e.g., using the results from [3]. we solve equation (3.3) in the class V L

of functions which, unlike viscosity solutions, admit all generalized first order
derivatives at x.

4. Appendix

The appendix is devoted to the introduction of some notions which enable us
to present an application of Theorem 1 to the Markov case.

Consider the system of stochastic differential equations (3.1), (3.2) and as-
sume that conditions B1) and B2) are satisfied. Under these conditions there ex-
ists a unique weak solution of (3.1), (3.2), which is a Markov process and its tran-
sition probability function admits a density p(s, (x0, y0), t, (x, y)) with respect to
the Lebesgue measure. We shall use the notation p(t, x, y)=p(0, (x0, y0), t, (x, y))
for the fixed initial condition X0 = x0, Y0 = y0.

Introduce the measure µ on the space ([0, T ] × Rd
+ × Rn−d,B([0, T ] × Rd

+ ×
Rn−d))

µ(ds, dx, dy) = p(s, x, y)dsdxdy.
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Let C1,2 be the class of functions f continuously differentiable at t and twice
differentiable at x, y on [0, T ]×Rd

+×Rn−d. For functions f ∈ C1,2 the L operator
is defined as

Lf = ft + tr
(1

2
diag(x)σlσl′ diag(x)fxx

)

+ tr
(
δσl′ diag(x)fxy

)
+ tr

(1

2
(δδ′ + σ⊥σ⊥

′
)fyy

)

where ft, fxx, fxy and fyy are partial derivatives of the function f , for which we
use the matrix notations.

Definition A. We shall say that a function f = (f(t, x, y), t ≥ 0, x ∈ Rd
+, y ∈

Rn−d) belongs to the class V L
µ if there exists a sequence of functions (fn, n ≥ 1)

from C1,2 and measurable µ-integrable functions fxi
(i ≤ d), fyj

(d < j ≤ n) and
(Lf) such that

E sup
s≤T

|fn(s,Xs, Ys)− f(s,Xs, Ys)| → 0, as n →∞,

∫∫

[0,T ]×Rd
+×Rn−d

(fn
xi

(s, x, y)− fxi
(s, x, y))2x2

i µ(ds, dx, dy) → 0, as n →∞, i ≤ d,

∫∫

[0,T ]×Rd
+×Rn−d

(fn
yj

(s, x, y)− fyj
(s, x, y))2µ(ds, dx, dy) → 0, as n →∞, d<j≤n,

∫∫

[0,T ]×Rd
+×Rn−d

|Lfn(s, x, y)− (Lf)(s, x, y)|µ(ds, dx, dy) → 0, as n →∞.

Now we formulate the statement proved in [2] in the case convenient for our
purposes.

Proposition A. Let conditions B1)–B2) be satisfied and let f(t,Xt, Yt) be a
bounded process. Then the process (f(t,Xt, Yt), t ∈ [0, T ]) is an Itô process of
the form

f(t,Xt, Yt) = f(0, X0, Y0) +

t∫

0

g(s, ω)dWs +

t∫

0

a(s, ω)ds a.s.

with

E

t∫

0

g2(s, ω)ds < ∞, E

t∫

0

|a(s, ω)|ds < ∞ (4.1)

if and only if f belongs to V L
µ . Moreover the process f(t,Xt, Yt) admits the

decomposition

f(t, Xt, Yt) = f(0, X0, Y0)+
d∑

i=1

t∫

0

fxi
(s,Xs, Ys)dX i

s
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+
n∑

j=d+1

t∫

0

fyj
(s,Xs, Ys)dY j

s +

t∫

0

(Lf)(s,Xs, Ys)ds.

Remark . For continuous functions f ∈ V L
µ the condition

sup
(s,x,y)∈D

|fn(s, x, y)− f(s, x, y)| → 0 as n →∞ (4.2)

for every compact D ∈ [0, T ] × Rd
+ × Rn−d, can be used instead of the first

relation of Definition A.
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