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BADORA’S EQUATION ON NON-ABELIAN LOCALLY
COMPACT GROUPS

E. ELQORACHI, M. AKKOUCHI, A. BAKALI, AND B. BOUIKHALENE

Abstract. This paper is mainly concerned with the following functional
equation ∫

G

{ ∫

K

f(xtk · y)dk

}
dµ(t) = f(x)f(y), x, y ∈ G,

where G is a locally compact group, K a compact subgroup of its morphisms,
and µ is a generalized Gelfand measure. It is shown that continuous and
bounded solutions of this equation can be expressed in terms of µ-spherical
functions. This extends the previous results obtained by Badora (1992) on
locally compact abelian groups. In the case where G is a connected Lie group,
we characterize solutions of the equation in question as joint eigenfunctions
of certain operators associated to the left invariant differential operators.

2000 Mathematics Subject Classification: 39B05, 43A90.
Key words and phrases: D’Alembert functional equation, Gelfand mea-
sure, µ-spherical function, Lie group.

1. Introduction

Let G be a locally compact group, K a compact subgroup of morphisms of
G. The action of k ∈ K on x ∈ G is denoted by k · x, and the normalized
Haar measure on K by dk. Furthermore for a complex bounded measure µ
on G, i.e., µ ∈ M(G), the topological dual of C0(G), the Banach space of
continuous functions vanishing at infinity (cf. [6], 13.1.2 and 13.20.1), µ̌ (resp.
µx) denotes the measure defined by 〈µ̌, f〉 =

∫
G

f(t−1)dµ(t) (resp. 〈µx, f〉 =∫
G

f(tx−1)dµ(t)) for all continuous and bounded functions f on G.
In the paper [4] Badora considered the following functional equation

∫

G

{∫

K

f(xtk · y)dk

}
dµ̌(t) = f(x)f(y), x, y ∈ G, (1.1)

when G is abelian and µ is K-invariant, i.e.,
∫

G
f(k · t)dµ(t) =

∫
K

f(t)dµ(t)
for all continuous functions with compact support on G (f ∈ K(G)) and for
all k ∈ K. The essentially bounded non-zero solutions of equation (1.1) are
completely defined as

f(x) =

∫

K

(χ ∗ µk·x)(e) dk, x ∈ G, (1.2)
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where χ is a character of G and e is the identity element of the abelian group
G (see [4]).

In the paper we are going to study the functional equation∫

G

{ ∫

K

f(xtk · y)dk

}
dµ(t) = f(x)f(y), x, y ∈ G. (1.3)

This category contains not only equations of the from∫

K

f(xk · y) dk = f(x)f(y), x, y ∈ G (1.4)

(see [4], [5], [15], [16] and [17]), but also the generalized d’Alembert’s functional
equation ∫

G

f(xty) dµ(t) +

∫

G

f(xty−1) dµ(t) = 2f(x)f(y) x, y ∈ G, (1.5)

which was studied in [9].
Concerning continuous solutions of (1.4), one of the main results is due to

Shin’ya [14]: any non-zero continuous solution of equation (1.4) has the form

f(x) =

∫

K

χ(k · x)dk for all x ∈ G,

where χ : G −→ C\{0} is a continuous homomorphism of the abelian group G
(cf. [14], Corollary 3.12).

In Section 2 (Theorem 2.1), we give necessary and sufficient conditions for a
(measurable) essentially bounded function f to satisfy equation (1.3). One of
these conditions is

MK(µ̌ ∗ h ∗ f) = 〈h, f̌〉f (1.6)

for all h ∈ L1(G, dx), where MK(h)(x) =
∫

K
h(k·x)dk for all h ∈ L1

loc(G, dx) and
for all x ∈ G. This explains why we restrict ourselves to solutions f ∈ Cb(G).

In Theorem 2.2, we prove that the map

f 7−→ 〈f, ω〉 =

∫

G

f(x)ω(x) dx

is a continuous character of the Banach algebra µ∗MK(L1(G, dx))∗µ = MK(µ∗
L1(G, dx) ∗ µ) if and only if ω is a non zero solution of the functional equation
(1.3).

In Section 3, µ is a generalized Gelfand measure which is K-invariant. We
extend the above-mentioned results due to Badora [4]. More precisely, under
an additionally condition that every closed ideal of the commutative Banach
algebra µ ∗ L1(G, dx) ∗ µ is contained in some maximal regular ideal, we find
explicit formulas for solutions expressing them in terms of µ-spherical functions
(Theorem 3.1).

In the final part of our paper when G is a connected Lie group and µ is an
idempotent measure which is K-invariant, we characterize solutions of (1.3) as
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joint eigenfunctions of certain operators associated to the left invariant differ-
ential operators (Theorem 4.1).

Our notation is described in the following set-up and we will stick to it in the
rest of the paper.

General set-up and notation. Let G be a locally compact separable
Hausdorff group, e its identity element, C(G) (resp. Cb(G)) the complex algebra
of all continuous (resp. continuous and bounded) complex-valued functions on
G.

Let K be a subgroup of the group Mor(G) of all mappings k of G onto itself
that are either automorphisms and homeomorphisms (k ∈ K+) or antiautomor-
phisms and homeomorphisms (k ∈ K−).

We assume that K has a topology making it a compact Hausdorff group with
the property that the canonical map K×G −→ G sending each pair (k, x) onto
k · x is continuous.

For any k ∈ K, and for any function f on G, we put (k · f)(x) = f(k−1 · x)
and say that f is K-invariant if k · f = f for all k ∈ K.

The algebra of all regular and complex bounded measures on G is denoted
by M(G). We recall that the convolution of M(G) is given by

〈µ ∗ ν, f〉 =

∫

G

∫

G

f(ts) dµ(t) dν(s), f ∈ Cb(G).

For any µ ∈ M(G) and any k ∈ K, we put 〈k · µ, f〉 = 〈µ, k · f〉, f ∈ Cb(G),
and say that µ is K-invariant if k · µ = µ for all k ∈ K.

A function f ∈ Cb(G) is µ-biinvariant if fµ = f , where fµ is the continuous
and bounded function defined by fµ(x) =

∫
G

∫
G

f(sxt)dµ(t)dµ(s) for all x ∈ G.
Note that if µ ∗ µ = µ, then f is µ-biinvariant if and only if

∫
G
f(tx)dµ(t)=∫

G
f(xt)dµ(t) = f(x) for all x ∈ G.

Definition 1.1. A measure µ ∈ M(G) is a Gelfand measure if µ̌ = µ ∗µ = µ
and the Banach algebra µ∗M(G)∗µ is commutative under the convolution. µ is
a generalized Gelfand measure if µ∗µ = µ and the Banach algebra µ∗M(G)∗µ
is commutative.

Any non-zero solution φ ∈ Cb(G) of the functional equation

∫

G

φ(xty) dµ(t) = φ(x)φ(y) for all x, y ∈ G, (1.7)

is a µ-spherical function.

µ-spherical functions have been introduced and studied by Akkouchi and
Bakali (see [1] and [2]).

When H is a compact subgroup of G and dh is the normalized Haar measure
of H, then dh is a generalized Gelfand measure of G if and only if (G,H) is a
Gelfand pair (see [7]).
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Finally, if µ ∈ M(G) is a generalized Gelfand measure, then, according to
Definition 1.1,

Lµ
1(G) = µ∗L1(G, dx)∗µ =

{
f ∈ L1(G, dx) | f = f ∗µ = µ∗f = µ∗f ∗µ = fµ

}

is a commutative Banach algebra, where

fµ(x) = µ ∗ f ∗ µ(x) :=

∫

G

∫

G

f(t−1xs−1)∆−1(s) dµ(t) dµ(s),

∆ being the modular function of G.
Furthermore, note that if G is unimodular (i.e., ∆ = 1), µ ∈ M(G) is K-

invariant and f ∈ L1(G, dx), then we have

(MK(f))µ(x) =

∫

G

∫

G

MK(f)(t−1xs−1) dµ(t) dµ(s)

=

∫

K+

∫

G

∫

G

f(k · t−1k · xk · s−1) dk dµ(t) dµ(s)

+

∫

K−

∫

G

∫

G

f(k · s−1k · xk · t−1) dk dµ(t) dµ(s).

Since µ̌ is also K-invariant, we have
∫

K+

∫

G

∫

G

f(k · t−1k · xk · s−1) dk dµ(t) dµ(s)

=

∫

K+

∫

G

∫

G

f(t−1k · xs−1) dk dµ(t) dµ(s)

and ∫

K−

∫

G

∫

G

f(k · s−1k · xk · t−1) dk dµ(t) dµ(s)

=

∫

K−

∫

G

∫

G

f(t−1k · xs−1) dk dµ(t) dµ(s),

which implies that

(MK(f))µ(x)=

∫

K

∫

G

∫

G

f(s−1k ·xt−1) dk dµ(t) dµ(s)=MK(fµ)(x) for all x∈G.

2. General Properties

We fix a measure µ in M(G). The following result gives necessary and suf-
ficient conditions for a function to be a solution of equation (1.3) and explains
why we restrict ourselves to continuous and bounded solutions.
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Theorem 2.1. Let µ ∈ M(G). Let f be a measurable and essentially bounded
function on G. Then the following conditions are equivalent∫

G

{ ∫

K

f(xtk · y)dk

}
dµ(t) = f(x)f(y) for almost all x, y ∈ G, (2.1)

MK(µ̌ ∗ h ∗ f) = 〈h, f̌〉f for all h ∈ L1(G, dx), (2.2)

MK(µ̌ ∗ ν ∗ f) = 〈ν, f̌〉f for all ν ∈ M(G), (2.3)

MK(µ̌ ∗ δx ∗ f) = f̌(x)f for all x ∈ G. (2.4)

Consequently, if f satisfies one of these conditions, then it is continuous.

Proof. (2.1) ⇒ (2.2). For all g, h ∈ K(G), we have

〈h, f̌〉〈f, g〉 =

∫

G

∫

G

f(x−1)f(y)h(x)g(y) dx dy

=

∫

G

∫

G

∫

K

∫

G

f(x−1tk · y)h(x)g(y) dx dy dk dµ(t)

=

∫

G

∫

K

∫

G

(h ∗ f)(t−1k · y)g(y) dk dy dµ̌(t)

=

∫

G

∫

K

(µ̌ ∗ h ∗ f)(k · y)g(y) dk dy =
〈
MK(µ̌ ∗ h ∗ f), g

〉
.

Consequently, MK(µ̌ ∗ h ∗ f) = 〈h, f̌〉f, almost everywhere for all h ∈
L1(G, dx).

Now by choosing h ∈ K(G) such that 〈h, f̌〉 6= 0 and by using ([6], 14.9.2),
we deduce that f is a continuous function and we get (2.2).

(2.2) ⇒ (2.3). By ([6] 14.11.1), there exists a sequence of regularizing func-
tions fn ∈ L1(G, dx).

In view of (2.2), for all h ∈ K(G) we have〈
MK(µ̌ ∗ ν ∗ fn ∗ f), h

〉
=

〈
ν ∗ fn, f̌

〉〈f, h〉 for all ν ∈ M(G) and n ∈ N.

Since〈
MK(µ̌ ∗ ν ∗ fn ∗ f), h

〉
=

〈
µ̌ ∗ ν ∗ fn ∗ f, LK(h)

〉
=

〈
ν̌ ∗ µ ∗ LK(h), fn ∗ f

〉
,

where LK(h) =
∫

K
(k ·h)mod(k)dk and mod(k) is defined by the formula

∫
G

g(k ·
x)dx = mod(k)

∫
G

g(x)dx for all g ∈ L1(G, dx) (cf. [6], 14.3.6.1.), by letting
n −→ +∞ and by using ([6], 14.11.1), we get〈

ν̌ ∗ µ ∗ LK(h), f
〉

= 〈ν, f̌〉〈f, h〉 =
〈
MK(µ̌ ∗ ν ∗ f), h

〉
.

In view of ([6], 14.9.2)) and the fact that f is continuous, we obtain (2.3).
(2.4) ⇒ (2.1). Since (µ̌ ∗ δx ∗ f)(y) =

∫
G

f(x−1ty)dµ(t), we get for all z ∈ G

MK(µ̌ ∗ δx ∗ f)(z) =

∫

K

(µ̌ ∗ δx ∗ f)(k · z)dk
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=

∫

K

∫

G

f(x−1tk · z) dk dµ(t) = f(x−1)f(z),

which implies (2.1). ¤

The following theorem explains some relations existing between solutions of
equation (1.3) and continuous characters of the commutative Banach algebra
µ ∗MK(L1(G, dx)) ∗ µ, where µ is a generalized Gelfand measure which is K-
invariant.

Theorem 2.2. Let G be unimodular, let µ be a K-invariant generalized
Gelfand measure and let ω ∈ Cb(G). Then the map

f 7−→ 〈f, ω〉 :=

∫

G

f(x)ω(x) dx

is a character of the commutative Banach algebra µ ∗MK(L1(G, dx)) ∗ µ if and
only if ω is a nonzero solution of equation (1.3).

Proof. To prove Theorem 2.2, we need the following result. ¤

Proposition 2.1. Let µ be a K-invariant generalized Gelfand measure. If
ω ∈ Cb(G) is a solution of equation (1.3), then ω is a µ-biinvariant function on
G and ω is K-invariant.

Consequently,
∫

G

ω(xty) dµ(t) =

∫

G

ω(ytx) dµ(t) for all x, y ∈ G.

Proof. According to equation (1.3), we have
∫

K

∫

G

∫

G

ω(xtsk · y) dk dµ(t) dµ(s) =

∫

G

ω(xt) dµ(t)ω(y).

Since µ ∗ µ = µ, we get

ω(y)

∫

G

ω(xt) dµ(t) = ω(x)ω(y) for all x, y ∈ G.

which implies that ∫

G

ω(xt) dµ(t) = ω(x), x ∈ G.

On the other hand,
∫

K

∫

G

∫

G

ω(xtk · (sy)) dk dµ(t) dµ(s) = ω(x)

∫

G

ω(sy) dµ(s).
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Since µ ∗ µ = µ, µ is K-invariant and
∫

G
ω(xs) dµ(s) = ω(x), we get from

∫

G

∫

G

∫

K

ω(xtk · (sy)) dk dµ(t) dµ(s)

=

∫

G

∫

K+

∫

G

ω(xtk · sk · y) dk dµ(t) dµ(s) +

∫

G

∫

K−

∫

G

ω(xtk · yk · s) dk dµ(t) dµ(s)

and ∫

G

∫

K+

∫

G

ω(xtk · sk · y) dk dµ(t) dµ(s) =

∫

K+

∫

G

ω(xtk · y) dk dµ(t),

∫

G

∫

K−

∫

G

ω(xtk · yk · s) dk dµ(t) dµ(s) =

∫

G

∫

K−

ω(xtk · y) dk dµ(t)

that ∫

G

∫

K

ω(xtk · y) dk dµ(t) = ω(x)

∫

G

ω(sy) dµ(s) for all x, y ∈ G.

Thus ∫

G

ω(sy) dµ(s) = ω(y) for all y ∈ G.

Now, since µ is a generalized Gelfand measure, by using ([9], Proposition 2.1)
we obtain ∫

G

ω(xsy) dµ(s) =

∫

G

ω(ysx) dµ(s), x, y ∈ G.

If we fix k′ ∈ K, then using equation (1.3), we get
∫

K

∫

G

ω(xtk · (k′ · y)) dk dµ(t) = ω(x)ω(k′ · y). (2.5)

So from the fact that K is compact and hence unimodular it follows that the
first term of equation (2.5) becomes

∫

K

∫

G

ω(xtk · (k′ · y)) dk dµ(t) =

∫

K

∫

G

ω(xtk · y) dk dµ(t), (2.6)

whence we deduce that ω(k′ · x) = ω(x) for all x ∈ G. The proof of the propo-
sition is finished. ¤

Proof of Theorem 2.2. Let ω ∈ Cb(G) be a solution of equation (1.3), then for
all f, g ∈ L1(G, dx), we have

〈∫

K

(k · f)µ dk ∗
∫

K

(k′ · g)µ dk′, ω
〉

=

∫

K

∫

K

〈
(k · f)µ ∗ (k′ · g)µ, ω

〉
dk dk′
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=

∫

K

∫

K

∫

G

∫

G

(k · f)µ(y)(k′ · g)µ(y−1x)ω(x) dk dk′ dx dy

=

∫

K

∫

K

∫

G

· · ·
∫

G

(k · f)(t−1ys−1)(k′ · g)(l−1y−1xr−1)

× ω(x) dk dk′ dx dy dµ(t) dµ(s) dµ(l) dµ(r)

=

∫

K

∫

K

∫

G

· · ·
∫

G

∫

G

(k · f)(y)(k′ · g)(x)

× ω(tylsxr) dx dy dk dk′ dµ(l) dµ(t) dµ(s) dµ(r).

Hence by Proposition 2.1 and µ ∗ µ = µ,∫

K

∫

K

∫

G

· · ·
∫

G

∫

G

(k · f)(y)(k′ · g)(x)

× ω(tylsxr) dk dk′ dx dy dµ(l) dµ(t) dµ(s) dµ(r)

=

∫

K

∫

K

∫

G

∫

G

∫

G

(k · f)(y)(k′ · g)(x)ω(ysx) dx dy dk dk′ dµ(s)

=

∫

K

∫

K

∫

G

∫

G

∫

G

(k · f)(y)(k′.g)(x)k−1 ·ω(k−1 · ysk−1 · x) dx dy dk dk′ dµ(s)

=

∫

K

∫

K

∫

G

∫

G

∫

G

f(k · y)(k′ · g)(x)ω(k · ysk · x) dx dy dk dk′ dµ(s)

=

∫

K

∫

K

∫

G

∫

G

∫

G

f(y)(k′ · g)(x)ω(ysk · x) dx dy dk dk′ dµ(s),

which follows from
∫

G
k · f(x)dx =

∫
G

f(x)dx for all f ∈ L1(G, dx) and k ∈ K.
Consequently, we have

〈∫

K

(k · f)µ dk ∗
∫

K

(k′ · g)µ dk′, ω
〉

=

∫

K

∫

K

∫

G

∫

G

∫

G

f(y)(k′ · g)(x)ω(ysk · x) dx dy dk dk′ dµ(s)

=

∫

K

∫

G

∫

G

(k′ · g)(x)f(y)ω(y)ω(x) dx dy dk′

=

∫

K

∫

K

∫

G

∫

G

(k · f)µ(y)(k′ · g)µ(x)ω(y)ω(x) dx dy dk dk′

=

〈 ∫

K

(k · f)µ dk, ω

〉〈 ∫

K

(k′ · g)µ dk′, ω
〉

,
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which means that f 7−→ 〈f, ω〉 is a character of µ ∗ (MK(L1(G, dx))) ∗ µ.
Let conversely χ be a continuous character of the commutative Banach alge-

bra µ ∗ (MK(L1(G, dx))) ∗ µ. Then f 7−→ χ((MK(f))µ) is a continuous linear
mapping of the Banach algebra L1(G, dx) into C. Consequently, there exists
ω ∈ L∞(G) such that

χ((MK(f))µ) = 〈f, ω〉 for all f ∈ L1(G, dx).

In addition, ω may be chosen continuous: Let f0 ∈ K(G) be a K-invariant
function such that χ((MK(f0))

µ) = 1. Then for all f ∈ K(G) we have

〈f, ω〉 =χ
(
(MK(f0))

µ
)
χ
(
(MK(f))µ

)
= χ

(
(MK(f))µ

) ∗ (MK(f0))
µ)

=χ
(
(MK(MK(f) ∗ fµ

0 )µ
)

=
〈
MK(f) ∗ fµ

0 , ω
〉

=
〈
MK(f), ω ∗ (fµ

0 )∨)
〉

=
〈
f, MK

(
ω ∗ (fµ

0 )∨
)〉

.

Consequently, ω = MK(ω ∗ (fµ
0 )∨) locally almost everywhere.

By using L∞(G, dx) ∗L1(G, dx) ⊆ Cb(G), we conclude that ω is a continuous
function on G.

On the other hand, in view of

χ
(
(MK(f))µ

)
= χ

(
(MK(fµ))µ

)
= 〈fµ, ω〉 = 〈f, ωµ〉,

we deduce that 〈f, ω〉 = 〈f, ωµ〉 for all f ∈ L1(G, dx), which implies that ωµ = ω,
i.e., ω is µ-biinvariant.

To show that ω is a K-invariant function, we will use the formula MK(MK(f))
= MK(f); f ∈ L1(G, dx). For all f ∈ L1(G, dx) we have

〈f, ω〉 = χ
(
(MK(f))µ

)
= χ

(
(MK(MK(f)))µ

)
=

〈
MK(f), ω

〉
=

〈
f, MK(ω)

〉
,

from which we conclude that ω = MK(ω) and k′ · ω = ω for all k′ ∈ K.
Now we are going to show that ω is a solution of equation (1.3).
For all f, g ∈ L1(G, dx) we have〈( ∫

K

(k · f) dk

)µ

∗
( ∫

K

(k′ · g) dk′
)µ

, ω

〉

=

∫

G

∫

G

∫

K

∫

G

∫

K

f(y)k′ · g(x)ω(k · ytx) dk dk′ dx dy dµ(t)

=

∫

G

∫

G

∫

K

∫

K

∫

G

f(y)g(x)ω(k′ · ytk · x) dk dk′ dx dy dµ(t)

=

∫

G

∫

G

∫

K

∫

K+

∫

G

f(y)g(x)k′−1 · ω(yt(k′−1k) · x) dµ(t) dk dk′ dx dy

+

∫

G

∫

G

∫

K

∫

K−

∫

G

f(y)g(x)k′−1 · ω((k′−1k) · xty) dk dk′dx dy dµ(t)

=

∫

G

∫

G

∫

K

∫

K

∫

G

f(y)g(x)ω(yt(k′−1k) · x) dk dk′ dx dy dµ(t)
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=

∫

G

∫

G

∫

K

∫

G

f(y)g(x)ω(ytk · x) dk dx dy dµ(t)

and it follows that∫

G

∫

G

∫

K

∫

G

f(y)g(x)ω(ytk · x) dk dx dy dµ(t) =

∫

G

∫

G

f(y)g(x)ω(y)ω(x) dx dy

for all f, g ∈ L1(G, dx). Consequently, ω is a solution of equation (1.3).
On the other hand, in view of χ(f) = 〈f, ω〉 for all f ∈ µ∗MK(L1(G, dx))∗µ

we deduce that ω 6= 0. This ends the proof of Theorem 2.2. ¤

3. Solutions of Equation (1.3)

In this section, µ is a generalized Gelfand measure which is K-invariant and
we assume that every closed ideal of the commutative Banach algebra Lµ

1 (G) is
contained in some maximal regular ideal. The latter condition is satisfied for
example in the following situations:
• G is a compact group and µ is a Gelfand measure (cf. [2]).
• G is unimodular with a growth being almost of polynomial type and µ is a

Gelfand measure with compact support (cf. [10], Theorem 3.3.5, [13], Corollary
on p. 227, and [8]).

In Theorem 3.1 below, we give a full description of continuous and bounded
solutions of the equation∫

G

{∫

K

f(xtk . y) dk

}
dµ(t) = f(x)f(y), x, y ∈ G. (3.1)

Theorem 3.1. Let µ be a Gelfand measure which is K-invariant. Let f be a
nonzero continuous and bounded solution of the functional equation (3.1). Then
there exists a µ-spherical function ψ on G such that

f(x) =

∫

K

ψ(k · x) dk, x ∈ G. (3.2)

Conversely, any function of this form is a solution of equation (3.1).

Proof. Let ψ be a µ-spherical function. Let f be a continuous and bounded
function defined by the formula

f(x) =

∫

K

ψ(k · x) dk, x ∈ G.

Hence f(xtk′ · y) =
∫

K
ψ(k · (xtk′ · y))dk and

∫

G

∫

K

f(xtk′ · y) dk′ dµ(t) =

∫

K

∫

K

∫

G

ψ
(
k · (xtk′ · y)

)
dk dk′ dµ(t)

=

∫

K+

∫

K

∫

G

ψ
(
k · xt(kk′) · y)

dk dk′ dµ(t)+

∫

K−

∫

K

∫

G

ψ
(
(kk′) · ytk · x)

dk dk′ dµ(t)
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=

∫

K

∫

K

∫

G

ψ
(
(kk′) · ytk · x)

dk dk′ dµ(t)

=

∫

K

∫

K

ψ
(
(kk′) · y)

ψ(k · x) dk dk′ =
∫

K

ψ(k′ · y) dk′
∫

K

ψ(k · x) dk = f(x)f(y).

Conversely, if f ∈ Cb(G) is a non-zero continuous and bounded solution of the
functional equation (3.1), then it has the form (3.2). To prove this first we
choose an arbitrary function g ∈ L1(G, dx).

Multiplying (3.1) by g(x) and integrating the result over G, we get
∫

G

g(x)

( ∫

K

∫

G

f(xtk · y) dk dµ(t)

)
dx = f(y)

∫

G

f(x)g(x) dx for all y ∈ G.

Hence, in view of∫

K

∫

G

f(xtk · y) dk dµ(t) =

∫

K

∫

G

f(k · ytx) dk dµ(t) =

∫

K

(µ̌k·y ∗ f)(x) dk,

we get
∫

G

f(x)

[ ∫

K

( ˇ(νk·y) ∗ g)(x) dk − f(y)g(x)

]
dx = 0 for all y ∈ G, (3.3)

where ν = µ̌.
We shall now consider the sets A =

{ ∫
K

( ˇ(νk·y)∗g)dk−f(y)g | g ∈ L1(G, dx),

y ∈ G
}

and B = {hµ, h ∈ A}.
To establish that I = Lin(B) is an ideal in the algebra Lµ

1(G, dx), suppose

that hµ ∈ B, where h =
∫

K
( ˇ(νk·y) ∗ g)dk − f(y)g | y ∈ G, g ∈ L1(G, dx).

Now for all L ∈ Lµ
1(G, dx) we have

L ∗ hµ = (L ∗ h)µ =

( ∫

K

( ˇ(νk . y) ∗N
)
dk − f(y)N

)µ

,

where N = L ∗ g, which implies that L ∗ hµ ∈ I, since I is a linear subspace of
Lµ

1(G, dx). Thus we conclude that I is an ideal of the Banach algebra Lµ
1(G, dx).

There are two cases:
Case (1). I = Lµ

1(G, dx). Hence for all h ∈ L1(G, dx),
∫

G

f(x)hµ dx =

∫

G

f(x)h(x) = 0,

which implies that f(x) = 0 for all x ∈ G, which contradicts our assumption.
Case (2). I is a proper ideal of the Banach algebra Lµ

1(G, dx).
By the assumption of the theorem, there exists a regular maximal ideal Imax

of Lµ
1(G, dx), which contains I.

Now by adapting the same method as used in ([13], Theorem 1, p. 412) we
conclude that there exists a continuous character χ0 of the Banach algebra
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Lµ
1(G, dx) such that χ0(θ) = 0 for all θ ∈ Imax. Hence by [1], there exists a

µ-spherical function ψ such that∫

G

hµ(x)ψ(x) dx = 0 for all hµ ∈ I.

Therefore ∫

G

∫

K

( ˇ(νk·y) ∗ g
)
(x)ψ(x) dx dk = f(y)

∫

G

ψ(x)g(x) dx

for all y ∈ G and for all g ∈ L1(G, dx).
Since ∫

G

∫

K

( ˇ(νk·y) ∗ g
)
(x)ψ(x) dx dk =

∫

K

ψ(k · y) dk

∫

G

g(x)ψ(x) dx,

then by choosing g0 ∈ L1(G, dx) such that
∫

G
g0(x)ψ(x)dx 6= 0 we get

f(y) =

∫

K

ψ(k · y) dk for all y ∈ G. (3.4)

The proof of the theorem is thus completed. ¤

4. Badora’s Equation in Lie Groups

In this section, we characterize solutions of the equation
∫

G

{∫

K

f(xtk · y) dk

}
dµ(t) = f(x)f(y), x, y ∈ G, (4.1)

on a connected Lie group G as joint eigenfunctions of certain operators associ-
ated to the left invariant differential operators, where K is a compact subgroup
of the group Aut(G) of all mappings of G onto G that are simultaneously au-
tomorphisms and homeomorphisms.

This extends the previous results obtained by Stetkær in [17] for equation
(1.4) and by the authors in [3] for the equation∫

G

f(xty) dµ(t) +

∫

G

f(xtσ(y)) dµ(t) = 2f(x)f(y), x, y ∈ G,

where σ is a continuous automorphism of G such that σ ◦ σ = I.
In the sequel, we need the following notations.
Let G be a connected Lie group. D(G) denote the algebra of the left invariant

differential operators on G, i.e., for all D ∈ D(G) and for all a ∈ G

L(a)Df = DL(a)f for all f ∈ C∞(G),

where L(a)f(x) = f(a−1x) for all x ∈ G.
We recall (see [17], Proposition II.3) that K has a Lie group structure, the

canonical map K × G → G sending (k, x) onto k · x is C∞ and if f ∈ C∞(G),
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then so does k · f for any k ∈ K because continuous homomorphisms between
Lie groups automatically are C∞.

Throughout this section, we assume that µ satisfies the following conditions:
1) µ is a K-invariant measure with compact support on G and
2) µ ∗ µ = µ.
The symbol C∞

µ (G) = µ̌ ∗ C∞ ∗ ∆µ̌ stands for all C∞-functions which are
µ-biinvariant on G. The subspace of C∞

µ (G) of functions which are K-invariant
will be denoted by C∞

µ,K(G).
For any operator D on C∞(G), we define the new operator by

DK
µ f(x) = D

{
MK(L(x−1)f)µ

}
(e)

for all f ∈ C∞(G) and x ∈ G.
We will next describe some properties of DK

µ that will be used later.

Proposition 4.1. Our assumptions imply
(1) DK

µ is a left invariant operator;

(2) k ·DK
µ f = DK

µ k · f for all k ∈ K and for all f ∈ C∞(G);

(3) (DK
µ f)(e) = D(MKfµ)(e). In particular, if f is a µ-biinvariant and K-

invariant function on G, then we have (DK
µ f)(e) = (Df)(e);

(4) If f is a solution of equation (4.1) which satisfies
∫

G
f(xt)dµ(t) = f(x)

for all x ∈ G, then f is an eigenfunction of the operators DK
µ . More precisely

DK
µ f = (Df)(e)f and, consequently, f is analytic on G.

Proof. (1) First we choose an arbitrary function f ∈ C∞(G). For each fixed
a ∈ G and for all x ∈ G, we have

L(a)(DK
µ f)(x) = DK

µ f(a−1x) = D
{
MK(L(x−1a)f)µ

}
(e)

= D
{
MK(L(x−1)L(a)f)µ

}
(e) = DK

µ (L(a)f)(x),

which implies that DK
µ is a left invariant operator on G.

(2) If we now take arbitrary k′ ∈ K, then for all x ∈ G we have

k′−1 · (DK
µ f)(x) = (DK

µ f)(k′ · x) = D
{
MK(L(k′ · x−1)f)µ

}
.

For all y ∈ G we have

MK

{
L(k′ · x−1f)µ

}
(y) =

∫

K

(
L(k′ · x−1)f

)
µ
(k · y) dk

=

∫

G

∫

K

∫

G

L(k′ · x−1)f(tk · ys) dµ(t) dµ(s) dk

=

∫

G

∫

G

∫

K

f(k′ · xtk · ys) dµ(t) dµ(s) dk

and

MK

{(
L(x−1)k′−1 · f)

µ

}
(y) =

∫

K

(
L(x−1)k′−1 · f)

µ
(k · y) dk
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=

∫

G

∫

K

∫

G

L(x−1)k′−1 · f(tk · ys) dk dµ(t) dµ(s)

=

∫

G

∫

K

∫

G

k′−1 · f(xtk · ys) dk dµ(t) dµ(s)

=

∫

G

∫

K

∫

G

f
(
k′ · xk′ · t(k′k) · yk′ · s) dk dµ(t) dµ(s).

Since µ is K-invariant and K is unimodular, we get∫

G

∫

K

∫

G

f
(
k′ · xk′ · t(k′k) · yk′ · s) dk dµ(t) dµ(s)

=

∫

G

∫

K

∫

G

f(k′ · xtk · ys) dk dµ(t) dµ(s).

Consequently, we have the equality

k ·DK
µ f = DK

µ k · f for all k ∈ K.

(4) Since f is a solution of equation (4.1), then for all x, y ∈ G,

MK(L(x−1)f)µ(y) =

∫

K

(L(x−1)f)µ(k · y) dk

=

∫

G

∫

G

∫

K

(L(x−1)f)(tk · ys) dk dµ(t) dµ(s)

=

∫

K

∫

G

∫

G

f(xtk · ys) dk dµ(t) dµ(s).

In view of
∫

G
f(xs)dµ(s) = f(x) for all x ∈ G we get

MK(L(x−1)f)µ(y) =

∫

K

∫

G

f(xtk · y) dk dµ(t) = f(x)f(y),

which implies that MK(L(x−1)f)µ = f(x)f and consequently DK
µ f = (Df)(e)f .

Now let us prove that any solution f of (4.1) is analytic on G. We first show
that f ∈ C∞(G). Formula (2.2) shows that

MK(µ̌ ∗ h ∗ f) = 〈h, f̌〉f for all h ∈ L1(G, dx).

Consequently, by choosing h ∈ C∞
µ,K(G) with compact support and such that

〈h, f̌〉 = 1, we get h ∗ f = MK(µ̌ ∗ h ∗ f) = 〈h, f̌〉f = f , i.e., h ∗ f = f . Since
h ∈ C∞(G), so is the convolution and we conclude that f ∈ C∞(G).

On the other hand, if D = 4 denotes the Laplace–Beltrami operator on G,
then in view of ([11], p. 400), 4 is elliptic and has analytic coefficients. Since
4f = 4K

µ f = 4(f)(e)f , by using Theorem of S. Bernstein [12] we get that f
is analytic. This ends the proof of the proposition. ¤
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We now state and prove the following proposition.

Proposition 4.2. With the assumptions above on G, K and µ and if D ∈
D(G), then for all f ∈ C∞

µ,K(G),

DK
µ f = MK(Df ∗ 4µ̌).

In particular the restriction of DK
µ to C∞

µ,K(G) is an endomorphism.

Proof. Let D ∈ D(G) and f ∈ C∞
µ,K(G), then for all x, y ∈ G we have

MK

(
L(x−1)f

)
µ
(y) =

∫

G

∫

G

∫

K

f(xtk · ys) dk dµ(t) dµ(s)

=

∫

G

∫

K

f(xtk · y) dµ(t) dk =

∫

K

∫

G

k−1 · f(k−1 · xk−1 · ty) dµ(t) dk.

Since µ and f are K-invariant, we get
∫

K

∫

G

k−1 · f(k−1 · xk−1 · ty) dµ(t) dk =

∫

K

∫

G

f(k−1 · xty) dµ(t) dk

=

∫

K

∫

G

f(k · xty) dµ(t) dk =

∫

K

∫

G

L((k · xt)−1)f(y) dµ(t) dk.

Consequently,

D
{
MK(L(x−1)f)µ

}
(e) =

∫

K

∫

G

L((k · xt)−1)Df(e) dk dµ(t)

=

∫

K

∫

G

Df(k · xt) dk dµ(t) =

∫

K

Df ∗ 4µ̌(k · x) dk = MK(Df ∗ 4µ̌)(x),

which proves that

DK
µ f = MK(Df ∗ 4µ̌).

From this it follows that DK
µ f is a K-invariant function on G.

Now we are able to prove that DK
µ f is a µ-biinvariant function.

First, we show that Df ∗ 4µ̌ is µ-biinvariant.

µ̌ ∗ (Df ∗ 4µ̌) ∗ 4µ̌ = µ̌ ∗Df ∗ 4µ̌ = D(µ̌ ∗ f) ∗ 4µ̌ = Df ∗ 4µ̌,

which proves that Df ∗ 4µ̌ is a µ-biinvariant function on G.
Now for all x ∈ G we have

(
µ̌ ∗MK(Df ∗ 4µ̌) ∗ 4µ̌

)
(x) =

∫

G

∫

G

MK(Df ∗ 4µ̌)(txs) dµ(t) dµ(s)

=

∫

G

∫

G

∫

K

(
Df ∗ 4µ̌)(k · tk · xk · s)) dk dµ(t) dµ(s)
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=

∫

G

∫

G

∫

K

(
Df ∗ 4µ̌)(tk · xs)

)
dk dµ(t) dµ(s).

Since Df ∗ 4µ̌ is µ-biinvariant, we get∫

G

∫

G

∫

K

(Df ∗ 4µ̌)(tk · xs) dµ(t) dµ(s) dk =

∫

K

(Df ∗ 4µ̌)(k · x) dk

= MK(Df ∗ 4µ̌)(x),

from which we deduce that DK
µ f is µ-biinvariant. ¤

In the next theorem, we prove the main result of this section.

Theorem 4.1. Let µ ∈ M(G) be a K-invariant, idempotent measure with
compact support. If f ∈ C(G), then the following statements are equivalent:

(1) f is a solution of the equation
∫

G

{ ∫

K

f(xtk · y) dk

}
dµ(t) = f(x)f(y) for all x, y ∈ G,

(2) (a) f is µ-biinvariant,
(b) f is K-invariant,
(c) f ∈ C∞(G),
(d) f is analytic,
(e) f is a joint eigenfunction of the operators DK

µ for all D ∈ D(G).

Proof. (1) ⇒ (2) follows directly from Proposition 4.1. Conversely, suppose that
the assumptions (a), (b), (c), d and (e) hold and let us consider the function
defined on G by

F (y) =

∫

K

∫

G

f(k · xty) dk dµ(t),

where x is an arbitrary element of G.
It is easy to verify that F is a µ-biinvariant function on G. Concerning the

K-invariance of F , for each fixed k′ ∈ K and for all y ∈ G we have

F (k′ ·y) =

∫

G

∫

K

f(k ·xtk′ ·y) dk dµ(t) =

∫

G

∫

K

k′−1.f((k′−1k) ·xk′−1 · ty) dk dµ(t).

Since µ and f are K-invariant, we obtain∫

G

∫

K

k′−1 · f(
(k′−1k) · xk′−1 · ty)

dk dµ(t) =

∫

G

∫

K

f
(
(k′−1k) · xty

)
dk dµ(t),

and from the left-invariance of dk follows the equality∫

G

∫

K

f
(
(k′−1k) · xty

)
dk dµ(t) =

∫

G

∫

K

f(k · xty) dk dµ(t) = F (y),

which proves that F is K-invariant.
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Now F (y) can be written in the form

F (y) =

∫

G

∫

K

L
(
(k · xt)−1

)
f(y) dk dµ(t).

By Proposition 4.1 DK
µ is left invariant so that we get

DK
µ F (y) =

∫

G

∫

K

DK
µ f(k · xty) dk dµ(t)

= D(f)(e)

∫

G

∫

K

f(k · xty) dk dµ(t) = D(f)(e)F (y),

which implies that
DK

µ F (e) = D(f)(e)f(x). (4.2)

In view of Proposition 4.1, DK
µ F (e) = DF (e), and from (4.2) we get

D(F − F (e)f)(e) = 0 for all D ∈ D(G).

Since F − F (e)f is analytic on the connected Lie group G, by Helgason [11],
we obtain F = f(x)f , which can be rewritten as

∫

G

{ ∫

K

f(k · xty) dk

}
dµ(t) = f(x)f(y) for all x, y ∈ G.

By using the same methods as in the proof of Proposition 4.2 we get∫

G

{∫

K

f(xtk · y) dk

}
dµ(t) =

∫

G

{∫

K

f(k · xty) dk

}
dµ(t) = f(x)f(y)

for all x, y ∈ G. This ends the proof of the theorem. ¤
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8. E. Elqorachi, Éléments de Gel’fand dans une algèbre de Banach involutive et cer-
taines questions d’analyse harmonique. Doctorat de Troisième cycle. Uni. Cadi Ayyad,
Marrakech, (Maroc), 1995.

9. E. Elqorachi and M. Akkouchi, On generalized d’Alembert and Wilson functional
equations. Aequationes Math. 66(2003), No. 3, 241–256.

10. E. Elqorachi, M. Akkouchi, and A. Bakali, On Gel’fand elements of Banach alge-
bras and related problems of harmonic analysis. Libertas Math. 15(1995), 107–118.

11. S. Helgason, Differential geometry and symmetric spaces. Pure and Applied Mathemat-
ics, XII. Academic Press, New York–London, 1962.

12. F. John, Plane waves and spherical means applied to partial differential equations. In-
terscience Publishers, New York-London, 1955.

13. M. A. Naimark, Normed algebras. Translated from the second Russian edition by Leo
F. Boron. Third edition. Wolters-Noordhoff Series of Monographs and Textbooks on Pure
and Applied Mathematics. Wolters-Noordhoff Publishing, Groningen, 1972.

14. H. Shin’ya, Spherical matrix functions and Banach representability for locally compact
motion groups. Japan. J. Math. (N.S.) 28(2002), No. 2, 163–201.

15. H. Stetkær, Functional equations and Spherical functions. Aarhus Univ. Preprint Series
18(1994).

16. H. Stetkær, D’Alembert’s equation and spherical functions. Aequationes Math. 48
(1994), No. 2-3, 220–227.

17. H. Stetkær, Wilson’s functional equations on groups. Aequationes Math. 49(1995), No.
3, 252–275.

(Received 25.10.2003; revised 22.04.2004)

Authors’ addresses:

Elhoucien Elqorachi
University of Ibnou Zohr
Faculty of Sciences
Department of Mathematics
Agadir, Morocco
E-mail: elqorachi@hotmail.com

Mohamed Akkouchi
University of Cadi Ayyad
Faculty of Sciences, Semlalia
Department of Mathematics
Marrakech, Morocco
E-mail: makkouchi@hotmail.com

Allal Bakali
University of Ibnou Tofail
Faculty of Sciences
Department of Mathematics
Kenitra, Morocco

Bouikhalene Belaid
University of Ibnou Tofail
Faculty of Sciences
Department of Mathematics
Kenitra, Morocco
E-mail: bbouikhalene@yahoo.fr


