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ON NEGLIGIBLE AND ABSOLUTELY NONMEASURABLE
SUBSETS OF THE EUCLIDEAN PLANE

A. KHARAZISHVILI

Abstract. The notions of a negligible set and of an absolutely nonmea-
surable set are introduced and discussed in connection with the measure
extension problem. In particular, it is demonstrated that there exist subsets
of the plane R2 which are T2-negligible and, simultaneously, G-absolutely
nonmeasurable. Here T2 denotes the group of all translations of R2 and G
denotes the group generated by {g} ∪ T2, where g is an arbitrary rotation
of R2 distinct from the identity transformation and all central symmetries
of R2.
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It is well known that the group of all motions of the Euclidean plane R2 is
solvable hence amenable and, in fact, there are no equidecomposability para-
doxes in R2 (in this context, the classical Banach theorem on the existence of
universal finitely additive motion-invariant normalized measures on R2 must be
indicated). However, various subsets of R2 were constructed with strange and,
in some sense, paradoxical geometric properties.

The best known example of such a set is due to Mazurkiewicz. Recall that he
constructed a subset of the plane which meets every straight line of the plane
in exactly two points.

Other interesting examples are due to Sierpiński and Davies (see [1] and [2]).
Let us remind that in his famous work [1], Sierpiński showed that the Con-

tinuum Hypothesis is equivalent to the existence of a partition of the plane R2

into two sets A and B, such that A meets every straight line parallel to the axis
R × {0} in countably many points and, similarly, B meets every straight line
parallel to the axis {0} ×R in countably many points.

It should be underlined that this partition became a starting point for further
investigations concerning plane sets with strange properties from the measure-
theoretical viewpoint (see, for instance, [3]).

In the present article we are going to give one application of the above-
mentioned Sierpiński partition to constructions of sets which, on the one hand,
are rather good with respect to translation-invariant measures on the plane R2

and, on the other hand, are extremely bad with respect to motion-invariant
measures on R2. Moreover, applying the method developed in [4] (cf. also [5]),
we are able to extend constructions of this sort to the case of the Euclidean
space Rn where n ≥ 3.

Throughout this article, it will be convenient to utilize the following notation:
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Tn = the group of all translations of the space Rn;
Sn = the group generated by all central symmetries of Rn;
Mn = the group of all motions (i.e., isometric transformations) of Rn.
Note that, for n ≥ 2, we have the following proper inclusions:

Tn ⊂ Sn ⊂ Mn.

Note also that the group Sn is generated by Tn and the symmetry of the space
Rn with respect to its origin. Moreover, Tn is a normal subgroup of Mn.

We also recall that the symbol On denotes the group of all linear orthogonal
transformations of Rn. Respectively, the symbol O+

n stands for the group of all
proper orthogonal transformations of Rn which are usually called the rotations
of this space (about its origin).

If n = 1, then On consists exactly of two elements: the identity transformation
and the symmetry with respect to the origin. Therefore, O+

n is trivial, i.e., is
reduced to the identity transformation.

If n = 2, then On consists of all rotations (about the origin) and all sym-
metries with respect to straight lines passing through the origin. At the same
time, the group O+

n is commutative and is canonically isomorphic to the unit
circumference S1.

For n ≥ 3, the algebraic structure of O+
n becomes more complicated. Namely,

it turns out that this group contains a free subgroup of cardinality continuum.
This fact was first established by Sierpiński (see [6]) and it implies the existence
of various strong equidecomposability paradoxes in Rn or, respectively, in Sn−1

(for details, see [7]).
As a rule, paradoxical subsets of Rn turn out to be very bad from the measure-

theoretical viewpoint.
Let us introduce some definitions from the theory of invariant (more generally,

quasi-invariant) measures (cf. [4] and [5]).
Let E be a nonempty set and let G be a fixed group of transformations of E.
Let X be a subset of E. We shall say that X is G-negligible (in E) if the

following two conditions are satisfied:
(a) there exists at least one nonzero σ-finite G-quasi-invariant measure µ on

E such that X ∈ dom(µ) and µ(X) = 0;
(b) for any nonzero σ-finite G-quasi-invariant measure ν on E, the relation

X ∈ dom(ν) implies ν(X) = 0.
Let Y be a subset of E. We shall say that Y is G-absolutely nonmeasurable

(in E) if there exists no nonzero σ-finite G-quasi-invariant measure ν on E such
that Y ∈ dom(ν).

Some properties of negligible and absolutely nonmeasurable sets are discussed
in [4] and [5]. Here we focus our attention on analogous sets in the Euclidean
plane R2.

Let X be a subset of R2. Recall that X is said to be uniform in R2 if there
exists a straight line p ⊂ R2 such that card(p′∩X) ≤ 1 for every line p′ parallel
to p. In this case X is also said to be uniform with respect to p.
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Example 1. If X is a uniform subset of R2, then X is T2-negligible (and
S2-negligible). Moreover, it was shown in [8] that if p is a straight line in R2

and a set X ⊂ R2 is such that every line parallel to p meets X in finitely
many points, then X is T2-negligible (and S2-negligible). Actually, a similar
result can be formulated and proved for sets which are finite with respect to an
uncountable subgroup of a given commutative group (see [9]). In particular, if
every line parallel to p meets X in one or two points, then X turns out to be
T2-negligible (S2-negligible). This fact will be employed below.

Example 2. Assuming the Continuum Hypothesis and starting with a
Sierpiński partition of R2, it is not hard to define two sets A′ and B′ in R2

such that:
(1) the set A′ is uniform with respect to the axis R× {0};
(2) the set B′ is uniform with respect to the axis {0} ×R;
(3) there exists a countable family {hn : n < ω} of translations of R2, for

which we have

∪{
hn(A′ ∪B′) : n < ω

}
= R2.

Conversely, the existence of sets A′ and B′ satisfying the properties (1)–(3)
implies the validity of the Continuum Hypothesis. Note also that these prop-
erties of A′ and B′ enable us to demonstrate the T2-absolute nonmeasurability
(hence, S2-absolute nonmeasurability and M2-absolute nonmeasurability) of the
set A′ ∪ B′. Indeed, let ν be an arbitrary nonzero σ-finite T2-quasi-invariant
measure on R2 and suppose for a while that

A′ ∪B′ ∈ dom(ν).

Without loss of generality, we may assume that ν is a probability measure.
Now, relation (3) shows that

ν(A′ ∪B′) > 0.

On the other hand, by applying the classical Banach theorem (see, e.g., [4] or
[7]), we can extend ν to a finitely additive T2-quasi-invariant measure ν ′ defined
on the family of all subsets of R2. Since both the sets A′ and B′ are uniform,
we get

ν ′(A′) = ν ′(B′) = 0.

On the other hand, we have

0 < ν(A′ ∪B′) = ν ′(A′ ∪B′) ≤ ν ′(A′) + ν ′(B′) = 0,

which yields a contradiction. The contradiction obtained establishes the T2-
absolute nonmeasurability of A′ ∪B′.

Now, let g denote the rotation of the plane R2 (about its origin), which maps
the axis R× {0} onto the axis {0} ×R. Let us consider the set

Z = g(A′) ∪B′.

Since every straight line lying in R2 and parallel to the axis {0} × R meets
the set Z in one or two points, we may assert that Z is T2-negligible in R2 (cf.
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Example 1). At the same time, it can easily be observed that Z is G-absolutely
nonmeasurable in R2, where

G =
[{g} ∪ T2

]

denotes the group generated by g and T2. To see this, let us take a probability
G-quasi-invariant measure ν on R2 and suppose for a moment that Z ∈ dom(ν).
Without loss of generality, we may assume that ν is complete. Since T2 ⊂ G,
the measure ν is also T2-quasi-invariant and we must have ν(Z) = 0 (in view of
the T2-negligibility of Z). Therefore, ν(g−1(Z)) = 0 by virtue of the G-quasi-
invariance of ν. Hence, the equalities

ν(A′) = 0, ν(B′) = 0

are valid and yield ν(A′ ∪ B′) = 0. Now, applying (3), we easily come to
the equality ν(R2) = 0 which contradicts our assumption that ν(R2) = 1.
The contradiction obtained gives the required statement. Note that a slight
modification of this argument leads to a more general result stating (under
CH) that there exists a uniform subset X of R2 which covers R2 with the aid
of countably many transformations from G, i.e.,

∪{
gk(X) : k < ω

}
= R2

for some countable family {gk : k < ω} ⊂ G. In particular, X is T2-negligible
and G-absolutely nonmeasurable.

Example 3. Let {pk : k < ω} be an injective countable family of straight
lines in R2 passing through the origin. Recall the result of Davies who has
demonstrated in [2] that there exists a family {Xk : k < ω} of subsets of R2

satisfying the following conditions:
(1) ∪{Xk : k < ω} = R2;
(2) for each k < ω, the set Xk is uniform with respect to the line pk.
It is not hard to deduce from this result that there exists a uniform subset Z

of R2 such that

∪{
fi(Z) : i < ω

}
= R2

for some countable family {fi : i < ω} of motions of the plane. In particular,
the set Z turns out to be T2-negligible and M2-absolutely nonmeasurable.

In the sequel, we need several auxiliary propositions.

Lemma 1. Let g be a rotation of the plane R2 (about its origin 0). Then
there exists a field P ⊂ R of cardinality ω1, such that R2 can be represented in
the form

R2 = U + V
(
U ∩ V = {0}),

where U and V satisfy the following conditions:
1) U is a two-dimensional vector subspace of R2 over P ;
2) g(U) = U ;
3) V is a vector subspace of R2 over P .
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Proof. Let {e1, e2} be the canonical orthonormal basis in R2. Obviously, we
can write

g(e1) = a1e1 + a2e2, g(e2) = b1e1 + b2e2,

where a1, a2, b1, b2 are some (uniquely determined) real coefficients for which
we have

1 = |a1b2 − a2b1| 6= 0.

Let P be a subfield of R of cardinality ω1, such that

{a1, a2, b1, b2} ⊂ P.

This subfield can readily be constructed (e.g., by the method of transfinite
recursion). We put

U = Pe1 + Pe2.

It is easy to verify that g(U) = U . Finally, take as V an arbitrary vector space
(over the same P ) satisfying the relations

U + V = R2, U ∩ V = {0}.
The existence of such a V is evident. ¤

Lemma 2. Let G1 and G2 be any two groups identified, respectively, with
the groups of their left translations, let

φ : G1 → G2

be a surjective homomorphism and suppose that X is a G2-negligible subset of
G2. Then the set φ−1(X) is G1-negligible in G1.

We omit an easy proof of Lemma 2.

Lemma 3. Let E be a set, G be a group of transformations of E and let Y
be a G-absolutely nonmeasurable set in E. Then there exists a countable family
{gk : k < ω} of transformations from G, such that

∪{
gk(Y ) : k < ω

}
= E.

Proof. Suppose to the contrary that

∪{
gk(Y ) : k < ω

} 6= E

for any countable family {gk : k < ω} ⊂ G. Then Y is a member of some
G-invariant σ-ideal I of subsets of E. Obviously, there exists a G-invariant
probability measure µ on E such that I = I(µ). In particular, Y ∈ dom(µ).
Hence, Y cannot be G-absolutely nonmeasurable. The contradiction obtained
finishes the proof. ¤

Lemma 4. Let E be a set, G1 and G2 be two groups of transformations of
E, such that G1 ⊂ G2, and let Z be a G1-negligible set in E. Suppose also that
there exists a countable family {gi : i < ω} ⊂ G2 for which

∪{
gi(Z) : i < ω

}
= E.

Then the set Z is G2-absolutely nonmeasurable in E.
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The proof of this lemma is almost trivial and is omitted.
Now, we can formulate and prove the following statement.

Theorem 1. Let g be a rotation of the plane R2, distinct from the identity
transformation of R2 and all central symmetries of R2. Then there exists a set
Z ⊂ R2 such that:

1) Z is T2-negligible (and S2-negligible) in R2;
2) Z is G-absolutely nonmeasurable in R2, where G = [T2 ∪ {g}].

Proof. The argument below is very similar to the one given in Example 2.
First of all, we may assume without loss of generality that the fixed point of g
coincides with the origin 0 of R2, i.e., g ∈ O+

2 . Let us represent R2 in the form

R2 = U + V
(
U ∩ V = {0}),

where U and V are vector spaces over the field P ⊂ R described in Lemma 1.
For the two-dimensional vector space U , consider an analog of the Sierpiński
partition, corresponding to the following two axes in U : the “line” Pe1 and its
image under the transformation g (in fact, we are dealing here with a certain
“affine” version of the Sierpiński partition for U). Now, it is not hard to verify
that the argument of Example 2 works in our situation as well, and we do not
need the Continuum Hypothesis since

card(U) = card(P × P ) = card(P ) = ω1.

Therefore, we obtain a set X ⊂ U which is uniform in U (with respect to
the “line” Pe1) and has the property that the union X ∪ g(X) covers U by
using countably many translations of U . In particular, we see that X is a U -
negligible and G′-absolutely nonmeasurable subset of U , where G′ denotes the
group generated by U and g|U . Further, we define

Z = (X + V ) ∪ (
X + g−1(V )

)
.

We assert that Z is the required set in R2. In order to demonstrate this, let us
first observe that

g−1(V ) ∩ U = {0},
whence it follows that every “line” in R2 parallel to Pe1 meets Z in one or two
points. This implies that Z is a T2-negligible subset of R2 (cf. Example 1). On
the other hand, we have the inclusion(

X ∪ g(X)
)

+ V ⊂ Z ∪ g(Z)

which yields that the union Z ∪ g(Z) covers R2 with the aid of countably many
translations of R2. So we can conclude, in view of Lemma 4, that the set Z is
G-absolutely nonmeasurable in R2. ¤

Remark 1. Let g be a rotation of R2 about its origin 0. Suppose also that g
is of infinite order, i.e., gk differs from the identity transformation of R2 for all
strictly positive integers k. Take any straight line p0 in R2 passing through 0
and put

pk = gk(p0) (k < ω).
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We get the injective countable family of straight lines pk (k < ω), to which
the result of Davies can be applied. In this way, we obtain that there exists a
uniform subset Z of R2 which covers R2 by using countably many transforma-
tions from the group G generated by T2 and g. Therefore, Z is T2-negligible
and G-absolutely nonmeasurable in R2. However, this method does not work
for rotations of finite order.

Remark 2. We do not know whether there exists a subset of R2 which is
T2-negligible and S2-absolutely nonmeasurable.

Now, taking into account Lemmas 2, 3 and 4, we can extend Theorem 1 to
Euclidean spaces of higher dimension. For the sake of simplicity, we formulate
here the corresponding result only for the three-dimensional Euclidean space R3.

Theorem 2. Let g be a rotation of the space R3, whose corresponding
angle differs from 0 and π, and let G denote the group generated by g and
T3. Then there exists a subset Z of R3 which is T3-negligible and G-absolutely
nonmeasurable.

Proof. Let us represent R3 in the form of a direct product:

R3 = R2 ×R.

Without loss of generality, we may assume that the axis of fixed points of g
coincides with the second factor in this product (in particular, g ∈ O+

3 ). By
virtue of Theorem 1, there exists a set Y ⊂ R2 which is T2-negligible and G′-
absolutely nonmeasurable, where G′ stands for the group generated by T2 and
the restriction of g to the first factor in the product R2 × R. Now, applying
Lemma 2 to the canonical surjective group homomorphism

pr1 : R2 ×R → R2,

we infer that the set

Z = Y ×R ⊂ R3

is T3-negligible in R3. Further, applying Lemma 3 to R2, G′ and Y , we deduce
that

∪{
g′i(Y ) : i < ω

}
= R2

for some countable family {g′i : i < ω} of transformations from G′ and, conse-
quently,

∪{
gi(Z) : i < ω

}
= R2 ×R = R3

for some countable family {gi : i < ω} of transformations from G. Finally,
taking into account Lemma 4, we claim that Z is G-absolutely nonmeasurable
in R3. ¤

Remark 3. It is not hard to verify that the group G in the preceding theorem
is solvable, hence amenable. Therefore, it does not admit equidecomposability
paradoxes.
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Remark 4. By applying the same result of Davies, one can easily infer that
there exists a subset of R3 which is T3-negligible (or S3-negligible) and M3-
absolutely nonmeasurable. On the other hand, there are some constructions of
extremely paradoxical subsets of R3 whose existence is essentially caused by the
existence of large free subgroups of the group O+

3 (see [7] where strong versions
of the Banach-Tarski paradox are discussed in detail). It would be interesting to
obtain a T3-negligible and M3-absolutely nonmeasurable set by utilizing those
constructions.

Remark 5. A proper subclass of negligible sets, consisting of the so-called
absolutely negligible sets, is of special interest for the general theory of invariant
(quasi-invariant) measures. Recall that these sets are defined as follows (see [4]
or [5]).

Let E be a nonempty set and let G be a group of transformations of E (in
other words, we have a space equipped with a transformation group). Let X
be a subset of E. We say that X is G-absolutely negligible if, for every nonzero
σ-finite G-quasi-invariant measure µ on E, there exists a G-quasi-invariant mea-
sure µ′ on E extending µ and satisfying the equality µ′(X) = 0.

Note that, in general, the class of negligible sets does not form an ideal of
subsets of a given space (in this connection see, e.g., [8] and [9]). At the same
time, it directly follows from the definition that the class of absolutely negligible
sets is an ideal in the Boolean algebra of all subsets of an original space. As
mentioned earlier in Example 1, any uniform subset of R2 is T2-negligible. On
the other hand, it was shown in [10] that there are uniform subsets of R2 which
are not T2-absolutely negligible.

In connection with this fact and with Theorems 1 and 2, the following question
seems to be interesting:

Let a natural number n be greater than or equal to 2. Does there exist a subset
of the Euclidean space Rn which is Tn-absolutely negligible and, simultaneously,
Mn-absolutely nonmeasurable? We do not know an answer to this question
even in the case n = 2. In other words, it is unknown whether there exists a
subset of the plane R2 which is T2-absolutely negligible and, simultaneously,
M2-absolutely nonmeasurable.
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