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ASYMPTOTIC BEHAVIOR OF GENERALIZED
NONEXPANSIVE SEQUENCES AND MEAN POINTS

H. K. PATHAK, D. O’REGAN, M. S. KHAN AND R. P. AGARWAL

Abstract. Let E be a real Banach space with norm ‖ · ‖ and let {xn}n≥0

be a generalized nonexpansive sequence in E (i.e., ‖ xi+1 − xj+1 ‖2 ≤ ‖xi−
xj‖2+(ε(i+1, j+1)−ε(i, j))2 for all i, j ≥ 0, where the series of nonnegative

terms
∑
i,j

ε(i, j) is convergent). Let K =
∞⋂

n=1
co

{
{xi − xi−1}i≥n

}
. We deal

with the mean point of {xn

n } concerning a Banach limit µ. If E is reflexive
and d = d(0,K) , then we show that d = d

(
0, co

{
xn−x0

n

})
and there exists

a point z0 with ‖ z0 ‖= d such that z0 ∈ co{xn−x0
n } . In the sequel, this

result is applied to obtain the weak and strong convergence of {xn

n }.
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Key words and phrases: Asymptotic behavior, Banach limit, mean point,
nonexpansive sequence, generalized nonexpansive sequence.

1. Introduction

Let E be a real Banach space with norm ‖ · ‖; we denote weak convergence
and strong convergence in E respectively by ⇀ and −→ and let {xn}n≥0 be a
generalized nonexpansive sequence in E (see Definition 2.1 below). Let K =
∞⋂

n=1

co
{{xi − xi−1}i≥n

}
. Djafari Rouhani [3] considered nonexpansive sequences

and obtained an interesting result on the weak convergence of {xn

n
} under the

assumption that E is reflexive and strictly convex. Recently, Jung and Park [7]
dropped the strict convexity requirement in the result of Djafari Rouhani, that
is, instead of the weak limit of {xn

n
} , they dealt with the mean point of {xn

n
}

concerning a Banach limit under the assumption that E is reflexive. The present
paper is motivated in part by Jung and Park’s application [8] of a Banach
limit technique due to Takahashi [16]. We consider a generalized nonexpansive
sequence and we use the mean point to obtain the weak convergence of {xn

n
},

in the case when E is reflexive and strictly convex. In addition we obtain the
strong convergence of {xn

n
}, in the case when E∗ has a Fréchet differentiable

norm. Our result extend and improve the corresponding results in [3], [7]–[11].

2. Preliminaries

Let E be a real Banach space; the norms of both E and its dual E∗ will
be denoted by ‖.‖. The duality pairing between E and E∗ will be denoted by
(·, ·). The duality mapping J from E into the family of nonempty closed convex
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subsets of E∗ is denoted by

J(x) =
{
x∗ ∈ E∗ : (x, x∗) =‖ x‖2 = ‖x∗‖2} .

It may be observed that for x, y ∈ E and j ∈ J(x),

(x− y, j) = ‖x‖2 − (y, j) ≥ ‖x‖2 − 1

2

(‖y‖2 + ‖j‖2) =
1

2

(‖x‖2 − ‖y‖2) .

We observe that if E is reflexive and strictly convex and K is a nonempty closed
convex subset of E, then the nearest point projection mapping PK of E onto
K is well defined, i.e., K is a Chebyshev set (see [1], [6]).

Definition 2.1. A sequence {xn}n≥0 ⊂ E is said to be a generalized nonex-
pansive sequence if it satisfies

‖ xi+1 − xj+1 ‖2 ≤ ‖ xi − xj ‖2 + (ε(i + 1, j + 1)− ε(i, j))2 (2.1)

for all i, j ≥ 0, where the series of nonnegative terms
∑
i,j

ε(i, j)is convergent.

Let µ be a mean on the integers N , i.e., a linear functional µ defined on `∞

such that
(a) µ(a) ≥ 0 if an ≥ 0 ∀ n,
(b) µ(a) = µ(σa) where σ denotes the right shift

σa = σ(a1, a2, a3, . . . ) = (a2, a3, a4, . . . ),

(c) µ(a) = 1 if a = (1, 1, 1, . . . ).
Then we know that µ is a mean on N if and only if

inf {an : n ∈ N} ≤ µ(a) ≤ sup {an : n ∈ N}
for every a = (a1, a2, . . . ) ∈ `∞. For convenience we use µn(an) instead of µ(a).
A mean µ on N is called a Banach limit (see [14]) if

µn(an) = µn(an+1)

for every a = (a1, a2, . . . ) ∈ `∞. The Hahn Banach theorem guarantees the
existence of a Banach limit [15]. We know that if µ is a Banach limit, then

lim inf
n→∞

an ≤ µn(an) ≤ lim sup
n→∞

an

for every a = (a1, a2, . . . ) ∈ `∞. Let E be a reflexive Banach space and let {xn}
be a bounded sequence in E. We now show for a Banach limit µ , there exists
a point x0 in E such that

µn(xn, x∗) = (x0, x
∗) ∀ x∗ ∈ E∗.

In fact, the function µn(xn, x∗) is linear in x∗. Also since

|µn (xn, x
∗)| ≤ (

sup
n
‖xn‖

) · ‖x∗‖ ,

it follows that the function µn(xn, x∗) is also bounded in x∗. Thus there is a
x∗∗0 ∈ E∗∗ such that µn(xn, x

∗) = (x∗∗0 , x∗) for every x∗ ∈ E∗. Since E is reflexive,
we can find a point x0 in E such that µn(xn, x

∗) = (x0, x
∗) for every x∗ ∈ E∗.
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This point x0 is called a mean point of {xn} concerning µ. Furthermore [7], we

also know that this mean point x0 ∈
∞⋂

n≥1

co {xn} .

Let S = {x ∈ E :‖ x ‖= 1}. Then the norm of E is called Fréchet differen-
tiable if for each x ∈ S, the limit

lim
t→0

‖ x + ty ‖ − ‖ x ‖
t

exists uniformly for each y ∈ S.

Lemma 2.1. Let {an}n≥0 be a sequence of nonnegative real numbers with
a0 = 0, the series of nonnegative terms

∑
i,j

ε(i, j) be convergent, and satisfying

an+p ≤ an+ap+ε(n+p, n), ∀ n ≥ 0,∀ p ≥ 1. Then the sequence {an

n
} converges

as n →∞ and lim
n→∞

an

n
= inf

n≥1

an

n
.

Proof. Let p ≥ 1 be fixed. Then by the division algorithm, for all n ≥ p, there
exists k ≥ 1 such that n = kp + i; 0 ≤ i < p.

Since the series of nonnegative terms
∑
i,j

ε(i, j) converges, there exists η > 0

such that
∑
i,j

ε(i, j) ≤ η. Now, for any p ≥ 1 (for notational purposes
∑1

2 = 0)

we have

akp ≤ k · ap +
k∑

j=2

ε(jp, (j − 1)p) ≤ k · ap +
∑

l,m

ε(l,m) ≤ k · ap + η.

Thus, we have
akp

kp + i
≤ k · ap + η

kp + i
≤ ap

p
+

η

k
∀ p ≥ 1.

Hence, we have

an

n
=

akp+i

kp + i
≤ akp + ai + ε(kp + i, kp)

kp + i
≤ ap

p
+

2 · η
k

+
ai

k

≤ ap

p
+

2 · η
k

+
max
0≤i<p

ai

k
.

Now letting n →∞, we have k →∞ and so for all p ≥ 1, we have lim sup
n→∞

an

n
≤

ap

p
. Therefore

lim sup
n→∞

an

n
≤ inf

p≥1

ap

p
≤ lim inf

n→∞
an

n
.

Hence

lim
n→∞

an

n
= inf

n≥1

an

n
. ¤

The following well known lemma will be useful later (cf. [3]).
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Lemma 2.2. E∗ has a Fréchet differentiable norm if and only if E is
reflexive and strictly convex, and has the following property: if xn ⇀ x and
‖ xn ‖→‖ x ‖ for a sequence {xn} in E, then {xn} converges strongly to x.

Let D be a subset of E. Then we denote the closure of D by D and the
closed convex hull of D by coD, respectively. For a point x in E, we denote its
distance from D by d (x, D) = inf

y∈D
‖x− y‖

3. Main Result

In this section, we deal with a generalized nonexpansive sequence {xn} in E
and study the mean point of {xn

n
} concerning a Banach limit. We begin with

the following lemmas which will play crucial roles in the proof of our main re-
sult. We shall also use the following basic inequality

(a + b)q ≤ aq + bq (3.1)

for 0 < q ≤ 1 and a, b ≥ 0.

Lemma 3.1. Let E be a Banach space and let {xn} be a generalized nonex-
pansive sequence in E. Then lim

n→∞
‖ xn

n
‖ exists and

lim
n→∞

∥∥∥xn

n

∥∥∥ = inf
n≥1

∥∥∥∥
xn − x0

n

∥∥∥∥ .

Proof. Let an =‖ xn − x0 ‖ ∀ n ≥ 1. Now applying (3.1) to the generalized
nonexpansive sequence {xn} successively, we obtain for all p ≥ 1 that

an+p =‖ xn+p − x0 ‖≤‖ xn+p − xn ‖ + ‖ xn − x0 ‖

≤‖ xp − x0 ‖ +
n∑

j=1

[ε(j + p, j)− ε(j − 1 + p, j − 1)]+ ‖ xn − x0 ‖

=‖ xp − x0 ‖ +ε(n + p, n)− ε(p, 0)+ ‖ xn − x0 ‖
≤ an + ap + ε(n + p, n).

Hence the result follows from Lemma 2.1. ¤

Lemma 3.2. Let {an}n≥1 be a sequence of positive real numbers (i.e., an > 0

for each n) and bn =
n∑

i=1

ai. Assume that bn ↑
∞∑
i=1

ai = ∞. If {xn} is a sequence

of real numbers such that xn → x, then we have

lim
n→∞

1

bn

n∑
i=1

aixi = x.

Proof. Let ε > 0. Choose some k such that |xn − x| < ε
2

for each n ≥ k. Put

M = max{|xi − x| : i = 1, . . . , k}, and then select l > k such that Mbk

bn
< ε

2
for
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all n ≥ l. Now notice that if n ≥ l, then
∣∣∣∣

1

bn

n∑
i=1

aixi − x

∣∣∣∣ =

∣∣∣∣
1

bn

n∑
i=1

aixi − 1

bn

n∑
i=1

aix

∣∣∣∣

≤ 1

bn

k∑
i=1

ai|xi − x|+ 1

bn

n∑

i=k+1

ai|xi − x|

≤ Mbk

bn

+
ε

2
<

ε

2
+

ε

2
= ε

and the conclusion follows. ¤

Lemma 3.3. Let E be a reflexive Banach space and let {xn} be a generalized
nonexpansive sequence in E. Let

K =
∞⋂

n=1

co
{{xi − xi−1}i≥n

}
.

Then lim
n→∞

‖ xn

n
‖ = d(0, K) = inf

n≥1
‖ xn−x0

n
‖ .

Proof. Let k ≥ 1 be fixed and jn ∈ J(xn−xk−1) for n ≥ k. Now the generalized
sequence {xn} yields for n ≥ k that

(xk − xk−1, jn) ≥ 1

2
‖ xn − xk−1 ‖2 −1

2
‖ xn − xk ‖2

≥ 1

2
‖ xn − xk−1 ‖2 −1

2
‖ xn−1 − xk−1 ‖2 −1

2
· (ε(n, k)− ε(n− 1, k − 1))2.

Hence we obtain

2

n2

(
xk − xk−1,

n∑

i=k

ji

)
≥

∥∥∥∥
xn − xk−1

n

∥∥∥∥
2

− 1

n2

n∑

i=k

(ε(i, k)− ε(i− 1, k − 1))2

≥
∥∥∥∥
xn − xk−1

n

∥∥∥∥
2

− 1

n2
· 2

∑
i,j

ε2(i, j) ∀ k ≥ 1. (3.2)

Let Sn = 2
n2

n∑
i=k

ji for n ≥ k. Then we have

‖ Sn ‖≤ 2

n2

n∑

i=k

‖ xi − xk−1 ‖= 2

n2

n∑

i=k

i

∥∥∥∥
xi − xk−1

i

∥∥∥∥.

Since {xn

n
} is bounded by Lemma 3.1, it then follows that {Sn} is bounded.

Hence by the weak* compactness of the closed unit ball of E∗ the sequence
{Sn} has a weak* cluster point j ∈ E∗ (obviously independent of k ≥ 1). Since∑
i,j

ε(i, j) is bounded ∀ k ≥ 1, we obtain from Lemma 3.1 and (3.2) that

(xk − xk−1, j) ≥ lim
n→∞

∥∥∥xn

n

∥∥∥
2

∀ k ≥ 1.
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Hence for any n ≥ 1, we have
(

xn − x0

n
, j

)
≥ lim

n→∞

∥∥∥∥
xn

n

∥∥∥∥
2

. (3.3)

From Lemma 3.2, replacing ai by i, bn by
∑n

i=1 i = n(n+1)
2

and note that
limn→∞ bn = ∞, we obtain

lim sup
n→∞

2

n2

n∑

i=k

i

∥∥∥∥
xi − xk−1

i

∥∥∥∥ = lim sup
n→∞

[
n(n + 1)

n2
· 2

n(n + 1)

n∑

i=k

i

∥∥∥∥
xi − xk−1

i

∥∥∥∥
]

= lim
n→∞

(
1 +

1

n

)
· lim sup

n→∞

2

n(n + 1)

n∑
i=1

i

∥∥∥∥
xi − xk−1

i

∥∥∥∥

= lim
n→∞

∥∥∥∥
xn − xk−1

n

∥∥∥∥.

Now using above inequality, we also have

‖ j ‖ ≤ lim inf
n→∞

‖ Sn ‖≤ lim inf
n→∞

2

n2

n∑

i=k

i

∥∥∥∥
xi − xk−1

i

∥∥∥∥

≤ lim sup
n→∞

2

n2

n∑

i=k

i

∥∥∥∥
xi − xk−1

i

∥∥∥∥ = lim
n→∞

∥∥∥∥
xn − xk−1

n

∥∥∥∥ = lim
n→∞

∥∥∥∥
xn

n

∥∥∥∥
and so it follows that

(xk − xk−1, j) ≥ lim
n→∞

∥∥∥∥
xn

n

∥∥∥∥
2

≥‖ j‖2 ∀ k ≥ 1.

Hence for any z ∈ co
{{xi+1 − xi}i≥0

}

1

2
lim

n→∞

∥∥∥∥
xn

n

∥∥∥∥
2

+
1

2
‖ z‖2 ≥ 1

2
‖ j‖2 +

1

2
‖ z‖2

≥ (z, j) ≥ lim
n→∞

∥∥∥∥
xn

n

∥∥∥∥
2

≥‖ j‖2. (3.4)

Since K ⊂ co
{{xi+1 − xi}i≥0

}
, it follows from (3.4) that

‖ j ‖≤ lim
n→∞

∥∥∥∥
xn

n

∥∥∥∥ ≤ inf
z∈K

‖ z ‖= d(0, K).

Since {xn

n
} is bounded, it follows that {xn−x0

n
} is bounded and E is reflexive,

therefore, by Eberlein–Smulian theorem the sequence {xn−x0

n
} contains a weakly

convergent subsequence {xni−x0

ni
}. Suppose

xni−x0

ni
⇀ q for some q ∈ K. Then

we have

‖q‖ ≤ lim inf
i→∞

∥∥∥∥
xni

− x0

ni

∥∥∥∥ = lim
n→∞

∥∥∥xn

n

∥∥∥ .

Hence
lim

n→∞

∥∥∥xn

n

∥∥∥ = d(0, K).
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This completes the proof. ¤
Now using Lemmas 3.1 and 3.3, we obtain the main result.

Theorem 3.4. Let E be a reflexive Banach space and let {xn} be a generalized
nonexpansive sequence in E. Let

K =
∞⋂

n=1

co
{{xi − xi−1}i≥n

}

and d = d(0, K). Then d = d
(
0, co

{
xn−x0

n

})
and there exists a point z0 with

‖ z0 ‖= d such that z0 ∈ co{xn−x0

n
} .

Proof. In view of Lemma 3.3, we may assume that {xn−x0

n
}n≥1 is bounded.

Now, it follows from the reflexiveness of E that for a Banach limit µ, there
exists z0 ∈ co{xn−x0

n
} such that

µn

(
xn − x0

n
, x∗

)
= (z0, x

∗) ∀ x∗ ∈ E∗. (3.5)

Now, for j0 ∈ J(z0) we have

‖ z0 ‖2= (z0, j0) = µn

(
xn − x0

n
, j0

)

≤ µn

(∥∥∥∥
xn − x0

n

∥∥∥∥
)
· ‖ j0 ‖= d· ‖ j0 ‖= d· ‖ z0 ‖,

and hence ‖ z0 ‖≤ d. From the proof of Lemma 3.3 and (3.3), there exists a
functional j ∈ E∗ with ‖ z0 ‖≤ d such that

(
xn − x0

n
, j

)
≥ d2 ∀ n ≥ 1. (3.6)

As a result we have (z0, j) ≥ d2. Since ‖ j ‖≤ d, we obtain

d2 ≥‖ z0 ‖ · ‖ j ‖≥ (z0, j) ≥ d2

and hence ‖ z0 ‖=‖ j ‖= d. From (3.6), it follows that (z0, j) ≥ d2 for every
z ∈ co{xn−x0

n
} and so

‖ z ‖ ·d =‖ z ‖ · ‖ j ‖≥ (z, j) ≥ d2.

Hence ‖ z ‖≥ d for every z ∈ co{xn−x0

n
}. As a result we obtain

d = d

(
0, co

{
xn − x0

n

})
.

Now suppose that there is another point w0 satisfying (3.5). Then for j ∈
J(z0 − w0) , we have

‖ z0 − w0 ‖2= (z0 − w0, j) = µn

(
xn − x0

n
− xn − x0

n
, j

)
= 0,

and hence z0 = w0. This completes the proof. ¤
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Corollary 3.5. Suppose E, {xn}, K and d are as in Theorem 3.4. Then we
have the following:

(i) If E is strictly convex, then the weak lim
n→∞

xn

n
exists and coincides with

PK0 with ‖ PK0 ‖= d;
(ii) If E∗ has a Fréchet differentiable norm, the strong lim

n→∞
xn

n
exists and

coincides with PK0.

Proof. (i). Since E is strictly convex, the set{
z ∈ co

{xn − x0

n

}
:‖ z ‖= d

}

consists of exactly one point and d(0, K) =‖ PK0 ‖. It may be observed that
this point equals z0 in Theorem 3.4. Let {xni

ni
} be a subsequence of {xn

n
} such

that {xni

ni
} converges weakly to p ∈ K. Then since

‖p‖ ≤ lim inf
i→∞

∥∥∥∥
xni

ni

∥∥∥∥ = lim
n→∞

∥∥∥xn

n

∥∥∥ =‖ PK0 ‖

we have p = z0 = PK0. Then {xn

n
} converges weakly to PK0. This completes

the proof.
(ii) This is an immediate consequence of (i) and Lemma 2.2. ¤
Remark 3.1. (1) Let {xn}n≥0 be a nonexpansive sequence in E (i.e., ‖ xi+1−

xj+1 ‖≤‖ xi − xj ‖ for all i, j ≥ 0). Then lim
n→∞

∥∥xn

n

∥∥ exists [2, Theorem 3.1]

and {xn}n≥0 also satisfies (2.1). Thus Theorem 3.4 is a partial generalization
of Theorem 3.3 in [7].

(2) Since our study is equivalent to the study of the asymptotic behavior of
the sequence

{
T nx

n

}
n≥1

in E, T is a nonexpansive mapping from an arbitrary

set K of E into itself and x ∈ K, Theorem 3.4 is a partial improvement of
Theorem 5 in [13].

(3) Our results extend and improve the corresponding results in [7]–[11].
(4) Our result may also be applied to the asymptotic behavior of curves in E,

and thus to the asymptotic behavior of unbounded trajectories for the quasi-
autonomous dissipative system du

dt
+ Au 3 f where A is an accretive (possibly

multivalued) operator in E ×E, see [2] for the case when E is a Hilbert space.
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