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ASYMPTOTIC BEHAVIOR OF GENERALIZED
NONEXPANSIVE SEQUENCES AND MEAN POINTS

H. K. PATHAK, D. O'REGAN, M. S. KHAN AND R. P. AGARWAL

Abstract. Let E be a real Banach space with norm | - || and let {x,,}n>0
be a generalized nonexpansive sequence in E (i.e., || 241 — 41 I1? < ||as —
x>+ (e(i+1,j+1)—e(i,5))? for all i, j > 0, where the series of nonnegative

jjl@ {{wZ — xifl}izn} . We deal

terms Y e(i,7) is convergent). Let K =
.3

with th7e mean point of {#=} concerning a Banach limit p. If E is reflexive
and d = d(0, K) , then we show that d = d (0, @0 {2222 }) and there exists

a point zg with || 2o ||= d such that zp € co{%—=2} . In the sequel, this

n
result is applied to obtain the weak and strong convergence of {%=}.
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1. INTRODUCTION

Let E be a real Banach space with norm || - ||; we denote weak convergence
and strong convergence in E respectively by — and — and let {z,},>0 be a
generalized nonexpansive sequence in E (see Definition 2.1 below). Let K =

N @ {{z; — zi_1},5, } - Djafari Rouhani [3] considered nonexpansive sequences
n=1 -
and obtained an interesting result on the weak convergence of {#=} under the

assumption that F is reflexive and strictly convex. Recently, Jung and Park [7]
dropped the strict convexity requirement in the result of Djafari Rouhani, that
is, instead of the weak limit of {Z»} | they dealt with the mean point of {%=}
concerning a Banach limit under the assumption that E is reflexive. The present
paper is motivated in part by Jung and Park’s application [8] of a Banach
limit technique due to Takahashi [16]. We consider a generalized nonexpansive
sequence and we use the mean point to obtain the weak convergence of {Z},
in the case when F is reflexive and strictly convex. In addition we obtain the
strong convergence of {£2}, in the case when E£* has a Fréchet differentiable
norm. Our result extend and improve the corresponding results in [3], [7]-[11].

2. PRELIMINARIES

Let I be a real Banach space; the norms of both E and its dual E* will
be denoted by ||.||. The duality pairing between E and E* will be denoted by
(+,+). The duality mapping J from E into the family of nonempty closed convex
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subsets of E* is denoted by
J(@) ={a* € E*: (z,2") =|| «||* = [|«"|*} .
It may be observed that for z,y € F and j € J(x),

1 1
. 2 . 2 2 .12 2 2
(@ =9.3) = l2ll” = (.5) = ll=” = 5 (Iwl” + 51°) = 5 (=" = llyl) -

We observe that if F is reflexive and strictly convex and K is a nonempty closed

convex subset of E, then the nearest point projection mapping Pk of E onto
K is well defined, i.e., K is a Chebyshev set (see [1], [6]).

Definition 2.1. A sequence {z,},>0 C F is said to be a generalized nonex-

pansive sequence if it satisfies
Iz =z P < o= [P+ i+ 15+ 1) —e(i,5)° (21
for all 4,j > 0, where the series of nonnegative terms ) £(i, j)is convergent.
.3

Let 1 be a mean on the integers N, i.e., a linear functional u defined on £*°
such that

(a) p(a) > 0if a, >0V n,

(b) u(a) = p(oa) where o denotes the right shift

oa = o(ay,az,as,...) = (az,as,ay,...),

(c) wla)=1ifa=(1,1,1,...).

Then we know that p is a mean on N if and only if
inf {a, :n € N} <u(a) <sup {a,:n € N}
for every a = (ay, as,...) € £>°. For convenience we use p,(a,) instead of u(a).
A mean g on N is called a Banach limit (see [14]) if
,un(an) = Mn(an+1)

for every a = (a1,as,...) € ¢>°. The Hahn Banach theorem guarantees the
existence of a Banach limit [15]. We know that if p is a Banach limit, then

liminf a, < p,(a,) < limsup a,
o

n— n—00

for every a = (ay,as,...) € £°. Let E be a reflexive Banach space and let {z,}
be a bounded sequence in E. We now show for a Banach limit p , there exists
a point xg in £ such that

pn(Tp, %) = (20,2%) V2" € E”.
In fact, the function g, (z,,x*) is linear in x*. Also since

|t (2, 27)] < (sup [l ) - |27

it follows that the function p,(x,,z*) is also bounded in z*. Thus there is a
xy" € E* such that u,(z,, ") = (xf*, 2*) for every x* € E*. Since F is reflexive,
we can find a point zy in E such that u,(x,,x*) = (zg, z*) for every z* € E*.
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This point z is called a mean point of {z,} concerning u. Furthermore [7], we

also know that this mean point o € [ ¢o{x,}.
n>1

Let S ={z € E :|| z |= 1}. Then the norm of E is called Fréchet differen-
tiable if for each z € 9, the limit

eyl e
t—0 t

exists uniformly for each y € S.

Lemma 2.1. Let {a,}n>0 be a sequence of nonnegative real numbers with
ag = 0, the series of nonnegative terms > (i, ) be convergent, and satisfying

4,7
Untp < Gptap+e(ntp,n), ¥n>0,¥p>1. Then the sequence {**} converges
asn — oo and lim % = inf %,
n— o0 n>1 "
Proof. Let p > 1 be fixed. Then by the division algorithm, for all n > p, there
exists k > 1 such that n = kp+4;0 <1 < p.
Since the series of nonnegative terms > e(4, j) converges, there exists 7 > 0
12
such that 3" e(i,7) < n. Now, for any p > 1 (for notational purposes S5 = 0)
12
we have
k
app < k-ap+25(jp, (j—1p) < k-ap+25(l,m) <k-a,+n.

7j=2 l,m
Thus, we have

Akp <k-ap+77<%
kp+i~ kp+i T p

Ui
- Vp>1
Ty VP2

Hence, we have

an akpﬂ. < akp+ai+e(kp+i,kp) < %—l- 2.1 +%
n  kp+i~ kp 41 o k k
b 2y RS
< _p _|_ + _z<p
—p k k
Now letting n — oo, we have k — oo and so for all p > 1, we have limsup °* <
%p. Therefore
lim sup n < inf S < lim inf %.
n—oo n p>1 P n—oo 1
Hence
lim dn _ inf %. 0

n—oo N n>1 n

The following well known lemma will be useful later (cf. [3]).



542 H. K. PATHAK, D. O'REGAN, M. S. KHAN AND R. P. AGARWAL

Lemma 2.2. E* has a Fréchet differentiable norm if and only if E is
reflexive and strictly convex, and has the following property: if x, — x and
| zn [|[=|| || for a sequence {x,} in E, then {x,} converges strongly to x.

Let D be a subset of E. Then we denote the closure of D by D and the
closed convex hull of D by ¢oD, respectively. For a point x in E, we denote its
distance from D by d (z, D) = inlf) |z — y|

ye

3. MAIN RESULT

In this section, we deal with a generalized nonexpansive sequence {z,} in F
and study the mean point of {22} concerning a Banach limit. We begin with
the following lemmas which will play crucial roles in the proof of our main re-
sult. We shall also use the following basic inequality

(a+0) <a?+ b (3.1)
forO<g<1landa, b>0.

Lemma 3.1. Let E be a Banach space and let {z,} be a generalized nonex-
pansive sequence in E. Then lim || = || exists and

— Ty

lim ‘—H = inf
n— o0 n>1

Proof. Let a,, =|| x, —x¢ || ¥ n > 1. Now applying (3.1) to the generalized
nonexpansive sequence {x,} successively, we obtain for all p > 1 that

tntp = Tnip = 2o [|<|| Znap = 2 | + || 20 — 20 |
<Nl wp—wo |+ e +pd) = = 1+p.d = D [l 2n — a0 |
=1
:H xp — 2o ” —|—€(n—i—p,n) —€(p, 0)+ || Tp — o ||
<a,+a,+e(n+p,n).

Hence the result follows from Lemma 2.1. O

Lemma 3.2. Let {an}n>1 be a sequence of posz’tive real numbers (i.e., a, > 0
for each n) and b, z a;. Assume that b, 1 Z a; = oo. If {x,} is a sequence

of real numbers such that T, — T, then we have

n

nh_{glo bi Z a;T; = T.

" i=1
Proof. Let € > 0. Choose some k such that |z, — x| < § for each n > k. Put
M = max{|z; — x| :i=1,...,k}, and then select | > k such that Ag—:’“ < § for
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all n > [. Now notice that if n > [, then

blzn:aixi—:v = ’blzn:azl'z—blzn:all'
=1 " =1 "oi=1

"oi=1 " i=k+1
<Mb e e
- b, 2 2 2
and the conclusion follows. O

Lemma 3.3. Let E be a reflexive Banach space and let {x,} be a generalized
nonexpansive sequence in F. Let

K = ﬂ @{{l’l — 331‘,1}12”} .
n=1
Then lim || 2 || = d(0, K) = inf || 2 |

Proof. Let k > 1 be fixed and j,, € J(z,, —xx_1) for n > k. Now the generalized
sequence {x,} yields for n > k that

. 1
(Tp — Tp—1,0n) > = || 20 — 241 |2 =5 lan = &
1 s 1 s 1 2
> ol @n =z | 3 | 1 — Tp || 5 (e(n, k) —e(n — 1,k —1))".
Hence we obtain
2 n
Ty — Th—1 1

n

2 ~
ﬁ(xk - xk—hZ]i) >
i=k

2
Tp — Tk-1

>

——2) (i) VE>1 (3.2)

n

Let S, = n% > ji for n > k. Then we have
i=k

n

2 & 2 ,
| Sn (1< EZ | zi — 21 [|= EZZ
i=k

i=k

Xy — Tk—1
)

Since {#2} is bounded by Lemma 3.1, it then follows that {S,} is bounded.
Hence by the weak™ compactness of the closed unit ball of E* the sequence
{S,} has a weak™ cluster point j € E* (obviously independent of £ > 1). Since
> ¢e(i,7) is bounded V k£ > 1, we obtain from Lemma 3.1 and (3.2) that

.3

2

(g — xK_1,7) > lim VEk>1.

n—oo

n
n
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Hence for any n > 1, we have

Tn — T . > lim
n ) = m

From Lemma 3.2, replacing a; by i, b, by > . i = "("2+1) and note that
lim,, . b, = 00, we obtain

2
Ln

n

(3.3)

n

2 Nzi — 21 . n(n+1) 2 Nzi — zp_
hfisofpﬁ 2 — |~ 117rzn_)8£p [ RURE n(n 1 1) iz_;z -
. 1y 2 e
=1 14— -1
Jm ( +n> 1?j£pn(n+l);z i
. Ty — Thk-1
= lim |————
n—oo n
Now using above inequality, we also have
. . e 2 s - e
17 || < Timinf || S, < hggg}lfﬁgz —
. 2 ||z — m - len = 2k N E
Stmowp 55 > il T || = T =
and so it follows that
2
(on = ancaod) 2 i | 2 21V Rz 1
Hence for any z € ¢o {{xiﬂ — Ii}izo}
1 P01 1 1
5 Jim | 2+ el = S 5 P
o |12
. . n (12
> (22 i | 2 =1 (3.4)

Since K C ©0 {{i41 — xi}iZO}’ it follows from (3.4) that

Tn

17 1< tim ‘
n—oo n

< i —
< inf || = ||= d(0, K).

Since {} is bounded, it follows that {¥—*} is bounded and E is reflexive,
therefore, by Eberlein-Smulian theorem the sequence {*»~*0} contains a weakly

convergent subsequence {x"n —01 . Suppose x"n —*0 _» ¢ for some g € K. Then
we have
. Tp, — X ) x
lg|l < liminf || =%—2|| = Lim ||=2
1—00 i n— oo n
Hence
lim ||| = d(0, K).
n—oo n
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This completes the proof. O
Now using Lemmas 3.1 and 3.3, we obtain the main result.

Theorem 3.4. Let E be a reflexive Banach space and let {x,} be a generalized
nonexpansive sequence in F. Let

K = ﬂ o {{zi — i1}, )

and d = d(0,K). Then d = d (0,@{@}) and there exists a point zg with
| 20 ||= d such that z, € co{™—*0} .

Proof. In view of Lemma 3.3, we may assume that {#=-%} -, is bounded.

Now, it follows from the reflexiveness of E that for a Banach limit pu, there

exists zy € co{ ™"} such that

un<xn — xo,x*) = (z0,2") Va*eFE" (3.5)
n

Now, for jo € J(2) we have

. $n - fEO .
I 20 7= (00 o) = un( ,JO)

n
Sun(

and hence || 2y ||< d. From the proof of Lemma 3.3 and (3.3), there exists a
functional j € E* with || zo ||< d such that

Tp — Lo

)- o 1= d Il o lI=d- | 2o Il

Gil@J>zf Vo>l (3.6)
n
As a result we have (zg,7) > d?. Since || j ||< d, we obtain
d* = zo | || 5 1= (20,5) = &
and hence || 29 ||=]| 7 ||= d. From (3.6), it follows that (zp,j) > d* for every

z € co{ ="} and so

Fzl-d=l =zl 171> (z4) > d*

Hence || z ||> d for every z € co{®—"}. As a result we obtain

=i (o)

Now suppose that there is another point wy satisfying (3.5). Then for j €
J(z0 — wyp) , we have

. Ty — T Ty, — Lo .
|| 2o — Wo ||2= (Zo—woaj):/in< 0 _ OJ) =0,
n n

and hence zg = wy. This completes the proof. O
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Corollary 3.5. Suppose E,{x,}, K and d are as in Theorem 3.4. Then we
have the following:
(i) If E is strictly convex, then the weak lim

PKO with || PKO ||: d;
(ii) If E* has a Fréchet differentiable norm, the strong lim 2= exists and

n—oo

Tn

exists and coincides with

coincides with PgO0.

Proof. (i). Since E is strictly convex, the set

{z em{@} e d}

consists of exactly one point and d(0, K) =| Px0 ||. It may be observed that
this point equals zg in Theorem 3.4. Let {

.} be a subsequence of {#*} such

T
g

that { %} converges weakly to p € K. Then since

. T
= lim ||—

n—oo

=l PxO ||

Ipll < liminf
we have p = zp = Pg0. Then {#2} converges weakly to Px0. This completes
the proof.

(ii) This is an immediate consequence of (i) and Lemma 2.2. O

Remark 3.1. (1) Let {x,},, be a nonexpansive sequence in £ (i.e., || 241 —
i1 ||<]] @ — ;|| for all 4,5 > 0). Then lim [|22|| exists [2, Theorem 3.1]

and {x,}, -, also satisfies (2.1). Thus Theorem 3.4 is a partial generalization
of Theorem 3.3 in [7].

(2) Since our study is equivalent to the study of the asymptotic behavior of
the sequence {%}n>1 in £, T is a nonexpansive mapping from an arbitrary
set K of E into itself and x € K, Theorem 3.4 is a partial improvement of
Theorem 5 in [13].

(3) Our results extend and improve the corresponding results in [7]-[11].

(4) Our result may also be applied to the asymptotic behavior of curves in E,
and thus to the asymptotic behavior of unbounded trajectories for the quasi-
autonomous dissipative system ‘é—? + Au > f where A is an accretive (possibly
multivalued) operator in E' x E, see [2] for the case when E is a Hilbert space.
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