Volume 11 (2004), Number 3, 539–548

ASYMPTOTIC BEHAVIOR OF GENERALIZED NONEXPANSIVE SEQUENCES AND MEAN POINTS

H. K. PATHAK, D. O'REGAN, M. S. KHAN AND R. P. AGARWAL

Abstract. Let *E* be a real Banach space with norm $\|\cdot\|$ and let $\{x_n\}_{n\geq 0}$ be a generalized nonexpansive sequence in *E* (i.e., $\|x_{i+1} - x_{j+1}\|^2 \leq \|x_i - x_j\|^2 + (\varepsilon(i+1,j+1) - \varepsilon(i,j))^2$ for all $i,j \geq 0$, where the series of nonnegative terms $\sum_{i,j} \varepsilon(i,j)$ is convergent). Let $K = \bigcap_{n=1}^{\infty} \overline{\operatorname{co}} \left\{ \{x_i - x_{i-1}\}_{i\geq n} \right\}$. We deal with the mean point of $\{\frac{x_n}{n}\}$ concerning a Banach limit μ . If *E* is reflexive and d = d(0, K), then we show that $d = d\left(0, \overline{\operatorname{co}}\left\{\frac{x_n - x_0}{n}\right\}\right)$ and there exists a point z_0 with $\|z_0\| = d$ such that $z_0 \in \overline{\operatorname{co}}\left\{\frac{x_n - x_0}{n}\right\}$. In the sequel, this result is applied to obtain the weak and strong convergence of $\{\frac{x_n}{n}\}$.

2000 Mathematics Subject Classification: 47H09. **Key words and phrases:** Asymptotic behavior, Banach limit, mean point, nonexpansive sequence, generalized nonexpansive sequence.

1. INTRODUCTION

Let E be a real Banach space with norm $\|\cdot\|$; we denote weak convergence and strong convergence in E respectively by \rightarrow and \longrightarrow and let $\{x_n\}_{n\geq 0}$ be a generalized nonexpansive sequence in E (see Definition 2.1 below). Let $K = \bigcap_{n=1}^{\infty} \overline{\operatorname{co}} \left\{ \{x_i - x_{i-1}\}_{i\geq n} \right\}$. Djafari Rouhani [3] considered nonexpansive sequences and obtained an interesting result on the weak convergence of $\{\frac{x_n}{n}\}$ under the assumption that E is reflexive and strictly convex. Recently, Jung and Park [7] dropped the strict convexity requirement in the result of Djafari Rouhani, that is, instead of the weak limit of $\{\frac{x_n}{n}\}$, they dealt with the mean point of $\{\frac{x_n}{n}\}$ concerning a Banach limit under the assumption that E is reflexive. The present paper is motivated in part by Jung and Park's application [8] of a Banach limit technique due to Takahashi [16]. We consider a generalized nonexpansive sequence and we use the mean point to obtain the weak convergence of $\{\frac{x_n}{n}\}$, in the case when E is reflexive and strictly convex. In addition we obtain the strong convergence of $\{\frac{x_n}{n}\}$, in the case when E^* has a Fréchet differentiable norm. Our result extend and improve the corresponding results in [3], [7]–[11].

2. Preliminaries

Let E be a real Banach space; the norms of both E and its dual E^* will be denoted by $\|.\|$. The duality pairing between E and E^* will be denoted by (\cdot, \cdot) . The duality mapping J from E into the family of nonempty closed convex subsets of E^* is denoted by

$$J(x) = \left\{ x^* \in E^* : (x, x^*) = ||x||^2 = ||x^*||^2 \right\}.$$

It may be observed that for $x, y \in E$ and $j \in J(x)$,

$$(x - y, j) = ||x||^{2} - (y, j) \ge ||x||^{2} - \frac{1}{2} (||y||^{2} + ||j||^{2}) = \frac{1}{2} (||x||^{2} - ||y||^{2}).$$

We observe that if E is reflexive and strictly convex and K is a nonempty closed convex subset of E, then the nearest point projection mapping P_K of E onto K is well defined, i.e., K is a Chebyshev set (see [1], [6]).

Definition 2.1. A sequence $\{x_n\}_{n\geq 0} \subset E$ is said to be a generalized nonexpansive sequence if it satisfies

$$\|x_{i+1} - x_{j+1}\|^2 \le \|x_i - x_j\|^2 + (\varepsilon(i+1, j+1) - \varepsilon(i, j))^2$$
(2.1)

for all $i, j \ge 0$, where the series of nonnegative terms $\sum_{i,j} \varepsilon(i, j)$ is convergent.

Let μ be a mean on the integers N, i.e., a linear functional μ defined on ℓ^{∞} such that

(a)
$$\mu(a) \ge 0$$
 if $a_n \ge 0 \forall n$,

(b) $\mu(a) = \mu(\sigma a)$ where σ denotes the right shift

$$\sigma a = \sigma(a_1, a_2, a_3, \dots) = (a_2, a_3, a_4, \dots),$$

(c) $\mu(a) = 1$ if a = (1, 1, 1, ...).

Then we know that μ is a mean on N if and only if

$$\inf \{a_n : n \in N\} \le \mu(a) \le \sup \{a_n : n \in N\}$$

for every $a = (a_1, a_2, ...) \in \ell^{\infty}$. For convenience we use $\mu_n(a_n)$ instead of $\mu(a)$. A mean μ on N is called a *Banach limit* (see [14]) if

$$\mu_n(a_n) = \mu_n(a_{n+1})$$

for every $a = (a_1, a_2, ...) \in \ell^{\infty}$. The Hahn Banach theorem guarantees the existence of a Banach limit [15]. We know that if μ is a Banach limit, then

$$\liminf_{n \to \infty} a_n \leq \mu_n(a_n) \leq \limsup_{n \to \infty} a_n$$

for every $a = (a_1, a_2, ...) \in \ell^{\infty}$. Let *E* be a reflexive Banach space and let $\{x_n\}$ be a bounded sequence in *E*. We now show for a Banach limit μ , there exists a point x_0 in *E* such that

$$\mu_n(x_n, x^*) = (x_0, x^*) \quad \forall \ x^* \in E^*.$$

In fact, the function $\mu_n(x_n, x^*)$ is linear in x^* . Also since

$$\left|\mu_{n}\left(x_{n}, x^{*}\right)\right| \leq \left(\sup_{n} \left\|x_{n}\right\|\right) \cdot \left\|x^{*}\right\|,$$

it follows that the function $\mu_n(x_n, x^*)$ is also bounded in x^* . Thus there is a $x_0^{**} \in E^{**}$ such that $\mu_n(x_n, x^*) = (x_0^{**}, x^*)$ for every $x^* \in E^*$. Since E is reflexive, we can find a point x_0 in E such that $\mu_n(x_n, x^*) = (x_0, x^*)$ for every $x^* \in E^*$.

This point x_0 is called a mean point of $\{x_n\}$ concerning μ . Furthermore [7], we also know that this mean point $x_0 \in \bigcap_{n\geq 1}^{\infty} \overline{\operatorname{co}} \{x_n\}$.

Let $S = \{x \in E : || x || = 1\}$. Then the norm of E is called Fréchet differentiable if for each $x \in S$, the limit

$$\lim_{t \to 0} \frac{\parallel x + ty \parallel - \parallel x \parallel}{t}$$

exists uniformly for each $y \in S$.

Lemma 2.1. Let $\{a_n\}_{n\geq 0}$ be a sequence of nonnegative real numbers with $a_0 = 0$, the series of nonnegative terms $\sum_{i,j} \varepsilon(i,j)$ be convergent, and satisfying $a_{n+p} \leq a_n + a_p + \varepsilon(n+p,n), \ \forall n \geq 0, \forall p \geq 1$. Then the sequence $\{\frac{a_n}{n}\}$ converges as $n \to \infty$ and $\lim_{n \to \infty} \frac{a_n}{n} = \inf_{n\geq 1} \frac{a_n}{n}$.

Proof. Let $p \ge 1$ be fixed. Then by the division algorithm, for all $n \ge p$, there exists $k \ge 1$ such that n = kp + i; $0 \le i < p$.

Since the series of nonnegative terms $\sum_{i,j} \varepsilon(i,j)$ converges, there exists $\eta > 0$ such that $\sum_{i,j} \varepsilon(i,j) \le \eta$. Now, for any $p \ge 1$ (for notational purposes $\sum_{j=1}^{1} \varepsilon(j)$) we have

$$a_{kp} \le k \cdot a_p + \sum_{j=2}^k \varepsilon(jp, (j-1)p) \le k \cdot a_p + \sum_{l,m} \varepsilon(l,m) \le k \cdot a_p + \eta.$$

Thus, we have

$$\frac{a_{kp}}{kp+i} \le \frac{k \cdot a_p + \eta}{kp+i} \le \frac{a_p}{p} + \frac{\eta}{k} \quad \forall \ p \ge 1.$$

Hence, we have

$$\frac{a_n}{n} = \frac{a_{kp+i}}{kp+i} \le \frac{a_{kp} + a_i + \epsilon(kp+i, kp)}{kp+i} \le \frac{a_p}{p} + \frac{2 \cdot \eta}{k} + \frac{a_i}{k}$$
$$\le \frac{a_p}{p} + \frac{2 \cdot \eta}{k} + \frac{\max_{0 \le i < p} a_i}{k}.$$

Now letting $n \to \infty$, we have $k \to \infty$ and so for all $p \ge 1$, we have $\limsup_{n \to \infty} \frac{a_n}{n} \le \frac{a_p}{p}$. Therefore

$$\limsup_{n \to \infty} \frac{a_n}{n} \le \inf_{p \ge 1} \frac{a_p}{p} \le \liminf_{n \to \infty} \frac{a_n}{n}.$$

Hence

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf_{n \ge 1} \frac{a_n}{n}.$$

The following well known lemma will be useful later (cf. [3]).

Lemma 2.2. E^* has a Fréchet differentiable norm if and only if E is reflexive and strictly convex, and has the following property: if $x_n \rightarrow x$ and $||x_n|| \rightarrow ||x||$ for a sequence $\{x_n\}$ in E, then $\{x_n\}$ converges strongly to x.

Let D be a subset of E. Then we denote the closure of D by \overline{D} and the closed convex hull of D by $\overline{co}D$, respectively. For a point x in E, we denote its distance from D by $d(x, D) = \inf_{y \in D} ||x - y||$

3. Main Result

In this section, we deal with a generalized nonexpansive sequence $\{x_n\}$ in E and study the mean point of $\{\frac{x_n}{n}\}$ concerning a Banach limit. We begin with the following lemmas which will play crucial roles in the proof of our main result. We shall also use the following basic inequality

$$(a+b)^q \le a^q + b^q \tag{3.1}$$

for $0 < q \leq 1$ and $a, b \geq 0$.

Lemma 3.1. Let E be a Banach space and let $\{x_n\}$ be a generalized nonexpansive sequence in E. Then $\lim_{n\to\infty} || \frac{x_n}{n} ||$ exists and

$$\lim_{n \to \infty} \left\| \frac{x_n}{n} \right\| = \inf_{n \ge 1} \left\| \frac{x_n - x_0}{n} \right\|.$$

Proof. Let $a_n = || x_n - x_0 || \forall n \ge 1$. Now applying (3.1) to the generalized nonexpansive sequence $\{x_n\}$ successively, we obtain for all $p \ge 1$ that

$$a_{n+p} = \| x_{n+p} - x_0 \| \le \| x_{n+p} - x_n \| + \| x_n - x_0 \|$$

$$\le \| x_p - x_0 \| + \sum_{j=1}^n [\varepsilon(j+p,j) - \varepsilon(j-1+p,j-1)] + \| x_n - x_0 \|$$

$$= \| x_p - x_0 \| + \varepsilon(n+p,n) - \varepsilon(p,0) + \| x_n - x_0 \|$$

$$\le a_n + a_p + \varepsilon(n+p,n).$$

Hence the result follows from Lemma 2.1.

Lemma 3.2. Let $\{a_n\}_{n\geq 1}$ be a sequence of positive real numbers (i.e., $a_n > 0$ for each n) and $b_n = \sum_{i=1}^n a_i$. Assume that $b_n \uparrow \sum_{i=1}^\infty a_i = \infty$. If $\{x_n\}$ is a sequence of real numbers such that $x_n \to x$, then we have

$$\lim_{n \to \infty} \frac{1}{b_n} \sum_{i=1}^n a_i x_i = x.$$

Proof. Let $\varepsilon > 0$. Choose some k such that $|x_n - x| < \frac{\varepsilon}{2}$ for each $n \ge k$. Put $M = \max\{|x_i - x| : i = 1, ..., k\}$, and then select l > k such that $\frac{Mb_k}{b_n} < \frac{\varepsilon}{2}$ for

all $n \geq l$. Now notice that if $n \geq l$, then

$$\left| \frac{1}{b_n} \sum_{i=1}^n a_i x_i - x \right| = \left| \frac{1}{b_n} \sum_{i=1}^n a_i x_i - \frac{1}{b_n} \sum_{i=1}^n a_i x \right|$$
$$\leq \frac{1}{b_n} \sum_{i=1}^k a_i |x_i - x| + \frac{1}{b_n} \sum_{i=k+1}^n a_i |x_i - x|$$
$$\leq \frac{Mb_k}{b_n} + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

and the conclusion follows.

Lemma 3.3. Let E be a reflexive Banach space and let $\{x_n\}$ be a generalized nonexpansive sequence in E. Let

$$K = \bigcap_{n=1}^{\infty} \overline{\operatorname{co}} \left\{ \left\{ x_i - x_{i-1} \right\}_{i \ge n} \right\}.$$

Then $\lim_{n \to \infty} \parallel \frac{x_n}{n} \parallel = d(0, K) = \inf_{n \ge 1} \parallel \frac{x_n - x_0}{n} \parallel$.

Proof. Let $k \ge 1$ be fixed and $j_n \in J(x_n - x_{k-1})$ for $n \ge k$. Now the generalized sequence $\{x_n\}$ yields for $n \ge k$ that

$$(x_k - x_{k-1}, j_n) \ge \frac{1}{2} || x_n - x_{k-1} ||^2 - \frac{1}{2} || x_n - x_k ||^2$$
$$\ge \frac{1}{2} || x_n - x_{k-1} ||^2 - \frac{1}{2} || x_{n-1} - x_{k-1} ||^2 - \frac{1}{2} \cdot (\varepsilon(n, k) - \varepsilon(n - 1, k - 1))^2.$$

Hence we obtain

$$\frac{2}{n^2} \left(x_k - x_{k-1}, \sum_{i=k}^n j_i \right) \ge \left\| \frac{x_n - x_{k-1}}{n} \right\|^2 - \frac{1}{n^2} \sum_{i=k}^n (\varepsilon(i,k) - \varepsilon(i-1,k-1))^2$$
$$\ge \left\| \frac{x_n - x_{k-1}}{n} \right\|^2 - \frac{1}{n^2} \cdot 2 \sum_{i,j} \varepsilon^2(i,j) \ \forall \ k \ge 1.$$
(3.2)

Let $S_n = \frac{2}{n^2} \sum_{i=k}^n j_i$ for $n \ge k$. Then we have

$$|| S_n || \le \frac{2}{n^2} \sum_{i=k}^n || x_i - x_{k-1} || = \frac{2}{n^2} \sum_{i=k}^n i \left\| \frac{x_i - x_{k-1}}{i} \right\|$$

Since $\{\frac{x_n}{n}\}$ is bounded by Lemma 3.1, it then follows that $\{S_n\}$ is bounded. Hence by the weak^{*} compactness of the closed unit ball of E^* the sequence $\{S_n\}$ has a weak^{*} cluster point $j \in E^*$ (obviously independent of $k \ge 1$). Since $\sum_{i,j} \varepsilon(i,j)$ is bounded $\forall k \ge 1$, we obtain from Lemma 3.1 and (3.2) that

$$(x_k - x_{k-1}, j) \ge \lim_{n \to \infty} \left\| \frac{x_n}{n} \right\|^2 \quad \forall k \ge 1.$$

Hence for any $n \ge 1$, we have

$$\left(\frac{x_n - x_0}{n}, j\right) \ge \lim_{n \to \infty} \left\|\frac{x_n}{n}\right\|^2.$$
(3.3)

From Lemma 3.2, replacing a_i by i, b_n by $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ and note that $\lim_{n\to\infty} b_n = \infty$, we obtain

$$\limsup_{n \to \infty} \frac{2}{n^2} \sum_{i=k}^n i \left\| \frac{x_i - x_{k-1}}{i} \right\| = \limsup_{n \to \infty} \left[\frac{n(n+1)}{n^2} \cdot \frac{2}{n(n+1)} \sum_{i=k}^n i \left\| \frac{x_i - x_{k-1}}{i} \right\| \right]$$
$$= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \cdot \limsup_{n \to \infty} \frac{2}{n(n+1)} \sum_{i=1}^n i \left\| \frac{x_i - x_{k-1}}{i} \right\|$$
$$= \lim_{n \to \infty} \left\| \frac{x_n - x_{k-1}}{n} \right\|.$$

Now using above inequality, we also have

$$\| j \| \leq \liminf_{n \to \infty} \| S_n \| \leq \liminf_{n \to \infty} \frac{2}{n^2} \sum_{i=k}^n i \left\| \frac{x_i - x_{k-1}}{i} \right\|$$
$$\leq \limsup_{n \to \infty} \frac{2}{n^2} \sum_{i=k}^n i \left\| \frac{x_i - x_{k-1}}{i} \right\| = \lim_{n \to \infty} \left\| \frac{x_n - x_{k-1}}{n} \right\| = \lim_{n \to \infty} \left\| \frac{x_n}{n} \right\|$$

and so it follows that

$$(x_k - x_{k-1}, j) \ge \lim_{n \to \infty} \left\| \frac{x_n}{n} \right\|^2 \ge \| j \|^2 \ \forall \ k \ge 1$$

Hence for any $z \in \overline{\operatorname{co}} \left\{ \left\{ x_{i+1} - x_i \right\}_{i \ge 0} \right\}$

$$\frac{1}{2} \lim_{n \to \infty} \left\| \frac{x_n}{n} \right\|^2 + \frac{1}{2} \| z \|^2 \ge \frac{1}{2} \| j \|^2 + \frac{1}{2} \| z \|^2$$
$$\ge (z, j) \ge \lim_{n \to \infty} \left\| \frac{x_n}{n} \right\|^2 \ge \| j \|^2.$$
(3.4)

Since $K \subset \overline{\operatorname{co}} \{ \{x_{i+1} - x_i\}_{i \ge 0} \}$, it follows from (3.4) that

$$\parallel j \parallel \leq \lim_{n \to \infty} \left\| \frac{x_n}{n} \right\| \leq \inf_{z \in K} \parallel z \parallel = d(0, K).$$

Since $\{\frac{x_n}{n}\}$ is bounded, it follows that $\{\frac{x_n-x_0}{n}\}$ is bounded and E is reflexive, therefore, by Eberlein–Smulian theorem the sequence $\{\frac{x_n-x_0}{n}\}$ contains a weakly convergent subsequence $\{\frac{x_{n_i}-x_0}{n_i}\}$. Suppose $\frac{x_{n_i}-x_0}{n_i} \rightarrow q$ for some $q \in K$. Then we have

$$\|q\| \le \liminf_{i \to \infty} \left\| \frac{x_{n_i} - x_0}{n_i} \right\| = \lim_{n \to \infty} \left\| \frac{x_n}{n} \right\|$$

Hence

$$\lim_{n \to \infty} \left\| \frac{x_n}{n} \right\| = d(0, K).$$

This completes the proof.

Now using Lemmas 3.1 and 3.3, we obtain the main result.

Theorem 3.4. Let E be a reflexive Banach space and let $\{x_n\}$ be a generalized nonexpansive sequence in E. Let

$$K = \bigcap_{n=1}^{\infty} \overline{\operatorname{co}} \left\{ \{ x_i - x_{i-1} \}_{i \ge n} \right\}$$

and d = d(0, K). Then $d = d\left(0, \overline{\operatorname{co}}\left\{\frac{x_n - x_0}{n}\right\}\right)$ and there exists a point z_0 with $|| z_0 || = d$ such that $z_0 \in \overline{\operatorname{co}}\left\{\frac{x_n - x_0}{n}\right\}$.

Proof. In view of Lemma 3.3, we may assume that $\{\frac{x_n-x_0}{n}\}_{n\geq 1}$ is bounded. Now, it follows from the reflexiveness of E that for a Banach limit μ , there exists $z_0 \in \overline{\operatorname{co}}\{\frac{x_n-x_0}{n}\}$ such that

$$\mu_n\left(\frac{x_n - x_0}{n}, x^*\right) = (z_0, x^*) \quad \forall \ x^* \in E^*.$$
(3.5)

Now, for $j_0 \in J(z_0)$ we have

$$\| z_0 \|^2 = (z_0, j_0) = \mu_n \left(\frac{x_n - x_0}{n}, j_0 \right)$$

$$\leq \mu_n \left(\left\| \frac{x_n - x_0}{n} \right\| \right) \cdot \| j_0 \| = d \cdot \| j_0 \| = d \cdot \| z_0 \|$$

and hence $|| z_0 || \le d$. From the proof of Lemma 3.3 and (3.3), there exists a functional $j \in E^*$ with $|| z_0 || \le d$ such that

$$\left(\frac{x_n - x_0}{n}, j\right) \ge d^2 \quad \forall \ n \ge 1.$$
(3.6)

As a result we have $(z_0, j) \ge d^2$. Since $||j|| \le d$, we obtain

 $d^2 \ge \parallel z_0 \parallel \cdot \parallel j \parallel \ge (z_0, j) \ge d^2$

and hence $||z_0|| = ||j|| = d$. From (3.6), it follows that $(z_0, j) \ge d^2$ for every $z \in \overline{\operatorname{co}}\{\frac{x_n - x_0}{n}\}$ and so

$$|| z || \cdot d = || z || \cdot || j || \ge (z, j) \ge d^2.$$

Hence $|| z || \ge d$ for every $z \in \overline{co}\{\frac{x_n - x_0}{n}\}$. As a result we obtain

$$d = d\left(0, \overline{\operatorname{co}}\left\{\frac{x_n - x_0}{n}\right\}\right).$$

Now suppose that there is another point w_0 satisfying (3.5). Then for $j \in J(z_0 - w_0)$, we have

$$||z_0 - w_0||^2 = (z_0 - w_0, j) = \mu_n \left(\frac{x_n - x_0}{n} - \frac{x_n - x_0}{n}, j\right) = 0,$$

and hence $z_0 = w_0$. This completes the proof.

Corollary 3.5. Suppose $E, \{x_n\}, K$ and d are as in Theorem 3.4. Then we have the following:

(i) If E is strictly convex, then the weak $\lim_{n\to\infty} \frac{x_n}{n}$ exists and coincides with $P_K 0$ with $|| P_K 0 || = d$;

(ii) If E^* has a Fréchet differentiable norm, the strong $\lim_{n\to\infty} \frac{x_n}{n}$ exists and coincides with $P_K 0$.

Proof. (i). Since E is strictly convex, the set

$$\left\{z \in \overline{\operatorname{co}}\left\{\frac{x_n - x_0}{n}\right\} : \parallel z \parallel = d\right\}$$

consists of exactly one point and $d(0, K) = || P_K 0 ||$. It may be observed that this point equals z_0 in Theorem 3.4. Let $\{\frac{x_{n_i}}{n_i}\}$ be a subsequence of $\{\frac{x_n}{n}\}$ such that $\{\frac{x_{n_i}}{n_i}\}$ converges weakly to $p \in K$. Then since

$$\|p\| \le \liminf_{i \to \infty} \left\| \frac{x_{n_i}}{n_i} \right\| = \lim_{n \to \infty} \left\| \frac{x_n}{n} \right\| = \| P_K 0 \|$$

we have $p = z_0 = P_K 0$. Then $\{\frac{x_n}{n}\}$ converges weakly to $P_K 0$. This completes the proof.

(ii) This is an immediate consequence of (i) and Lemma 2.2.

Remark 3.1. (1) Let $\{x_n\}_{n\geq 0}$ be a nonexpansive sequence in E (i.e., $|| x_{i+1} - x_{j+1} || \leq || x_i - x_j ||$ for all $i, j \geq 0$). Then $\lim_{n \to \infty} || \frac{x_n}{n} ||$ exists [2, Theorem 3.1] and $\{x_n\}_{n\geq 0}$ also satisfies (2.1). Thus Theorem 3.4 is a partial generalization of Theorem 3.3 in [7].

(2) Since our study is equivalent to the study of the asymptotic behavior of the sequence $\left\{\frac{T^n x}{n}\right\}_{n\geq 1}$ in E, T is a nonexpansive mapping from an arbitrary set K of E into itself and $x \in K$, Theorem 3.4 is a partial improvement of Theorem 5 in [13].

(3) Our results extend and improve the corresponding results in [7]-[11].

(4) Our result may also be applied to the asymptotic behavior of curves in E, and thus to the asymptotic behavior of unbounded trajectories for the quasiautonomous dissipative system $\frac{du}{dt} + Au \ni f$ where A is an accretive (possibly multivalued) operator in $E \times E$, see [2] for the case when E is a Hilbert space.

Acknowledgement

This work was partially supported by University Grant Commission, New Delhi, India (4/41-(2001) Computer).

References

- 1. V. BARBU, Nonlinear semigroups and differential equations in Banach spaces. (Translated from the Romanian) Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976.
- 2. B. DJAFARI ROUHANI, Asymptotic behavior of unbounded trajectories for some nonautonomous systems in a Hilbert space. *Nonlinear Anal.* **19**(1992), 741–751.

- 3. B. DJAFARI ROUHANI, Asymptotic behavior of unbounded nonexpansive sequences in Banach spaces. *Proc. Amer. Math. Soc.* **117**(1993), 951–956.
- 4. B. DJAFARI ROUHANI, On the unbounded behaviour for some non-autonomous systems in Banach spaces. J. Differential Equations 110(1994), 276–288.
- 5. K. FAN and I. GLICKSBERG, Some geometric properties of the spheres in a normed linear space. *Duke Math. J.* **25**(1958), 553–568.
- K. GOEBEL and S. REICH, Uniform convexity hyperbolic geometry and nonexpansive mappings. Monographs and Textbooks in Pure and Applied Mathematics, 83. Marcel Dekker, Inc., New York, 1984.
- J. S. JUNG and J. S. PARK, Asymptotic behavior of nonexpansive sequences and mean points, Proc. Amer. Math. Soc. 124(1996), 475–480.
- 8. E. KOHLBERG and A. NEYMAN, Asymptotic behavior of nonexpansive mappings in uniformly convex Banach spaces. *Amer. Math. Monthly* 88(1981), 698–700.
- 9. E. KOHLBERG and A. NEYMAN, Asymptotic behavior of nonexpansive mappings in normed linear spaces. *Israel J. Math.* **38**(1981), 269–275.
- A. PAZY, Asymptotic behavior of contractions in Hilbert space. Israel J. Math. 9(1971), 235–240.
- 11. A. T. PLANT and S. REICH, The asymptotics of nonexpansive iterates. J. Funct. Anal. 54(1983), 308–319.
- S. REICH, On the asymptotic behavior of nonlinear semigroups and the range of accretive operators. J. Math. Anal. 78(1981), 113–126.
- S. REICH, On the asymptotic behaviour of nonlinear semigroups and the range of accretive operators, II. J. Math. Anal. 87(1982), 134–146.
- 14. W. RUDIN, Functional analysis. Second edition. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991.
- 15. W. TAKAHASHI, The asymptotic behaviour of nonlinear semigroups and invariant means. J. Math. Anal. **109**(1985), 130–139.

(Received 14.04.2004)

Authors' addresses:

H. K. Pathak Department of Mathematics Kalyan Mahavidyalaya Bhilai Nagar-490006, India

Donal O'Regan Department of Mathematics National University of Ireland Galway, Ireland E-mail: donal.oregan@nuigalway.ie

M. S. Khan Department of Mathematics and Statistics College of Science, Sultan Qaboos University P.O.Box: 36, Postal Code:123, Al-Khod, Muscat Sultanate of Oman R. P. Agarwal
Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, Florida 32901–6975
U.S.A.
E-mail: agarwal@fit.edu