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Abstract. We deal with complex points of two-dimensional surfaces. A
short review of basic results about complex points of smooth surfaces in C2 is
presented at the beginning. For algebraic surfaces, a formula is proved which
expresses the number of complex points as the local degree of an explicitly
constructible polynomial endomorphism.
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Introduction

Complex points of smooth two-dimensional surfaces in C2 play a significant
role in some problems of complex analysis [5], [9]. For example, the existence
of complex points sometimes enables one to construct the so-called attached
analytic discs with boundaries in a given surface [5], [13]. Correspondingly,
complex points are related to the so-called Bishop problem about the existence
of analytic discs attached to the graph of an arbitrary smooth complex-valued
function in the plane [5]. Despite considerable progress, this problem has not yet
been completely solved and complex points of two-dimensional surfaces attract
permanent interest [13]. Moreover, complex points of surface germs appear in
some issues of singularity theory [4], [13].

There are also some open problems concerned with complex points on com-
pact surfaces [9]. It is remarkable that in the setting of compact surfaces this
problem has interesting topological aspects. In particular, it is well-known that
the geometry of complex points on a compact surface X is closely related to its
Euler characteristic χ(X) [7], [9].

Recently, it has turned out that some of the above topics can be successfully
treated in the case where a surface is given by polynomial equations, using
the so-called signature formulae for topological invariants [12]. For example,
this approach is quite effective in the case of the graph of a polynomial planar
endomorphism [13]. One can also consider a complete intersection defined by
two polynomials on C2 ∼= R4. In such situations it is possible to find the number
of complex points in terms of local degrees of explicitly constructible polynomial
endomorphisms. The aim of this paper is to present a new result of such kind.
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We start by recalling some relevant definitions and techniques. The main
formula for the number of complex points on an algebraic surface in C2 is pre-
sented in the second section (Theorem 2.1). We also obtain an upper estimate
for the number of complex points on an algebraic surface (Theorem 2.2).

1. Algebraic Formulae for Topological Invariants

The main goal of this paper being the obtaining of an explicit formula for
the number of complex points, we begin by recalling some results about the
counting of real roots of polynomial equations. We basically follow [12] with
slight modifications made to fit into the context of the present paper.

Before giving the precise formulation of the result we need to introduce some
notation. Let f : U → Rn be a smooth mapping defined in the neighbourhood
U of the origin 0 in Rn such that f(0) = 0. In this case we say that the
origin is a zero of f . Equivalently, one can deal with a smooth map-germ
f : (Rn, 0) → (Rn, 0) as in [8].

Let R[n] be the algebra of the formal power series in n indeterminates with
real coefficients. Denote by A the local algebra of f at the origin, i.e., A =
R[n]/(f̃), where (f̃) is the ideal generated by the formal Taylor expansions of
functions fj at the origin.

The fundamental assumption in this section is that A is finite-dimensional, in
which case we say that f is of finite multiplicity at the origin (in the language
of germs one just says that f is a finite map germ [8]). Thus we assume that A
is a finite-dimensional algebra over R. Denote by j the class of Jacobian of f
in A.

It is well known that the principal ideal (j) generated by j in A consists of
real multiples of (j), i.e., (j) = Rj. This implies that for every a ∈ (j) there
exists a unique r ∈ R such that a = rj. In this case we can write r = a

j
and

speak of its sign sgn r if r 6= 0.
For an ideal I of A, let I2 denote its square (the ideal generated by all pairwise

products of the elements from I). Denote by N(A) the set of all ideals in A
having zero squares, i.e.,

N(A) = {I is an ideal in A : I2 = 0}.
For any subset X ⊂ A, put ann X = {a ∈ A : aX = 0}. Obviously, for

I ∈ N(A), I ⊂ ann I. Finally, let us notice that under the assumption of finite
multiplicity the origin is an isolated zero of f , in other words, 0 is isolated in
f−1(0). As it is well known, in this case one can define the local topological
(mapping) degree deg0 f [12].

Theorem 1.1 ([8], [11]). Let f be a smooth mapping of finite multiplicity at
the origin. Then, for an arbitrary maximal element N of N(A), the inclusion
(ann N)2 ⊂ (j) takes place. Moreover, if ann N = N then deg0 f = 0, and if
N ⊂ ann N then, for an arbitrary element a ∈ ann N −N , one has

deg0 f = sgn

(
a2

j

)
(dimR ann N − dimRN). (1.1)
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This formula plays an important role in many problems concerning compu-
tation of various invariants of the polynomial mappings and real algebraic sets.
We emphasize that all algebraic constructions used in this formula can be ef-
fectively performed in each concrete case, so the local degree is algorithmically
computable.

As shown in [6], [12], the Euler characteristic of a compact algebraic set
can be expressed through the local degree of an auxiliary polynomial mapping.
We reproduce the corresponding general formula from [6]. Let X be an affine
algebraic subset of Rn. Obviously, every such subset may be represented as a
hypersurface X = {F = 0} with F = f 2

1 + · · ·+f 2
k , where fj are the polynomials

defining X. For a finite X, the Euler characteristic simply reduces to the number
of geometrically distinct points.

We work with the usual notion of the Euler characteristic χ(X) defined as
the alternating sum of the ranks of homology groups of a topological space X
[7]. We only consider the homology with integer coefficients [7]. As always,
we write degpf for the local degree of an endomorphism f : Rn → Rn for any
p ∈ f−1(0) which is an isolated pre-image of the origin. Recall that degpf is
defined as the topological degree of the mapping

f̂ = f/‖f‖ : Sn−1
ε (p) → Sn−1

1 (0) = Sn−1,

where ε is a sufficiently small positive number [12].

Theorem 1.2 ([6], [12]). Let f1, . . . , fp ∈ Rn be real polynomials of degrees
not exceeding d. Suppose that the set X of their common real zeroes is compact.
Set

hi(x0, x1, . . . , xn) = xd+1
0 fi

(
x1

x0

, . . . ,
xn

x0

)
,

H =

p∑
i=1

h2
i −

n∑

k=0

x2d+4
k .

Then H has an algebraically isolated critical point at the origin O ∈ Rn+1

and the following equality holds:

2χ(X) = (−1)n − degO(∇H), (1.2)

where ∇H denotes the gradient of the polynomial H.

If the set X is finite this formula gives the number of points in X, i.e. the
number of real solutions of the corresponding polynomial system. Notice that
here the solutions are counted without taking into account their multiplicities.
From the algebraic formula for local degree it follows that the Euler characteris-
tic on the left-hand side of (1.2) is effectively computable in each concrete case.
This theorem enables us to give an explicit formula for the number of complex
points of an algebraic smooth surface in C2.

We also recall a general estimate for the topological degree in terms of the so-
called Petrovsky numbers which were introduced in [3], [14]. The term “integer
point” means a point of the integer lattice Zn ⊂ Rn.
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Definition 1.1. For an n-tuple of natural numbers m = (m1, . . . , mn),
define Pn(m) as the number of all integer n-tuples k = (k1, . . . , kn) satisfying
conditions:

0 ≤ ki ≤ mi − 1, i = 1, . . . , n;
n∑

i=1

ki =
n∑

i=1

mi − 1

2
. (1.3)

By analogy with [3], the number Pn(m) may be called a P -number of type
(n,m). If all numbers mj are equal, say to m, we write Pn(m) instead of
Pn(m, . . . , m).

Theorem 1.3 ([14]). Let F = (f1, . . . , fn) be a homogeneous endomorphism
of Rn of multi-degree m. Then

|deg F | ≤ Pn(m). (1.4)

A. Khovansky established the exactness of the above estimate and applied
it to some problems of real algebraic geometry [14]. We use this to estimate a
maximal possible number of complex points on an algebraic surface.

2. Counting Complex Points

We need first some notions and constructions concerned with the grassman-
nian G = Gr+(2, 4) of oriented two-planes in R4 = C2. As is well known [7],
G is a compact four-dimensional smooth manifold homeomorphic to S2 × S2.
Actually, this manifold can be embedded in RP5 using the so-called Plücker em-
bedding which gives rise to natural coordinates on G [7]. We will use a version
of this construction to introduce coordinates on G appropriate for our purposes.

For us it is important to distinguish between complex lines (i.e., one-dimen-
sional complex subspaces of C2) and the so-called totally real planes in C2, so
we recall that a plane V ∈ G is called totally real if V + ıV = C2. We denote
by GR the subset of G consisting of totally real planes.

Another natural subset is the collection of all complex lines endowed with
their natural (intrinsic complex) orientations defined by multiplication by ı.
It is clearly homeomorphic to the Riemann sphere CP1 and will be denoted
by CP+. Another copy CP− of the Riemann sphere is obtained by taking all
complex lines with the opposite orientations. Thus the collection GC of all
oriented complex lines is homeomorphic to the union of two disjoint copies of
S2. These and all other submanifolds of G will always be endowed with natural
orientations coming from the complex structure in C2.

Let X be a smooth two-dimensional surface in C2. Some important features
of its position in C2 are characterized by local behaviour at points where the
tangent plane is a complex line [5]. In the setting used in this paper, X is
given by two algebraic equations in C2, so it can be oriented in the usual way
using the gradients of defining functions. Then each tangent plane acquires
an orientation induced from X and can be considered as an element of G. If
a tangent plane appears to be a complex line, we can compare its orientation
induced from X with its natural orientation, so that it can be attributed either
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to CP+ or to CP−. The same is applicable for any smooth oriented surface in
C2.

Definition 2.1. Let X be a smooth oriented two-dimensional surface in C2.
A point p ∈ X is called a complex point of X if the tangent plane TpX is a
complex line in C2. A complex point is said to be positive if TpX ∈ CP+ and
negative in the opposite case.

The set of all complex points of X is denoted by C(X). If it is finite its
cardinality is denoted by c(X). It is known that, for a generic surface X, the
set of complex points is finite [9]. Our main concern is to establish effective
criteria for complex points and methods of computing c(X). In the sequel we
need the following interpretation of complex points.

Consider the Gauss mapping Γ : X → G. Then its image is a two-dimensional
compact surface in the four-dimensional manifold G. Obviously, a point p is
a complex point iff Γ(x) ∈ GC. Thus the complex points correspond to the
intersections of Γ(X) with GC. Notice that the latter manifold is also two-
dimensional, so one can define the local intersection number of these two sub-
manifolds in G [7]. Let us call it the index of a complex point p.

Generically, these two submanifolds intersect transversally in which case we
say that a complex point is transversal. It is easy to verify that this is equivalent
to the fact that the local intersection index at this point is equal to ±1 and this
complex point is preserved under small perturbations of X. For this reason,
transversal complex points are sometimes called generic [13].

In the general case, where complex points are isolated but not necessarily
transversal, one can consider the intersection number of Γ(X) and GC in G
(this is possible because all these manifolds are oriented). It is called the total
index of X. As usual, the intersection number can be computed as the sum of
local intersection indices. For a generic X, all complex points are transversal so
in this case the total index is just the algebraic number of complex points [12].

We are basically interested in the case where X is an algebraic surface given by
explicit equations. Denote by Rn the algebra of real polynomials in n variables.
Let f, g ∈ R4 be two polynomials in four indeterminates and X = {f = 0, g = 0}
be the set of their common zeroes in R4 ∼= C2. We aim now at finding effective
methods of computing c(X). As a first step we obtain explicit equations defining
complex points of X in C2 in terms of the coordinates on G.

Recall that the coordinates on G can be introduced as follows (this construc-
tion goes back to Grassmann himself [7]). Let P ∈ G be a two-plane. Choose
a basis (v1, v2) in P . Taking the coordinates of these two vectors as rows one
obtains a (2× 4)-matrix. Now the standard coordinates of P are defined as six
(2 × 2)-minors of this matrix. They can be denoted by mij, where i, j are the
numbers of columns contained in a given minor. It is convenient to renumber
them in “antilexicographic” order by putting

s1 = m12, s2 = m13, s3 = m14, s4 = m23, s5 = m24, s6 = m34.
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The numbers sj of course depend on a choice of the basis (v1, v2) and so
they should be considered as projective coordinates [7]. As is well known, they
satisfy the quadratic relation

s1s6 − s2s5 + s3s4 = 0, (2.1)

which shows that they define a mapping of G into a quadric defined by this
equation in RP5. This mapping is actually an embedding and so in such a way
one gets an atlas of local coordinates on G which we also call standard coordi-
nates. Actually, the equations which we are going to derive are homogeneous,
so for our purposes it is possible to work directly with the numbers sj. The
next step is to write conditions on the coordinates sj which distinguish complex
lines.

To this end, consider a complex line P ∈ G. Since P is invariant under
multiplication by ı, it admits a basis of the form (v, ıv), where v is any non-zero
vector in P . Denoting by (a1, a2, a3, a4) the coordinates of v we see that the
second row of the associated (2×4)-matrix is then (−a2, a1,−a4, a3). Computing
the minors mij, one notices that, in addition to the quadratic relation (2.1), in
this case one has two linear relations:

s2 = s5, s3 = −s4. (2.2)

In view of the linearity, the validity of these relations does not depend on a choice
of the basis in P . It is also easy to see that these relations are independent (as
functions of the coordinates sj) and that each 2-plane in C2 with standard
coordinates satisfying these relations is a complex line. Thus (2.2) are exactly
the defining equations of GC in G.

Returning to the situation of a two-surface X notice that, at each point
p ∈ X, the gradients ∇pf,∇pg are orthogonal to the tangent plane TpX (with
respect to the standard scalar product in R4 ∼= C2). It is well known and easy
to see that a 2-plane is a complex line if and only if its orthogonal complement
is a complex line. Thus we see that TpX being a complex line is equivalent to
the validity of equations (2.2) for the (2 × 4)-matrix formed by ∇pf,∇pg. In
other words, p ∈ X is a complex point of X if and only if

f1g3 − f3g1 − f2g4 + f4g2 = 0, f1g4 − f4g1 + f2g3 − f3g2 = 0, (2.3)

where the subscripts denote partial derivatives with respect to the corresponding
variable taken at the point p. By adding the equations of X we get a (4 × 4)-
system of real polynomial equations, the real roots of which give complex points
of X in C2.

Thus for finding the number of complex points one can directly apply The-
orem 1.2. To make this completely explicit let us write the auxiliary functions
appearing in the latter theorem. Suppose, for simplicity, that f, g ∈ R4 have the
same algebraic degree m ≥ 2. Then obviously all their partial derivatives have
algebraic degrees not exceeding m−1, so both functions appearing in equations
(2.3) have algebraic degrees not exceeding 2(m − 1) ≥ m. Thus for applying
Theorem 1.2 we should take d = 2m− 2 and n = 4.
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Then following Theorem 1.2 we introduce the polynomials:

h1(t, x, y, u, v) = td+1f
(x

t
,
y

t
,
u

t
,
v

t

)
, h2(t, x, y, u, v) = td+1g

(x

t
,
y

t
,
u

t
,
v

t

)
,

h3(t, x, y, u, v) = td+1

[(
∂f

∂x

∂g

∂u
− ∂f

∂u

∂g

∂x
− ∂f

∂y

∂g

∂v
+

∂f

∂v

∂g

∂y

) (x

t
,
y

t
,
u

t
,
v

t

)]
,

h4(t, x, y, u, v) = td+1

[(
∂f

∂x

∂g

∂v
− ∂f

∂v

∂g

∂x
+

∂f

∂y

∂g

∂u
− ∂f

∂u

∂g

∂y

) (x

t
,
y

t
,
u

t
,
v

t

)]
,

H = h2
1 + h2

2 + h2
3 + h2

4 − (t2d+4 + x2d+4 + y2d+4 + u2d+4 + v2d+4), (2.4)

where d = 2m− 2 and (x, y, u, v) denote canonical real coordinates in C2. Now
from Theorem 1.2 we get an explicit formula for the number of complex points.

Theorem 2.1. For a generic X ⊂ C2, the number of complex points of
X = {f = 0, g = 0} ⊂ C2 is given by

c(X) =
1

2
(1− degO∇H), (2.5)

where H is given by (2.4).

We can now obtain a general estimate for the number of complex points on
an algebraic surface defined by equations of fixed algebraic degrees. Below, by
saying “generic” we mean that all complex points are isolated.

Theorem 2.2. The number of complex points of a generic algebraic surface
defined by two equations of degree m ≥ 2 does not exceed P5(4m− 1).

This follows from the proof of Theorem 2.1. Indeed, we have seen that in
our case the algebraic degrees of polynomials hj do not exceed 2m− 2. So the
algebraic degree of H does not exceed 4m and that of its gradient does not
exceed 4m − 1. Taking into account that n = 4 we get the desired inequality
directly from Theorem 1.3.

This result can be considered as an upper estimate for the number of complex
points. Notice that it also implies that if complex points are isolated then their
number is finite even if the surface is not compact. For compact surfaces, it
would be interesting to find an exact range of values of c(X) if the degrees of
defining equations are fixed. It is also natural to ask what a range of c(X) is
for generic compact surfaces of fixed genus g.

In relation with the latter problem we add that a lower estimate for the num-
ber of complex points can be given in topological terms. For a generic algebraic
surface X ⊂ C2, denote by C(X) the number of complex points counted with
multiplicities, i.e. the sum of absolute values of the local intersection indices over
all complex points. If all complex points are transversal one has C(X) = c(X).

Theorem 2.3. For a generic compact surface X, one has

C(x) ≥ |χ(X)|.
This result is known in the case where all complex points are transversal [9].

The general case follows by the continuity argument.
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In general, the number of complex points may change under deformations of
X but there is another related characteristic which is topologically invariant.
Denote by CP+ ∪ −CP− the union of these two submanifolds of G where the
first one is taken with its natural orientation and the second one is taken with
the reversed orientation.

Definition 2.2. The Maslov index of X is defined as the intersection index
of Γ(X) with CP+ ∪ −CP−.

From the results of [12] it follows that the intersection index of two explicitly
given submanifolds can be effectively calculated as the local degree of an auxil-
iary polynomial endomorphism. Using the standard coordinates on G it is not
difficult to write explicit equations for Γ(X) while equations for CP+ ∪ −CP−
are provided by (2.2). We do not write the resulting formula in terms of the
local degree since it is rather complicated but formulate the main conclusion.

Theorem 2.4. The Maslov index of X can be algorithmically computed in
terms of the coefficients of f and g.

As is well known, the total index and the Maslov index are the main numerical
invariants characterizing the complex geometry of X. There are many results
about possible values of these invariants and their behaviour under various
transformations and constructions [9]. Using our Theorem 2.1 and the computer
program for calculating the topological degree [15] one can easily compute the
number of complex points in concrete examples.
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multiplicités”. Ann. Math. (2) 106(1977), No. 1, 19–44.
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