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TWO-STEP SYSTEMS FOR G-H-RELAXED
PSEUDOCOCOERCIVE NONLINEAR VARIATIONAL
PROBLEMS BASED ON PROJECTION METHODS

RAVI P. AGARWAL, DONAL O’REGAN, RAM U. VERMA

Abstract. The approximation-solvability of a generalized system of nonlin-
ear variational inequalities (SNVI) involving relaxed pseudococoercive map-
pings, based on the convergence of a system of projection methods, is pre-
sented. The class of relaxed pseudococoercive mappings is more general than
classes of strongly monotone and relaxed cocoercive mappings. Let K1 and
K2 be nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively. The two-step SNVI problem considered here is as follows: find
an element (x∗, y∗) ∈ H1 ×H2 such that (g(x∗), g(y∗)) ∈ K1 ×K2 and

〈S(x∗, y∗), g(x)− g(x∗)〉 ≥ 0 ∀ g(x) ∈ K1,

〈T (x∗, y∗), h(y)− h(y∗)〉 ≥ 0 ∀ h(y) ∈ K2,

where S : H1 ×H2 → H1, T : H1 ×H2 → H2, g : H1 → H1 and h : H2 → H2

are nonlinear mappings.
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1. Introduction

The convergence analysis for projection/projection type methods has been
frequently applied to the approximate solvability of problems arising in several
fields of applied mathematical sciences, including complementarity problems,
convex quadratic programming, optimization theory, and variational problems.
There exists an enormous amount of literature on the approximate solvability of
several classes of variational inequalities and related problems in different space
settings. Since the notion of relaxed pseudococoercivity is more general than
strong monotonicity and relaxed cocoercivity, the obtained results generalize
investigations on strongly monotone and relaxed cocoercive types of variational
inequality problems based on projection methods. Verma [6] has introduced and
studied the approximation solvability of a two-step system of strongly mono-
tone nonlinear variational inequalities in a Hilbert space setting, while Fang
and Huang [2] have introduced and studied a system of variational inclusions
involving H-monotone and strongly monotone mappings based on an algorithm
using the resolvent operator technique. Recently, Rhoades and Verma [5] and
Kassay and Kolumban [3] have studied systems of variational inequalities in
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different space settings. In this paper, we consider, based on a system of pro-
jection methods, the approximation solvability of a system of nonlinear relaxed
pseudococoercive variational inequalities on Hilbert spaces. For more details on
variational inequalities and projection methods, we refer the reader to [1–12].

Let H1 and H2 be two real Hilbert spaces with the inner product 〈, 〉 and
norm ‖ · ‖ on both H1 and H2. Let S : H1 ×H2 → H1 and T : H1 ×H2 → H2

be any mappings on H1 ×H2 and, K1 and K2 be closed convex subsets of H1

and H2, respectively. We consider problem tied with a system of nonlinear
variational inequalities (abbreviated as SNVI) as follows: determine an element
(x∗, y∗) ∈ H1 ×H2 such that (g(x∗), h(y∗)) ∈ K1 ×K2 and

〈S(x∗, y∗), g(x)− g(x∗)〉 ≥ 0 ∀ g(x) ∈ K1, (1.1)

〈T (x∗, y∗), h(y)− h(y∗)〉 ≥ 0 ∀ h(y) ∈ K2, (1.2)

where g : H1 → H1 and h : H2 → H2 are any mappings.
When g ≡ I and h ≡ I (identity), we have the SNVI problem: find an element

(x∗, y∗) ∈ K1 ×K2 such that

〈S(x∗, y∗), x− x∗〉 ≥ 0 ∀ x ∈ K1, (1.3)

〈T (x∗, y∗), y − y∗〉 ≥ 0 ∀ y ∈ K2. (1.4)

The SNVI (1.1)–(1.2) problem is equivalent to the following projection for-
mulas

g(x∗) = PK

[
g(x∗)− ρS(x∗, y∗)

]
for ρ > 0,

h(y∗) = QK

[
h(y∗)− ηT (x∗, y∗)

]
for η > 0,

where PK is the projection of H1 onto K1 and QK is the projection of H2 onto
K2.

The SNVI (1.1)–(1.2) problem extends the nonlinear variational inequality
problem: determine an element x∗ ∈ K such that

〈T (x∗, x∗), x− x∗〉 ≥ 0 ∀ x ∈ K. (1.5)

Now we need to recall the following auxiliary results, most frequently used
in the context of approximation-solvability of nonlinear variational inequality
problems based on iterative procedures.

Lemma 1.1 ([3]). For an element z ∈ H and for a nonempty closed convex
subset K of H, we have

x ∈ K and 〈x− z, y − x〉 ≥ 0 ∀ y ∈ K if and only if x = PK(z).

Lemma 1.2. An element u is a solution to (1.5) iff u = PK [u − λT (u, u)]
for all λ > 0.

Definition 1.1. A mapping T : H → H is called:
(i) monotone if for each x, y ∈ H, we have

〈T (x)− T (y), x− y〉 ≥ 0;
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(ii) r-strongly monotone if for each x, y ∈ H, we have

〈T (x)− T (y), x− y〉 ≥ r‖x− y‖2 for a constant r > 0;

(iii) r-expansive if

‖T (x)− T (y)‖ ≥ r‖x− y‖;
(iv) expansive if

‖T (x)− T (y)‖ ≥ ‖x− y‖;
(v) s-Lipschitz continuous (or Lipschitzian) if there exists a constant s ≥ 0

such that

‖T (x)− T (y)‖ ≤ s‖x− y‖ ∀x, y ∈ H;

(vi) µ-cocoercive [1,6] if for each x, y ∈ H, we have

〈T (x)− T (y), x− y〉 ≥ µ‖T (x)− T (y)‖2 for a constant µ > 0.

Clearly, every µ-cocoercive mapping T is (1/µ)-Lipschitz continuous.
We can easily see that the following implications on monotonicity, strong

monotonicity and expansiveness hold:

strong monotonicity ⇒ expansive
⇓

monotonicity

Definition 1.2. A mapping T : H is said to be:
(i) relaxed g-cocoercive if there exists a constant g > 0 such that

〈T (x)− T (y), x− y〉 ≥ (−γ)‖T (x)− T (y)‖2 ∀ x, y ∈ H;

(ii) relaxed (γ, r)-cocoercive if there exist constants g, r > 0 such that

〈T (x)− T (y), x− y〉 ≥ (−γ)‖T (x)− T (y)‖2 + r‖x− y‖2.

On the top of that we have the implication

strong r-monotonicity ⇒ relaxed γ-r-cocoercivity.

Definition 1.3. A mapping T : H → H is said to be:
(i) relaxed (g, γ, r)-cocoercive if there exist positive constants γ and r such

that

〈T (x)−T (y), g(x)−g(y)〉 ≥ (−γ)‖T (x)−T (y)‖2 +r‖g(x)−g(y)‖2 ∀ x, y ∈ H,

where g : H → H is any mapping on H;
(ii) relaxed (g, γ, r)-pseudococoercive if there exist positive constants γ and

r such that

〈T (y), g(x)− g(y)〉 ≥ 0

⇒ 〈T (x), g(x)− g(y)〉 ≥ (−γ)‖T (x)− T (y)‖2 + r‖g(x)− g(y)‖2 ∀ x, y ∈ H,

where g : H → H is any mapping on H.

Proposition 1.1. If T : H → H is r-strongly monotone, then T is relaxed
(γ, r)-cocoercive for γ, r > 0, while the converse may not be true in general.
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Example 1.1. Consider a µ-Lipschitz continuous mapping T : H → H on
H. Then we have:

(i) I − T is (1− µ)-strongly monotone for 0 < µ < 1.
(ii) I − T is relaxed (γ, (1− µ))-cocoercive for γ > 0 and 0 < µ < 1, where I

is the identity mapping on H.

2. Systems of Projection Methods

In this section we present the convergence of projection methods in the con-
text of the approximation-solvability of the SNVI (1.1)–(1.2).

Algorothm 2.1. For an arbitrarily chosen initial point (g(x0), h(y0)) ∈
K1 ×K2, compute sequences {g(xk)} and {h(yk)} such that

g(xk+1) = (1− ak)g(xk) + akPK

[
g(xk)− ρS(xk, yk))

]
,

h(yk+1) = (1− ak)h(yk) + akQK

[
h(yk)− ηT (xk, yk)

]
,

where PK is the projection of H1 onto K1 and QK is the projection of H2 onto
K2, ρ, η > 0 are constants, and

0 ≤ ak ≤ 1 and
∞∑

k=0

ak = ∞.

When g ≡ I and h ≡ I, Algorithm 2.1 reduces to

Algorothm 2.2. For an arbitrarily chosen initial point (x0, y0) ∈ K1 ×K2,
compute sequences {xk} and {yk} such that

xk+1 = (1− ak)xk + akPK

[
xk − ρS(xk, yk))

]
,

yk+1 = (1− ak)(yk) + akQK

[
yk − ηT (xk, yk)

]
,

where PK is the projection of H1 onto K1 and QK is the projection of H2 onto
K2, ρ, η > 0 are constants, and

0 ≤ ak ≤ 1 and
∞∑

k=0

ak = ∞.

We now present, based on Algorithm 2.1, the approximation-solvability of
the SNVI (1.1)–(1.2) problem involving relaxed (g, γ, r)-pseudococoercive and
relaxed (h, λ, s)-pseudococoercive mappings in the Hilbert space setting.

Theorem 2.1. Let H1 and H2 be two real Hilbert spaces, and K1 and K2 be
nonempty closed convex subsets of H1 and H2, respectively. Let S : H1×H2 →
H1 be relaxed (g, γ, r)-pseudococoercive and (g, µ)-Lipschitz continuous in the
first variable, and let S be (h, ν)-Lipschitz continuous in the second variable.
Let T : H1 ×H2 → H2 be relaxed (h, λ, s)-pseudococoercive and (h, β)-Lipschitz
continuous in the second variable, and let T be (g, τ)-Lipschitz continuous in
the first variable. Let g : H1 → H1 and h : H2 → H2 be expansive mappings.
Let ‖(u, v)‖x denote the norm on H1 ×H2 defined by

‖(u, v)‖x = ‖u‖+ ‖v‖ for (u, v) ∈ H1 ×H2,
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where ‖ · ‖ denotes the norm on both H1 and H2.
In addition, let δ = max{θ + ητ, σ + ρν}, where

θ =
[
1− 2ρr + 2ργµ2 + ρ + (ρµ2/2) + (ρµ)2

]1/2
,

σ =
[
1− 2ηs + 2ηλβ2 + η + (ηβ2/2) + (ηβ)2

]1/2
,

θ + ητ < 1, σ + ρν < 1.

Suppose that the following assumptions hold:
(i) the element (g(x∗), h(y∗)) ∈ K1 × K2 forms a solution to the SNVI

(1.1)–(1.2) problem;
(ii) sequences {g(xk)} and {h(yk)} are generated by Algorithm 2.1;
(iii) the sequence {ak} satisfies

0 ≤ ak ≤ 1 and
∞∑

k=0

ak = ∞;

(iv) 〈S(x∗, yk), g(xk)− g(x∗)〉 ≥ 0;
(v) 〈T (xk, y∗), h(yk)− h(y∗)〉 ≥ 0.
Then the sequence {(g(xk), h(yk))} converges to (g(x∗), h(y∗)).

Corollary 2.1. Let H1 and H2 be two real Hilbert spaces and K1 and K2

be nonempty closed convex subsets of H1 and H2, respectively. Let S : K1 ×
K2 → H1 be (g, r)-strongly monotone and (g, µ)-Lipschitz continuous in the
first variable, and let S be (h, ν)-Lipschitz continuous in the second variable. Let
T : K1×K2 → H2 be (h, s)-strongly monotone and (h, β)-Lipschtz continuous in
the second variable, and let T be (g, τ)-Lipschitz continuous in the first variable.
Let g : K1 → K1 and h : K2 → K2 be expansive mappings. Let ‖ · ‖x denote the
norm on H1 ×H2 defined by

‖(u, v)‖x = ‖u‖+ ‖v‖ for (u, v) ∈ H1 ×H2,

where ‖ · ‖ denotes the norm on both H1 and H2.
In addition, let d = max{θ + ητ, σ + ρν}, where

θ =
[
1− 2ρr + (ρµ)2

]1/2
,

σ =
[
1− 2ηs + (ηβ)2

]1/2
,

θ + ητ < 1, σ + ρν < 1.

Suppose that the following assumptions hold:
(i) the element (g(x∗), h(y∗)) ∈ K1 × K2 forms a solution to the SNVI

(1.1)–(1.2) problem;
(ii) sequences {g(xk)} and {h(yk)} are generated by Algorithm 2.1;
(iii) The sequence {ak} satisfies

0 ≤ ak ≤ 1 and
∞∑

k=0

ak = ∞.

Then the sequence {(g(xk), h(yk))} converges to (g(x∗), h(y∗)).
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Proof of Theorem 2.1. Since (g(x∗), h(y∗)) is a solution of the SNVI (1.1)–(1.2)
problem, it follows that

g(x∗) = PK

[
g(x∗)− ρS(x∗, y∗)

]
and h(y∗) = QK

[
h(y∗)− ηT (x∗, y∗)

]
.

Applying Algorithm 2.1, we have
∥∥g(xk+1)− g(x∗)

∥∥ =
∥∥(1− ak)g(xk) + akPK

[
g(xk)− ρS(xk, yk)

]

− (1− ak)g(x∗)− akPK

[
g(x∗)− S(x∗, y∗)

]∥∥
≤(1− ak)

∥∥g(xk)− g(x∗)
∥∥ + ak

∥∥PK

[
g(xk)− ρS(xk, yk)

]

− PK

[
g(x∗)− ρS(x∗, y∗)

]∥∥
≤(1−ak)

∥∥g(xk)−g(x∗)
∥∥+ak

∥∥g(xk)−g(x∗)−ρ
[
S(xk, yk)−S(x∗, y∗)

]∥∥
≤(1−ak)

∥∥g(xk)−g(x∗)
∥∥+ak

∥∥g(xk)−g(x∗)−ρ
[
S(xk, yk)−S(x∗, yk)

]∥∥
+ akρ

∥∥S(x∗, yk)− S(x∗, y∗)
∥∥. (2.1)

Since S is relaxed (g, γ, r)-pseudococoercive and (g, µ)-Lipschitz continuous in
the first variable, and by (iv) we have

∥∥g(xk)− g(x∗)− ρ
[
S(xk, yk)− S(x∗, yk)

]∥∥2

=
∥∥g(xk)− g(x∗)

∥∥2 − 2ρ 〈S(xk, yk)− S(x∗, yk), g(xk)− g(x∗)〉
+ ρ2

∥∥S(xk, yk)− S(x∗, yk)
∥∥2

=
∥∥g(xk)− g(x∗)

∥∥2 − 2ρ 〈S(xk, yk), g(xk)− g(x∗)〉
+ 2ρ 〈S(x∗, yk), g(xk)− g(x∗)〉 + r2

∥∥S(xk, yk)− S(x∗, yk)
∥∥2

≤
∥∥g(xk)− g(x∗)

∥∥2
+ 2ργ

∥∥S(xk, yk)− S(x∗, yk)
∥∥2

+ (ρ2µ2)
∥∥g(xk)− g(x∗)

∥∥2 − 2ρr
∥∥g(xk)− g(x∗)

∥∥2

+ 2ρ 〈S(x∗, yk), g(xk)− g(x∗)〉.
Since

2 〈S(x∗, yk), g(xk)− g(x∗)〉 ≤ [∥∥S(x∗, yk)
∥∥2

+
∥∥g(xk)− g(x∗)

∥∥2]
,

2
∥∥S(x∗, yk)

∥∥2 ≤
∥∥S(x∗, yk)− S(xk, yk)

∥∥2

for 2
∥∥S(xk, yk)

∥∥2 −
∥∥S(x∗, yk) + S(xk, yk)

∥∥2
> 0,

and

‖S(x∗, yk)‖2 ≤ (µ2/2)‖g(xk)− g(x∗)‖2,

we have

2ρ 〈S(x∗, yk), g(xk)− g(x∗)〉 ≤ [
ρ + (ρµ2/2)

] ∥∥g(xk)− g(x∗)
∥∥2

.

It follows that
∥∥g(xk)− g(x∗)− ρ

[
S(xk, yk)− S(x∗, yk)

]∥∥2

≤
∥∥g(xk)− g(x∗)

∥∥2 − 2ρr
∥∥g(xk)− g(x∗)

∥∥2
+ 2ργµ2

∥∥g(xk)− g(x∗)
∥∥2
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+ (ρµ)2
∥∥g(xk)− g(x∗)

∥∥2
+

[
ρ + (ρµ2/2)

] ∥∥g(xk)− g(x∗)
∥∥2

=
[
1− 2ρr + 2ργµ2 + ρ + (ρµ2/2) + (ρµ)2

] ∥∥g(xk)− g(x∗)‖2.

As a result, we have
∥∥g(xk+1)− g(x∗)

∥∥ ≤ (1− ak)
∥∥g(xk)− g(x∗)

∥∥
+ akθ

∥∥g(xk)− g(x∗)
∥∥ + akρν

∥∥h(yk)− h(y∗)
∥∥, (2.2)

where θ = [1− 2ρr + 2ργµ2 + ρ + (ρµ2/2) + (ρµ)2]1/2.
Similarly, we have

∥∥h(yk+1)− h(y∗)
∥∥ ≤ (1− ak)

∥∥h(yk)− h(y∗)
∥∥

+ akσ
∥∥h(yk)− h(y∗)

∥∥ + akητ
∥∥g(xk)− g(x∗)

∥∥, (2.3)

where σ = [1− 2ηs + 2ηλβ + η + (ηβ2/2) + (ηβ)2]1/2.
It follows from (2.2) and (2.3) that

‖g(xk+1)− g(x∗)‖+ ‖h(yk+1)− h(y∗)‖
≤(1− ak)‖g(xk)− g(x∗)‖+ akδ‖g(xk)− g(x∗)‖

+ (1− ak)‖h(yk)− h(y∗)‖+ akδ‖h(yk)− h(y∗)‖
=[1− (1− δ)ak](‖g(xk)− g(x∗)‖+ ‖h(yk)− h(y∗)‖)

≤
k∏

j=0

[1− (1− δ)aj](‖g(x0)− g(x∗)‖+ ‖h(y0)− h(y∗)‖),

where d = max{θ + ητ, σ + ρν} and θ + ητ, σ + ρν < 1.

Since δ < 1 and
∞∑

k=0

ak is divergent, we have from [10] that

lim
k→∞

k∏
j=0

[1− (1− δ)aj] = 0.

Therefore we have

‖g(xk+1)− g(x∗)‖+ ‖h(yk+1)− h(y∗)‖ → 0 as k →∞.

Consequently, the sequence {(g(xk), h(yk))} converges strongly to (g(x∗), h(y∗)),
a solution to the SNVI (1.1)–(1.2). This, in turn, using the expansiveness of g
and h, implies that sequences {xk} and {yk} converge, respectively, to x∗ and
y∗ for δ < 1.

Corollary 2.2. Let H1 and H2 be two real Hilbert spaces and K1 and K2 be
nonempty closed convex subsets of H1 and H2, respectively. Let S : K1×K2 →
H1 be relaxed (g, γ, r)-cocoercive and (g, µ)-Lipschitz continuous in the first
variable, and let S be (h, ν)-Lipschitz continuous in the second variable. Let
T : K1 × K2 → H2 be relaxed (h, λ, s)-cocoercive and (h, β)-Lipschtz continu-
ous in the second variable, and let T be (g, τ)-Lipschitz continuous in the first
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variable. Let g : K1 → K1 and h : K2 → K2 be expansive mappings. Let ‖ · ‖x

denote the norm on H1 ×H2 defined by

‖(u, v)‖x = ‖u‖+ ‖v‖ for (u, v) ∈ H1 ×H2,

where ‖ · ‖ denotes the norm on both H1 and H2.
In addition, let δ = max{θ + ητ, σ + ρν}, where

θ = [1− 2ρr + 2ργµ2 + (ρµ)2]1/2,

σ = [1− 2ηs + 2ηλβ2 + (ηβ)2]1/2,

θ + ητ < 1, σ + ρν < 1.

Suppose that the following assumptions hold:
(i) the element (g(x∗), h(y∗)) ∈ K1 × K2 forms a solution to the SNVI

(1.1)–(1.2);
(ii) sequences {g(xk)} and {h(yk)} are generated by Algorithm 2.1;
(iii) the sequence {ak} satisfies

0 ≤ ak ≤ 1 and
∞∑

k=0

ak = ∞.

Then the sequence {(g(xk), h(yk))} converges to (g(x∗), h(y∗)).

Corollary 2.3. Let H1 and H2 be two real Hilbert spaces and K1 and K2

be nonempty closed convex subsets of H1 and H2, respectively. Let S : K1 ×
K2 → H1 be (g, r)-strongly pseudomonotone and (g, µ)-Lipschitz continuous in
the first variable, and let S be (h, ν)-Lipschitz continuous in the second variable.
Let T : K1 ×K2 → H2 be (h, s)-strongly pseudomonotone and (h, β)-Lipschitz
continuous in the second variable, and let T be (g, τ)-Lipschitz continuous in
the first variable. Let g : K1 → K1 and h : K2 → K2 be expansive mappings.
Let ‖ · ‖x denote the norm on H1 ×H2 defined by

‖(u, v)‖x = ‖u‖+ ‖v‖ for (u, v) ∈ H1 ×H2,

where ‖ · ‖ denotes the norm on both H1 and H2.
In addition, let δ = max{θ + ητ, σ + ρν}, where

θ = [1− 2ρr + ρ + (ρµ2/2) + (ρµ)2]1/2,

σ = [1− 2ηs + η + (ηβ2/2) + (ηβ)2]1/2,

θ + ητ < 1, σ + ρν < 1.

Suppose that the following assumptions hold:
(i) the element (g(x∗), h(y∗)) ∈ K1 × K2 forms a solution to the SNVI

(1.1)–(1.2) problem;
(ii) sequences {g(xk)} and {h(yk)} are generated by Algorithm 2.1;
(iii) the sequence {ak} satisfies

0 ≤ ak ≤ 1 and
∞∑

k=0

ak = ∞;

(iv) 〈S(x∗, yk), g(xk)− g(x∗)〉 ≥ 0;
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(v) 〈T (xk, y∗), h(yk)− h(y∗)〉 ≥ 0.
Then the sequence {(g(xk), h(yk))} converges to (g(x∗), h(y∗)).
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