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ON THE UNIQUENESS OF THE TWO-SIDED ERGODIC
MAXIMAL FUNCTION
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Abstract. It is proved that the two-sided ergodic maximal operator is one-
to-one.
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1. Introduction. Let (X, S, µ) be a finite measure space, µ(X) < ∞, and let
T : X → X be an invertible measure-preserving ergodic transformation.

For an integrable function f , f ∈ L(X), the ergodic maximal function is
denoted by M+f (the subscript “+” indicates that the operator is right-sided):

M+f(x) = sup
m≥0

1

m

m−1∑

k=0

f(T kx), x ∈ X.

In [3] we prove that the ergodic maximal operator has the injectivity property,
i.e. M+f = M+g a.e. implies that f = g a.e. (A different proof of this theorem
is proposed in [4].) The same uniqueness theorem is proved for various one-
sided maximal operators in [1], [2]. As mentioned in the introduction of [3],
the essential idea of proving these theorems is contained in the proof of the
uniqueness theorem for the one-sided Hardy–Littlewood maximal operator but
the problem remains still open for non-one-sided maximal operators. As an
approach to the solution of this problem, in the present paper we propose the
proof of the uniqueness theorem for two-sided ergodic maximal operator M,

Mf(x) = sup
n≤0<m

1

m− n

m−1∑

k=n

f(T kx), x ∈ X.

Theorem 1. Let f, g ∈ L(X) and

Mf = Mg a.e. (1)

Then
f = g a.e. (2)

An extension of the proof to the continuous case still requires to overcome
some technical difficulties.

A simple example illustrates that the theorem is not valid for the symmetric
ergodic maximal operator (see Section 5). The discrete nature of the operator
plays a significant role in this situation (see [7]), and the continuous analogue
of this theorem should in our opinion be correct.
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2. An auxiliary lemma. An analogue of the following lemma for the operator
M+ is proved in [3].

Lemma 1. Let f ∈ L(X) and let

Ff =

{
x ∈ X : Mf(x) =

1

m− n

m−1∑

k=n

f(T kx) for some n ≤ 0 and m > 0

}
.

Then
µ(Ff ) = µ(X), (3)

and, consequently,

µ
{
x ∈ X : T kx ∈ Ff for all k ∈ Z}

= µ(X). (4)

Proof. Let

λ0 =
1

µ(X)

∫

X

f dµ.

The Individual Ergodic Theorem,

lim
m→∞

1

m

m−1∑

k=0

f ◦ T k = λ0 a.e. (5)

(see [6]) implies µ(Mf ≥ λ0) = µ(X).

If lim
m→∞

1
m

m−1∑
k=0

f(T kx) = λ0 and lim
n→∞

1
n

n−1∑
k=0

f(T−kx) = λ0, then

lim
n,m→∞

1

n + m

m−1∑

k=−n

f(T kx) = λ0. (6)

Thus (6) holds for a.a. x ∈ X, and this implies that a.a. x ∈ (Mf > λ0)
belongs to Ff .

If Mf(x) = λ0, then also M+f(x) = λ0 and it is proved in [3] (see Corollary 1

therein) that for a.a. x ∈ X there exist m = m(x) such that 1
m

m−1∑
k=0

f(T kx) = λ0.

Consequently a.a. x ∈ (Mf = λ0) belongs to Ff .
The proof of (3) is completed.
Since {x ∈ X : T kx ∈ Ff for all k ∈ Z} =

⋂∞
k=−∞ T k(Ff ), (4) holds as

well. ¤

3. Discrete maximal operator. Let Γ denote the set of all two-sided se-
quences of real numbers indexed by integers Z. The maximal operator M is
defined by

Mα(q) = sup
n≤q<m

1

m− n

m−1∑

k=n

α(k), q ∈ Z, α ∈ Γ.

Thus, if α(q) = f(T qx), then

Mα(q) = Mf(T qx). (7)
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We consider the one-sided maximal operators M+ and M− as well:

M+α(q) = sup
m≥q

1

m− q + 1

m∑

k=q

α(k) and M−α(q) = sup
n≤q

1

q − n + 1

q∑

k=n

α(k).

Let us introduce some brief notations. Sets of the type {q ∈ Z :Mα(q) > λ},
{x ∈ X : Mf(x) = Mg(x)}, . . . will be denoted by (Mα > λ), (Mf = Mg), . . .

For α ∈ Γ and I ⊂ Z, let AI = (1/ card(I))
∑
k∈I

α(k) and if Ip,r = {p,
p + 1, . . . , r}, p, r ∈ Z, p ≤ r, is an interval of integers, then Ap,r = AIp,r .

We say that Ip,r is a finite connected component of N ⊂ Z0 if Ip,r ⊂ N and
p− 1, r + 1 do not belong to N .

The proof of the following lemma is very easy but we formulate it for further
reference.

Lemma 2. Let I, J ⊂ Z be disjoint and K = I ∪ J .
(i) If AK = λ and AJ = λ, then AI = λ;
(ii) If AK = λ and AJ < λ, then AI > λ;
(iii) If AK > λ and AJ ≤ λ, then AI > λ;
(iv) If AI = λ and AJ > λ, then AK > λ.

Proof. If
∑

k∈K

α(k) = λ card(K) and
∑
k∈J

α(k) = λ card(J), then
∑
k∈I

α(k) =

λ(card(K)− card(J)) = λ card(I) and (i) follows.
If

∑
k∈I

α(k) ≤ λ card(I) and
∑
k∈J

α(k) < λ card(J), then
∑

k∈K

α(k) < λ(card(I)+

card(J)) = λ card(K) which is a contradiction and (ii) follows.
In a similar way one can show (iii) and (iv). ¤
For α ∈ Γ, let Nα ⊂ Z be the set of integers for which the supremum is

achieved after finitely many steps, i.e., q ∈ Nα if and only if Mα(q) = An,m for
some n, m ∈ Z, n ≤ q ≤ m. Observe that if αx(k) = f(T kx), f ∈ L(X), then
k ∈ Nαx ⇔ T kx ∈ Ff . Hence, for a.a. x ∈ X, we have (see (4))

Nαx = Z. (8)

Lemma 3. Let α ∈ Γ, q ∈ Nα and

Mα(q) = λ,

and let Ip,q−1 and Iq+1,r be finite connected components of (M−α > λ) and
(M+α > λ), respectively, then

Mα(q) =
1

r − p + 1

r∑

k=p

α(k) = λ. (9)

We assume that if M−α(q − 1) ≤ λ (i.e., Ip,q−1 = ∅), then p = q and if
M+α(q + 1) ≤ λ (i.e., Iq+1,r = ∅), then r = q in (9) and in the proof below.

Proof. Let

λ = Mα(q) =
1

q2 − q1 + 1

q2∑

k=q1

α(k), (10)
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where q1 ≤ q ≤ q2. We can assume that Iq1,q2 is minimal in a sense that it
contains no proper subset Ip1,p2 3 q for which Ap1,p2 = λ, and we will show that
q1 = p and q2 = r.

If q2 > r, then Ar+1,q2 ≤ λ, since r + 1 /∈ M+α > λ. If now

Ar+1,q2 = λ, (11)

then Lemma 2 (i), (10) and (11) imply that Aq1,r = λ, which contradicts the
minimality of Iq1,q2 , and if

Ar+1,q2 < λ, (12)

then Lemma 2 (ii), (10) and (12) imply that Aq1,r > λ, which is a contradiction,
since q ∈ Iq1,r and (10) holds.

Analogously, q1 cannot be smaller than p.
If q2 < r, then

Aq2+1,r > λ, (13)

(see [3], Lemma 4) and Lemma 2 (iv), (10) and (13) imply that Aq1,r > λ, which
is a contradiction, since q ∈ Iq1,r and (10) holds.

Analogously, q1 cannot be larger than p. ¤

Lemma 4. Let α ∈ Γ and let Ip,r be a finite connected component of (Mα >
λ0) for some λ0 < ∞. Then for each q ∈ Ip,r there exists an interval of integers
J ⊂ Ip,r containing q such that Mα(q) = AJ .

Proof. Let ε < Mα(q)− λ0 and Aq1,q2 > λ > Mα(q)− ε, where q1 ≤ q ≤ q2. If
r < q2, then Ar+1,q2 ≤ λ since r + 1 6∈ (Mα > λ0) and we can apply Lemma
2 (iii) to conclude that Aq1,r > λ. Similarly, we can deal with q1 and it follows
that for each ε > 0 there exists an interval I ⊂ Ip,r containing q such that
AI ≥ M(q) − ε. Consequently, M(q) = AJ for some interval J ⊂ Ip,r, J 3 q,
since the number of such intervals is finite and the lemma follows. ¤

Lemma 5. Let α ∈ Γ, let Ip,r be a finite connected component of (Mα > λ0)
for some λ0 < ∞, and let λ ≥ λ0. If we know the values of α on (Mα > λ)∩Ip,r,
then we can identify the sets (M−α > λ) ∩ Ip,r and (M+α > λ) ∩ Ip,r.

Proof. Obviously, ((M+α > λ) ∩ Ip,r) ⊂ ((Mα > λ) ∩ Ip,r). Thus we should
determine for each q ∈ ((Mα > λ)∩Ip,r) whether it belongs to (M+α > λ)∩Ip,r.
Assume s ≥ q is the minimal integer outside (Mα > λ) (note that s ≤ r and
we know all values of α on Iq,s−1). If now q2 ≥ s is such that Aq,q2 > λ, then
As,q2 ≤ λ and Aq,s−1 > λ because of Lemma 2 (iii). Hence q ∈ ((M+α > λ)∩Ip,r)
if and only if supq2∈Iq,s−1

Aq,q2 > λ.

In a similar way one can identify (M−α > λ). ¤

Lemma 6. Let α ∈ Γ and let Ip,r be a finite connected component of (Mα >
λ) for some λ < ∞. Then the values Mα(q), q ∈ Ip,r, uniquely define the
values α(q), q ∈ Ip,r. Thus if Mα(q) = Mβ(q), q ∈ Z, for some β ∈ Γ, then
α(q) = β(q), q ∈ Ip,r.
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Proof. Note that q ∈ Nα for each q ∈ Ip,r because of Lemma 4.
Set the values Mα(q), q ∈ Ip,r, in descending order, i.e., assume λ1 > λ2 >

· · · > λj > λ, where

Ii =
{
q ∈ Ip,r : Mα(q) = λi

} 6= ∅
and

j⋃
i=1

Ii = Ip,r.

Define the values α(q) by induction with respect to i. For i = 1, α is equal
to λ1 on I1, i.e.,

α(q) = λ1

for all q ∈ I1. Indeed, it follows from Lemma 3 that Mα(q) = α(q) for each
q ∈ I1, since q − 1 and q + 1 do not belong to (Mα > λ1).

Let us now assume that α is already defined on I1 ∪ I2 ∪ · · · ∪ Ii, i < j; we
will define it on Ii+1.

For q ∈ Ii+1 (which implies that Mα(q) = λi+1), since ((Mα > λi+1)∩Ip,r) =
I1 ∪ I2 ∪ · · · ∪ Ii and we know the values of α on this set, we can identify
(M−α > λi+1) ∩ Ip,r and (M+α > λi+1) ∩ Ip,r, because of Lemma 5.

Consequently, we can apply Lemma 3 and all the values in equation (9) are
known except α(q) which can be determined. ¤

Corollary 1. Let α ∈ Γ and let Mα(p) < Mα(q0) > Mα(r) for some
p, r ∈ Z, p ≤ q0 ≤ r. Then the values Mα(q), q ∈ Z, uniquely define the value
α(q0). Thus if some other β ∈ Γ is given such that Mα(q) = Mβ(q), q ∈ Z,
then α(q0) = β(q0).

Proof. If we take λ strictly between M(q0) and max((Mα(p),Mα(r)), then there
is a finite connected component of (Mα > λ) containing q0. ¤

Lemma 7. Let α ∈ Γ, let q ∈ Nα and Mα(q) ≥ λ0 for each q ∈ Z, and let

card{k ≥ 0 : α(k) = λ0} = card{k ≤ 0 : α(k) = λ0} = ∞. (14)

Then the values Mα(q), q ∈ Z, uniquely define the values α(q), q ∈ Z. Thus if
Mα(q) = Mβ(q), q ∈ Z, for some β ∈ Γ such that q ∈ Nβ and Mβ(q) ≥ λ0 for
each q ∈ Z and

card
{
k ≥ 0 : β(k) = λ0

}
= card

{
k ≤ 0 : β(k) = λ0

}
= ∞,

then α(q) = β(q), q ∈ Z.

Proof. Relation (14) implies that the set (Mα > λ0) consists of finite connected
components. Hence we can determine the values α(q), q ∈ (Mα > λ0), by
Lemma 6. It also follows from Lemma 5 that we can identify finite connected
components of (M+α > λ0) and (M−α > λ0), and if Mα(q) = λ0, then we can
use Lemma 3 to find the only unknown quantity α(q) of equation (9). ¤
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4. Proof of Theorem 1. Equation (1) implies that Mf(T kx) = Mg(T kx),
k ∈ Z, for a.a. x ∈ X (more exactly, for all x /∈ ⋂∞

k=−∞ T k(Mf 6= Mg)). Thus

Mαx(k) = Mβx(k), k ∈ Z, (15)

for a.a. x ∈ X, where

αx(k) = f(T kx) and βx(k) = g(T kx)

(see (7)), and we will show that

αx(k) = βx(k), k ∈ Z, (16)

for a.a. x ∈ X, which completes the proof of (2).
Relation (8) implies that, for a.a. x ∈ X,

Z = Nαx = Nβx . (17)

Let λ0 be ess inf Mf = ess inf Mg. Then

Mf(T kx) = Mg(T kx) ≥ λ0, k ∈ Z,

for a.a. x ∈ X (for all x /∈ ⋂∞
k=−∞ T k(Mf = Mg < λ0) and, consequently,

Mαx(k) = Mβx(k) ≥ λ0, k ∈ Z, (18)

for a.a. x ∈ X.
We consider two cases:
(i) µ(Mf = λ0) = µ(Mg = λ0) = 0. Then

Mαx(k) = Mβx(k) > λ0, k ∈ Z, (19)

for a.a. x ∈ X.
Choose any decreasing sequence λi, i = 1, 2, . . . , convergent to λ0. Then

µ(Mf < λi) = µ(Mg < λi) > 0, i = 1, 2, . . . ,

and the Individual Ergodic Theorem implies that

card
{
k ≤ 0 : T kx ∈ (Mf < λi)

}

= card
{
k ≥ 0 : T kx ∈ (Mg < λi)

}
= ∞, i ≥ 1, (20)

for a.a. x ∈ X. Now, for each x satisfying (15), (19) and (20) and for any
q0 ∈ Z, since Mαx(q0) > λ0, there exist p ≤ q0 and r ≥ q0 such that Mαx(p) <
Mαx(q0) > Mαx(r). Thus we can apply Corollary 1 of Lemma 6 to conclude
that

αx(q0) = βx(q0)

and, since q0 is an arbitrary integer, (16) is proved.
(ii) µ(Mf = λ0) = µ(Mg = λ0) > 0. Then, by the Individual Ergodic

Theorem,

card
{
k ≤ 0 : T kx ∈ (Mf = λ0)

}
= card

{
k ≥ 0 : T kx ∈ (Mg = λ0)

}
= ∞

and

card
{
k ≤ 0 : Mαx(k) = λ0

}
= card

{
k ≥ 0 : Mαx(k) = λ0

}
= ∞ (21)
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for a.a. x ∈ X. If now x satisfies (15), (17), (18) and (21), then we can apply
Lemma 7 and establish the validity of (16). ¤

5. Counterexample for the symmetric maximal operator. For a mea-
surable function f , the symmetric ergodic maximal function Msf is defined
by

Msf(x) = sup
m≥0

1

2m + 1

m∑

k=−m

f(T kx), x ∈ X.

Let the measure space X be {0, 1, 2} with counting measure µ and let T be the
transformation T (x) = x + 1(mod 3). Define the functions f and g as follows:
f(x) = x, x ∈ X and g(0) = 1, g(1) = 0, g(2) = 2. Then Msf(0) = Msg(0) =
Msf(1) = Msg(1) = 1 and Msf(2) = Msg(2) = 2, i.e., Msf = Msg, while
f 6= g.

6. Infinite measure case. For infinite measure spaces, µ(X) = ∞, the
uniqueness theorem is not any longer valid. For example, every integrable neg-
ative function f has the maximal function Mf equal identically to 0 since the
limit of ergodic averages of every integrable function converges to 0 almost
everywhere,

lim
m→∞

1

m

m−1∑

k=0

f(T kx) = 0

for a.a. x ∈ X, f ∈ L(X) (see [5]).
However, for non-negative functions, the uniqueness theorem is correct:

Theorem 2. Let T be an invertible measure-preserving ergodic transformation
of a σ-finite measure space (X, S, µ). If 0 ≤ f, g ∈ L and Mf = Mg almost
everywhere, then f = g almost everywhere.

This theorem can be proved in the same way as for the one-sided maximal
operator M+ in Section 4 of [3]. Moreover, the exact analog of Theorem 2 in
[3] is correct for the two-sided operator M.

Theorem 3. Let T be an invertible measure-preserving ergodic transformation
of a σ-finite measure space (X, S, µ) with µ(X) = ∞.

(i) If f ∈ L and

Mf = Mg a.e. on X, (22)

then f = g a.e. on (Mf > 0);
(ii) If f ∈ L and µ(Mf = 0) > 0, then (22) holds for each g ∈ L such that

g = f on (Mf > 0) and g ≤ f on (Mf = 0).

Since this theorem can be proved as in [3], we omit its proof here.
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