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NECESSARY OPTIMALITY CONDITIONS FOR LIPSCHITZ
MULTIOBJECTIVE OPTIMIZATION PROBLEMS
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Abstract. Optimality conditions are established in terms of Lagrange–
Kuhn–Tucker multipliers for multiobjective optimization problems by a scala-
rization technique. Throughout this note, the data are assumed to be locally
Lipschitz.
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1. Introduction

In the last decade there has been an increasing interest in set-valued optimiza-
tion [3, 5, 6, 10, 16, 17, 18, 19]. General optimization problems with set-valued
constraints or a set-valued function are closely related to problems in stochas-
tic programming, fuzzy programming and optimal control. If the values of a
given function vary in a specified region, this fact could be described by using
a membership function in the theory of fuzzy sets or using information on the
distribution of the function values. In this general setting probability distribu-
tions or membership functions are not needed because only sets are considered.
Optimal control problems with differential inclusions belong to this class of set-
valued optimization problems as well. Set-valued optimization seems to have
the potential to become a bridge between different areas in optimization; it is
a substantial extension of the standard optimization theory.

In this note, we are concerned with the set-valued optimization problem

(P ) :

{
min F (x) ,

subject to G(x) ∩ −Z+ 6= ∅,

where X, Y and Z are Banach spaces, F : X ⇒ Y and G : X ⇒ Z are locally
Lipschitz set-valued mappings and Y + ⊂ Y and Z+ ⊂ Z are closed convex
cones. We assume that dim Y < +∞, dim Z < +∞ and that the unit dual ball
BX∗ is w∗-sequentially compact.

Our approach consists in using a support function [1, 2, 11, 12, 20] together
with the schalarization technique proposed by Ciligot-Travain [7] for the study
of necessary optimality conditions in vector optimization. In [11], Dien gave a
characterization of a set-valued mapping by its support function. The advantage
of this characterization is that it allows the theory of generalized derivative of
single-valued mappings to be used for set-valued mappings. Fortunately, the
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Lipschitz property of a set-valued mapping is conserved for its support function.
Using the above techniques, we establish necessary optimality conditions for the
constrained set-valued optimization problem (P ) . An intermediate set-valued
optimization problem is introduced to help us in our investigation. Moreover, as
an application, we deduce necessary optimality conditions for a mathematical
programming problem.

Our paper is written as follows: in Section 2, we recall some definitions and
give some preliminary results. Section 3 is devoted to the optimality conditions.
Section 4 discusses an application to a mathematical programming problem.

2. Preliminaries

Let F : X ⇒ Y and G : X ⇒ Z be set-valued mappings from X into Y and
Z. In the sequel, we denote the domain and the graph of F by

dom (F ) := {x ∈ X : F (x) 6= ∅} ,

gr (F ) := {(x, y) ∈ X × Y : y ∈ F (x)} ,

respectively. If V is a nonempty subset of Y, then

F (V ) = ∪
x∈V

F (x) .

A set-valued mapping F is said to be locally Lipschitz at x ∈ X if there exists
a neighborhood U of x such that for some constant α and for all x1, x2 ∈ U we
have

F (x1) ⊂ F (x2) + α ‖x1 − x2‖BY ;

here BY denotes the unit ball of Y. The number α is called a Lipschitz constant
for F at x.

Let Y + ⊂ Y and Z+ ⊂ Z be pointed closed convex cones such that Int Y + 6=
∅. The negative polar cone Y ◦ of Y + is defined by

Y ◦ =
{
y∗ ∈ Y ∗ : 〈y∗, y〉 ≤ 0 for all y ∈ Y +

}
,

where 〈·, ·〉 is the dual pair.
Let A be a nonempty subset of Y and y ∈ A. y is said to be a weak Pareto

minimal point of A with respect to Y + if

(A− y) ∩ (− Int Y +
)

= ∅,

here Int denotes the topological interior.
Let G− (−Z+) := {x ∈ X : G(x) ∩ −Z+ 6= ∅} . A point (x, y) ∈ gr (F ) with

x ∈ G− (−Z+) is said to be a weak local Pareto minimal point with respect to
Y + of the problem (P ) if there exists a neighborhood V of x such that

F
(
V ∩G− (−Z+

)) ⊂ y + Y \ (− Int Y +
)
.

Let y∗ ∈ Y. The function

CF (y∗, x) := sup
y∈F (x)

〈y∗, y〉
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is called the support function of F. It is obvious that CF (y∗, ·) is locally Lipschitz
in x, and α ‖y∗‖ is a Lipschitz-constant for CF (y∗, ·) at x if α is a Lipschitz-
constant for F at x.

Example 2.1. Let y∗ ∈ (Y +)
◦

and F (x) = f (x) + Y +, where f : X → Y is
a locally Lipschitz mapping. In this special case, one has

CF (y∗, x) = 〈y∗, f (x)〉 .
Moreover, if Y + = f (f1, f2, . . . , fm) and y∗ = (λ1, λ2, . . . , λm) , then

CF (y∗, x) =
m∑

i=1

λif (x) .

Assume that the barrier cone of F (x) , i.e., the set

Y ∗
F :=

{
y∗ ∈ Y ∗ : sup

y∈F (x)

〈y∗, y〉 < +∞
}

is closed and does not depend on x. This is the case, for example, when F is
locally Lipschitz [11].

Suppose that for all x ∈ X, F (x) is a nonempty, closed and convex set. The
distance function of F to zero,

d (y, F (x)) = inf {‖y − u‖ : u ∈ F (x)}
is related to the support function of F by

d (y, F (x)) = max
y∗∈Y ∗F∩BY ∗

〈y∗, y〉 − CF (y∗, x) .

If d (y, F (x)) > 0 then there is a unique y∗ ∈ Y ∗
F ∩BY ∗ satisfying ‖y∗‖ = 1 and

d (y, F (x)) = 〈y∗, y〉 − CF (y∗, x) , see [11] and [20].
For a subset S of Y , we consider the function

∆S (y) =

{
d (y, S) if y ∈ Y \ S,

−d (y, Y \ S) if y ∈ S,

where d (y, S) = inf {‖u− y‖ : u ∈ S} . This function is introduced in Hiriart-
Urruty [14] (see also [15]) , and used by Ciligot-Travain [7], and Amahroq and
Taa [3]. Let us recall the following result of [14].

Proposition 2.1 ([14]). Let S ⊂ Y be a closed convex cone with nonempty
interior and S 6= Y. The function ∆S is convex, positively homogeneous, 1-
Lipschitzian, decreasing on Y with respect to the order introduced by S. More-
over (Y \ S) = {y ∈ Y : ∆S (y) > 0}, Int (S) = {y ∈ Y : ∆S (y) < 0} and the
boundary of S : bd (S) = {y ∈ Y : ∆S (y) = 0} .

As a direct consequence of Proposition 2.1 one has the following result.

Proposition 2.2 ([7]). Let S ⊂ Rn be a nonempty closed convex cone with
nonempty interior. Then for all y ∈ Rn, 0 /∈ ∂∆S (y) .
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Here, for a locally Lipschitz mapping f, the set ∂f (x) denotes the Clarke
generalized Jacobian of f at x; i.e.,

∂f (x) :=

{
x∗ ∈ X∗ : lim sup

u→x, t↘0

f (u + tv)− f (u)

t
≥ 〈x∗, v〉 ∀v ∈ X

}
.

Recall the following interesting result which is due to Clarke [9]. For more
details we refer the interested reader to Proposition 2.3.12 [9].

Proposition 2.3 ([9]). Suppose that {fi} is a finite collection of functions
(i = 1, 2, . . . , n) each of which is Lipschitz near x. The function h defined by

h (x) = max {fi (x) : i = 1, 2, . . . , n}
is easily seen to be Lipschitz near x as well. Moreover,

∂h (x) ⊂ co {∂fi
(x) : i ∈ I (x)}

where I (x) := {i : fi (x) = h (x)} and “co” denotes the convex hull.

The next proposition was proved by Dien in 1983; see Proposition 2.2 [11]
and [20].

Proposition 2.4. Suppose that BX∗ is w∗-sequentially compact. Then for
all x ∈ X and y ∈ Y,

∂d (·, F (·)) (x, y) ⊂ co
{

∪
y∗∈J(x,y)

−∂CF (y∗, ·) (x)× {y∗}
}

,

where J (x, y) = {y∗ ∈ Y ∗
F : ‖y∗‖ ≤ 1, d (y, F (x)) = 〈y∗, y〉 − CF (y∗, x)} .

If, in addition, d (y, F (x)) > 0, then J (x) consists of only one single element
y∗ with ‖y∗‖ = 1 and the symbol “co” can be deleted.

In what follows, we suppose that dim Y < +∞, dim Z < +∞ and that BX∗

is w∗-sequentially compact. Moreover, the set-valued mappings F and G are
assumed to have the following properties:

i. The set-valued mapping (y∗, x) → ∂CF (y∗, ·) (x) is upper semicontinuous
when X∗, Y ∗ are endowed with the weak-star topology and X with the strong

topology, that is, if x∗n ∈ ∂CF (y∗n, ·) (xn) where x∗n
w∗→ x∗ in X∗, y∗n

w∗→ y∗ in Y ∗

and xn → x in X, then x∗ ∈ ∂CF (y∗, ·) (x) .
ii. The set-valued mapping (z∗, x) → ∂CG (z∗, ·) (x) is upper semicontinuous

when X∗, Z∗ are endowed with the weak-star topology and X with the strong

topology, that is, if x∗n ∈ ∂CG (z∗n, ·) (xn) where x∗n
w∗→ x∗ in X∗, z∗n

w∗→ z∗ in Z∗

and xn → x in X, then x∗ ∈ ∂CG (z∗, ·) (x) .

Remark 2.1. 1. The above property was introduced by Dien (see [11, 12]).
He calls it the Cl-property.

2. In some cases, the Cl-property can be established without difficulty. See
the following example.

Example 2.2. Let y∗ ∈ (Y +)
◦

and F (x) = f (x) + Y +, where f : X → Y is
a locally Lipschitz mapping.
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Suppose that x∗n ∈ ∂CF (y∗n, ·) (xn), where x∗n
w∗→ x∗ in X∗, y∗n → y∗ in Y ∗

and xn → x in X. Remarking that CF (y∗n, xn) = 〈y∗n, f (xn)〉 and that x∗n ∈
∂ 〈y∗n, f〉 (xn) , we deduce that x∗ ∈ ∂ 〈y∗, f〉 (x) .

3. Optimality Conditions

Consider the unconstrained multiobjective optimization problem

(P1) :

{
min F (x) ,

subject to x ∈ X,

where F is a set-valued mapping defined from X into Y. Theorem 1 gives nec-
essary optimality conditions for the optimization problem (P1) .

Theorem 1. Suppose that F is locally Lipschitz at x. If (x, y) ∈ gr (F ) is
a weak local Pareto minimal point with respect to Y + of the problem (P1), then
there exists y∗ ∈ (Y +)

◦ \ {0} such that{
0 ∈ ∂CF (y∗, ·) (x) ,

CF (y∗, x) = 〈y∗, y〉 .
Proof. By assumption, there exists a neighborhood V of x ∈ X such that

F (x) ⊂ y + Y \ (− Int Y +
)

for all x ∈ V.

That is for all x ∈ V and y ∈ F (x) one has

y − y ∈ Y \ (− Int Y +
)
,

hence by Proposition 2.1, ∆− Int Y + (y − y) ≥ 0.
Since ∆− Int Y + (0) = 0, it follows that (x, y) solves locally the problem

Minimize ∆− Int Y + (y − y) subject to y ∈ F (x) .

Let u = (x, y) and u = (x, y) .

Let Ψ1 (u) := ∆− Int Y + (y − y) +
1

n
, Ψ2 (u) := d (y, F (x)) and hn (u) :=

max (Ψ1 (u) , Ψ2 (u)) ; we have hn (u) ≤ 1
n

+ inf
u∈X×Y

hn (u) .

By Ekeland’s variational principle [13] there exists un ∈ X such that{ ‖un − u‖ ≤ 1√
n
,

hn (un) ≤ hn (u) + 1√
n
‖u− un‖ for all u ∈ X × Y.

Hence un is a minimum of hn (u) + 1√
n
‖u− un‖ and we get

0 ∈ ∂hn (un) +
1√
n
BX∗×Y ∗ .

In view of Proposition 2.3 it follows that ∂hn ⊂ co {∂Ψi : i ∈ I (un)} , where

I (un) := {i : hn (un) = Ψi (un)} .

Consequently, there exists λn ∈ [0, 1] such that

0 ∈ (1− λn) ∂Ψ1 (un) + λn∂Ψ2 (un) +
1√
n
BX∗×Y ∗ (1)
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where λn = 1 if Ψ1 (un) < Ψ2 (un), λn = 0 if Ψ2 (un) < Ψ1 (un) and 0 < λn < 1
if Ψ1 (un) = Ψ2 (un) .

• max (Ψ1 (un) , Ψ2 (un)) > 0 for n large enough, otherwise
{

d (yn, F (xn)) = 0,

∆−Int(Y +) (yn − y) + 1
n
≤ 0.

Therefore yn ∈ F (xn) and ∆− Int Y + (y − y) ≤ − 1

n
. Since u is a weak

local Pareto minimal point with respect to Y + of the problem (P1) , one
has

F (xn) ⊂ y + Y/− (
Int Y +

)
.

Consequently, ∆− Int Y + (yn − y) ≥ 0, which is a contradiction.
• Ψ2 (un) = d (yn, F (xn)) > 0 for n large enough. Otherwise, Ψ2 (un) = 0.

Since max (Ψ1 (un) , Ψ2 (un)) > 0, we deduce that Ψ2 (un) < Ψ1 (un) .
Consequently, from (1) ,

λn = 0 and 0 ∈ ∂Ψ1 (un) +
1√
n
BY ∗ .

Since ∂∆− Int Y + (.) is closed, one gets 0 ∈ ∂∆− Int Y + (0) . It is a contra-
diction to Proposition 2.2.

Using Proposition 2.4, there exist y∗n ∈ Y ∗
F ∩SY ∗ and a real number λn ∈ ]0, 1[

such that 



0 ∈ −λn ∂CF (y∗n, .) (xn) + 1√
n
BX∗ ,

0 ∈ (1− λn) ∂∆− Int Y + (yn − y) + λn y∗n + 1√
n
BY ∗ .

Hence there is m∗
n ∈ ∂∆− Int Y + (yn − y) such that




0 ∈ −λn ∂CF (y∗n, .) (xn) + 1√
n
BX∗ ,

0 ∈ (1− λn) m∗
n + λn y∗n + 1√

n
BY ∗ .

(2)

Since dim Y is finite, taking a subsequence if necessary, we can assume that{
(λn) → λ ∈ [0, 1] ,

(y∗n) → ỹ∗ ∈ Y ∗
F ∩ SY ∗ ,

when n → +∞.

• Since ∂∆− Int Y + (.) is upper semicontinuous and closed, due to Proposi-
tion 2.2, there exist m∗ ∈ ∂∆− Int Y + (0) , m∗ 6= 0Y ∗ and a subsequence(
m∗

ϕ(n)

)
of (m∗

n) such that m∗
ϕ(n) → m∗. Moreover, since ∆− Int Y + (.) is a

convex function and ∆−intY + (0) = 0, we have for all y ∈ Y

∆−intY + (y) ≥ 〈m∗, y〉 ,
and hence for all y ∈ −Y +

〈m∗, y〉 ≤ ∆−intY + (y) = −d
(
y, Y \ − Int Y +

) ≤ 0.
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Therefore m∗ ∈ (−Y +)
◦
.

• One the one hand, λ > 0. Otherwise, by (2) , m∗ = 0, which is a contra-
diction.

On the other hand, λ < 1. Otherwise, by (2) , ỹ∗ = 0, which is a
contradiction.

Assuming that α is a Lipschitz constant for F at x,

CF (y∗n, x)− 〈y∗n, y〉 ≤ CF (y∗n, xn)− 〈y∗n, y〉+ α ‖y∗n‖ ‖xn − x‖ .

Letting n → +∞, we get

CF (ỹ∗, x)−〈ỹ∗, y〉 ≤ lim inf
n→+∞

(CF (y∗n, xn)− 〈y∗n, yn〉)≤ lim
n→+∞

−d (yn, F (xn)) = 0.

Since y ∈ F (x) , we have CF (ỹ∗, x) = 〈ỹ∗, y〉 . Finally,{
0 ∈ ∂CF (y∗, .) (x) ,

CF (y∗, x) = 〈y∗, y〉
with y∗ = 1

λ
ỹ∗. ¤

In order to give necessary optimality conditions for the multiobjective opti-
mization problem (P ) , we introduce the intermediate problem (P2) .

In the sequel (F,G) will be the multifunction from X into Y × Z defined by

(F,G) (x) = (F (x) , G (x)) = F (x)×G (x) for all x ∈ dom (F ) ∩ dom (G) .

Let z ∈ G (x) ∩ (−Z+) and consider the next problem (P2) with respect to
Y + × (Z+ + z) ,

(P2) :
Minimize (F, G) (x) ,

Subject to x ∈ X.

Proposition 3.1 compares the set of all Pareto minimal points of (P ) and the
set of all Pareto minimal points of (P2) . This result is proved by Amahroq and
Taa in [4]. For the convenience of the reader, the proof is given below.

Proposition 3.1. Suppose that F and G are locally Lipschitz at x.Let (x, y) ∈
gr (F ) with G (x) ∩ (−Z+) 6= ∅. If (x, y) is a local weak Pareto minimal point
of (P ) with respect to Y +, then for all z ∈ G (x) ∩ (−Z+) , (x, y, z) is a local
weak Pareto minimal point of (P2) with respect to Y + × (Z+ + z) .

Proof. Suppose the contrary. There exists z ∈ G (x)∩ (−Z+) such that (x, y, z)
is not a local weak Pareto minimal point of (P2) . One can find sequences (xn) →
x, (yn) → y and (zn) ⊂ Z such that for all n ∈ N

yn ∈ F (xn) , zn ∈ G (xn) ,

and
(x, y)− (yn, zn) ∈ Int

[
Y + × (

Z+ + z
)]

.

Thus
yn ∈ F (xn) , zn ∈ G (xn) ∩ (−Z+

)
and y − yn ∈ Int Y +.

A contradiction, since (x, y) is a local weak Pareto minimal point of (P ) with
respect to Y +. ¤
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As a consequence of Theorem 1 and Proposition 3.1 one has the following
result.

Corollary 1. Let (x, y) ∈ gr (F ) with G (x) ∩ (−Z+) 6= ∅. If (x, y) is a
local weak Pareto minimal point of (P ) with respect to Y +, then for all z ∈
G (x) ∩ (−Z+) there exist y∗ ∈ (Y +)

◦
and z∗ ∈ (Y +)

◦
, (y∗, z∗) 6= (0Y ∗ , 0Z∗)

such that {
0 ∈ ∂CF (y∗, ·) (x) + ∂CG (z∗, ·) (x) ,

CF (y∗, x) + CG (z∗, x) = 〈y∗, y〉+ 〈z∗, z〉 .
Remark 3.1. Using a regularity condition, one can obtain y∗ 6= 0Y ∗ . Such a

condition is given by Dien in [12]. The proof will be similar to that of Theorem 1.

As a special case, take the following optimization problem

(P3) :
Min f (x) ,

Subject to − g (x) ∈ Z+,

where f : X → Y and g : X → Z are locally Lipschitz mappings.

Corollary 2. Suppose that (x, f (x)) is a local weak Pareto minimal point of
(P3) with respect to Y +. Then there exist y∗ ∈ (Y +)

◦
and z∗ ∈ (Y +)

◦
, (y∗, z∗) 6=

(0Y ∗ , 0Z∗) such that
{

0 ∈ ∂ 〈y∗, f〉 (x) + ∂ 〈z∗, g〉 (x) ,
〈z∗, g〉 = 0.

By the following example we illustrate the usefulness of the necessary condi-
tions in Corollary 1.

Example 3.1. Let f = (f1, . . . , fn) , g = (g1, . . . , gn) : X → Rn be given
mappings. We consider the set-valued mappings F and G : X ⇒ Rn with{

F (x) :=
{
y ∈ Rn : y − f (x) ∈ Rn

+

}
,

G (x) :=
{
z ∈ R : z − g (x) ∈ Rn

+

}
.

Under these assumptions, we investigate the optimization problem

(P ¦) :

{
min F (x) ,

subject to G(x) ∩ −Rn
+ 6= ∅.

This is a special case of the general type (P ) . In this example, the values of the
objective may vary between the values of two known functions.

Next, assume that (x, f (x)) is a weak local Pareto minimal point of (P ¦)
and that f and g are locally Lipschitz at x ∈ {

x ∈ X : G(x) ∩ −Rn
+ 6= ∅

}
.

Consequently, F and G are locally Lipschitz at x. Then there exist vectors
λ = (λ1, λ2, . . . , λm) ∈ Rm

+ and µ = (µ1, µ2, . . . , µk) ∈ Rk, (λ, µ) 6= (0, 0) such
that 




0 ∈
m∑

i=1

λi∂fi (x) +
k∑

j=1

µj∂gj (x) ,

λigi (x) = 0, i = 1, 2, . . . , m.
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4. Application

In this section we are concerned with the mathematical programming problem

(P ∗) :

min f (x) ,{
gi (x) ≤ 0, i = 1, 2, . . . , m,

hj (x) = 0, j = 1, 2, . . . , k,

where f, gi, and hj are locally Lipschitz at x.
Setting C := {x : gi (x) ≤ 0, hj (x) = 0 for all i, j} , g (x) = (g1 (x) , g2 (x) ,

. . . , gm (x)) and h (x) = (h1 (x) , h2 (x) , . . . , hk (x)), problem (P ∗) is reduced
to problem (P ) when the set-valued mapping G from X into Z = Rm × Rk is
defined by

G (x) := (g (x) , h (x)) + Rm
+ × {0Rk} ;

here Rm
+ is the nonnegative orthant of Rm.

Obviously in that case, Z+ = Rm+k
+ and for any z∗ = (λ, µ) ∈ Z+ we have

CG (z∗, x) = 〈λ, g (x)〉+ 〈µ, h (x)〉 .
Take x ∈ C, z = 0 ∈ G (x)∩Z+ and z∗ = (λ, µ) ∈ Rm+k

+ ; it can be verified that
CG (z∗, x) = 0 if and only if 〈λ, g (x)〉 = 0.

In conclusion, we deduce from the Theorem 1 the following necessary condi-
tion for problem (P ∗) .

Theorem 2. Let x be a solution of (P ∗) . Then there exist vectors λ =
(λ0, λ1, λ2, . . . , λm) ∈ Rm+1

+ and µ = (µ1, µ2, . . . , µk) ∈ Rk, (λ, µ) 6= (0, 0) such
that 




0 ∈ λ0∂f (x) +
m∑

i=1

λi∂gi (x) +
k∑

j=1

µj∂hj (x) ,

λigi (x) = 0, i = 1, 2, . . . , m.

Remark 4.1. In this special case, in order to get λ0 6= 0, it suffices to have
the vectors ∇gi (x) , i ∈ q (x) , ∇hj (x) , j = 1, . . . , k, linearly independent.
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