ON ONE ESTIMATE FOR PERIODIC FUNCTIONS

ROBERT HAKL AND SULKHAN MUKHIGULASHVILI

Abstract. For $v \in \widetilde{C}^n_{\omega}$ $(n \in N, \omega > 0)$, the estimate

$$\Delta\left(v\right) < \frac{\omega^{n}}{d_{n}}\Delta\left(v^{(n)}\right)$$

is derived, where

$$\Delta\left(v^{(i)}\right) = \max\left\{v^{(i)}(t) : t \in R\right\} - \min\left\{v^{(i)}(t) : t \in R\right\} \quad (i = \overline{0, n})$$

and d_n are defined by a certain recurrent formula.

2000 Mathematics Subject Classification: 26D10.

Key words and phrases: Periodic functions, inequalities involving derivatives.

INTRODUCTION

The following notation is used throughout the paper:

N is the set of all natural numbers.

R is the set of all real numbers, $R_{+} = [0, +\infty[$.

 \widetilde{C}^n_{ω} , where $\omega > 0$, is a set of ω -periodic functions $u : R \to R$, which are absolutely continuous together with their *n*-th derivative.

[k], where $k \in R$, is an integer part of k.

In many fields of mathematics, inequalities are used, in which a function is estimated by its derivatives, e.g., Wirtinger inequality (see [1]–[4]), Kolmogorov– Hardy inequality (see [5]), Sobolev inequality, generalized Poincaré inequality, etc. (see [6]). Inequalities of this type are frequently used in investigating boundary value problems for differential equations (see, e.g., [2–4]). In this paper, the difference of maximal and minimal values of an ω -periodic function is estimated by using the difference of maximal and minimal values of its *n*-th derivative. This inequality can be successfully applied in the investigation of a periodic problem for functional differential equations of higher order.

1. The Main Result

In the sequel, the following notation is used:

$$A_0 = 1, \quad A_1 = \frac{1}{15}, \quad A_j = A_1 \sum_{m_1=1}^2 \sum_{m_2=1}^{m_1+1} \dots \sum_{m_{j-1}=1}^{m_{j-2}+1} \frac{1}{\eta(m_1) \dots \eta(m_{j-1})},$$

ISSN 1072-947X / \$8.00 / C Heldermann Verlag www.heldermann.de

$$B_1 = \frac{1}{8}, \quad B_j = A_1 \sum_{m_1=1}^{2} \sum_{m_2=1}^{m_1+1} \dots \sum_{m_{j-1}=1}^{m_{j-2}+1} \frac{1}{\eta(m_1)\dots\eta(m_{j-1})} \prod_{i=1}^{m_{j-1}+1} \left(1 + \frac{1}{2i}\right)$$

for $j \geq 2$, where

$$\eta(t) = (2t+1)(2t+3).$$

Let $d_1 = 4$, $d_2 = 32$, $d_3 = 192$, and for $p \in N$ put

$$d_{2p+2} = \frac{1}{\max\left\{ (h_p(t)h_p(1-t))^{1/2} : 0 \le t \le 1 \right\}},$$

$$d_{2p+3} = \frac{1}{\max\left\{ (f_p(s,t)f_p(1-s,1-t))^{1/2} : 0 \le s \le 1, \ 0 \le t \le 1 \right\}},$$
(1.1)

where the functions $f_p : [0,1] \times [0,1] \to R_+, h_p : [0,1] \to R_+$ are defined as follows:

$$f_p(s,t) = \sum_{j=0}^{p-1} \alpha_{pj} t^{2(j+1)} + \alpha_{pp} t^{2p+3} s, \qquad h_p(t) = \sum_{j=0}^p \beta_{pj} t^{2(j+1)}, \tag{1.2}$$

and

$$\alpha_{pj} = \frac{A_j}{3 \cdot 4^{j+1} d_{2(p-j)+1}}, \quad \beta_{pj} = \frac{A_j}{3 \cdot 4^{j+1} d_{2(p-j)}} \quad (j = \overline{0, p-1}),$$

$$\alpha_{pp} = \frac{A_p}{3 \cdot 4^{p+1}}, \quad \beta_{pp} = \frac{B_p}{3 \cdot 4^{p+1}}.$$
(1.3)

Theorem 1.1. Let $n \in N$, $v \in \widetilde{C}^n_{\omega}$, $d_1 = 4$, $d_2 = 32$, $d_3 = 192$, and d_n (if $n \ge 4$) be given by equalities (1.1). Let, moreover,

$$v(t) \neq const.$$
 (1.4)

Then

$$\Delta\left(v\right) < \frac{\omega^{n}}{d_{n}} \Delta\left(v^{(n)}\right),\tag{1.5}$$

where

$$\Delta(v^{(i)}) = \max\{v^{(i)}(t) : t \in R\} - \min\{v^{(i)}(t) : t \in R\} \quad (i = \overline{0, n}).$$
(1.6)

Remark 1.1. From Theorem 1.1 it follows that the inequalities

$$\Delta\left(v^{(i)}\right) < \frac{\omega^{n-i}}{d_{n-i}}\Delta\left(v^{(n)}\right) \quad \text{for} \quad i = 1, \dots, n-1$$

are also fulfilled.

Remark 1.2. An estimate

$$d_n < (2\pi)^n \qquad \text{for} \quad n \in N \tag{1.7}$$

holds.

Remark 1.3. In Theorem 1.1, the numbers d_n (n = 1, ..., 7) are nonimprovable in the sense that for every $\varepsilon > 0$ there exists $v_0 \in \tilde{C}^n_{\omega}$ such that

$$\Delta(v_0) \ge \frac{\omega^n}{d_n + \varepsilon} \Delta\left(v_0^{(n)}\right),\tag{1.8}$$

where

$$d_4 = \frac{2^{11} \cdot 3}{5}, \qquad d_5 = 2^9 \cdot 3 \cdot 5,$$

$$d_6 = \frac{2^{16} \cdot 3^2 \cdot 5}{61}, \qquad d_7 = \frac{2^{14} \cdot 3^2 \cdot 5 \cdot 7}{17}.$$
 (1.9)

Remark 1.4. To prove the optimality of estimate (1.5) for $n \ge 8$ (in the sense of Remark 1.3) it is sufficient to show that for $p \ge 3$ we have

$$\max\left\{h_p(t) \cdot h_p(1-t) : 0 \le t \le 1\right\} = h_p^2(1/2), \tag{1.10}$$

$$\max\left\{f_p(s,t) \cdot f_p(1-s,1-t) : 0 \le s, t \le 1\right\} = f_p^2(1/2,1/2), \tag{1.11}$$

where the functions h_p and f_p are defined by (1.2). Equalities (1.10) and (1.11) are proved for p = 1, 2 (see On Remark 1.3 in Section 4). In the general case (started with p = 3), the proof of (1.10) and (1.11) is not known to the authors.

2. AUXILIARY PROPOSITIONS

Let $Q_m: [0, +\infty[\rightarrow]0, +\infty[(m \in N))$ be the functions defined by the equality

$$Q_m(t) = \frac{2^m}{m! t^{2m}} \prod_{i=1}^m (2i+1).$$

Lemma 2.1. Let $p \in N$, $\omega > 0$, and $v \in \widetilde{C}_{\omega}^{2p+3}$. Let, moreover, $a \in R$, $b \in]a, a + \omega[, \omega_1 = b - a, (1.4)$ be fulfilled, and

$$x(t) = (b-t)(t-a) \quad for \quad a \le t \le b.$$

Then the following equalities hold:

$$\int_{a}^{b} x(s)v^{(3)}(s)ds = \frac{\omega_1^2}{6} \int_{a}^{b} v^{(3)}(s)ds - \frac{1}{12} \int_{a}^{b} x^2(s)v^{(5)}(s)ds$$
(2.1₁)

if p = 1, and

$$\int_{a}^{b} x(s)v^{(3)}(s)ds = \frac{2}{3} \sum_{j=0}^{p-1} (-1)^{j} \left(\frac{\omega_{1}}{2}\right)^{2(j+1)} A_{j} \int_{a}^{b} v^{(2j+3)}(s)ds$$
$$+ (-1)^{p} \frac{2}{45} \left(\frac{\omega_{1}}{2}\right)^{2(p+1)} \sum_{m_{1}=1}^{2} \sum_{m_{2}=1}^{m_{1}+1} \cdots \sum_{m_{p-1}=1}^{m_{p-2}+1} \frac{Q_{m_{p-1}+1}(\omega_{1})}{\eta(m_{1}) \dots \eta(m_{p-1})}$$
$$\times \int_{a}^{b} x^{m_{p-1}+1}(s)v^{(2p+3)}(s)ds \qquad (2.1_{p})$$

if $p \geq 2$.

Proof. Let $m \in N$, $r \in \{1, 2, ..., 2p - 1\}$. Then the integration by parts, in view of (1.4), yields

$$\int_{a}^{b} x^{m}(s)v^{(r)}(s)ds = \frac{m}{m+1}\int_{a}^{b} (b-s)^{m+1}(s-a)^{m-1}v^{(r)}(s)ds$$
$$+\frac{1}{m+1}\int_{a}^{b} (b-s)^{m+1}(s-a)^{m}v^{(r+1)}(s)ds,$$
$$\int_{a}^{b} x^{m}(s)v^{(r)}(s)ds = \frac{m}{m+1}\int_{a}^{b} (b-s)^{m-1}(s-a)^{m+1}v^{(r)}(s)ds$$
$$-\frac{1}{m+1}\int_{a}^{b} (b-s)^{m}(s-a)^{m+1}v^{(r+1)}(s)ds.$$

Summing the last two equalities and adding to both sides the term

$$\frac{2m}{m+1}\int_{a}^{b}x^{m}(s)v^{(r)}(s)ds,$$

we obtain

$$\int_{a}^{b} x^{m}(s)v^{(r)}(s)ds = \omega_{1}^{2} \frac{m}{2(2m+1)} \int_{a}^{b} x^{m-1}(s)v^{(r)}(s)ds$$
$$-\frac{1}{2(m+1)(2m+1)} \int_{a}^{b} x^{m+1}(s)v^{(r+2)}(s)ds.$$
(2.2_m)

Now using the method of mathematical induction we will prove the following equality:

$$Q_{m}(\omega_{1})\int_{a}^{b} x^{m}(s)v^{(r)}(s)ds = \int_{a}^{b} v^{(r)}(s)ds$$
$$-\left(\frac{\omega_{1}}{2}\right)^{2}\sum_{m_{1}=1}^{m} \frac{Q_{m_{1}+1}(\omega_{1})}{(2m_{1}+1)(2m_{1}+3)}\int_{a}^{b} x^{m_{1}+1}(s)v^{(r+2)}(s)ds.$$
(2.3_m)

The validity of equality (2.3_1) immediately follows from (2.2_1) . Now suppose that equality (2.3_{m-1}) holds and show that (2.3_m) is true. It is not difficult to verify that

$$\omega_1^2 \frac{m}{2(2m+1)} Q_m(\omega_1) = Q_{m-1}(\omega_1),$$

$$\frac{Q_m(\omega_1)}{2(2m+1)(m+1)} = \left(\frac{\omega_1}{2}\right)^2 \frac{Q_{m+1}(\omega_1)}{(2m+1)(2m+3)}.$$

Then from (2.2_m) we obtain

$$Q_m(\omega_1) \int_a^b x^m(s) v^{(r)}(s) ds = Q_{m-1}(\omega_1) \int_a^b x^{m-1}(s) v^{(r)}(s) ds$$
$$- \left(\frac{\omega_1}{2}\right)^2 \frac{Q_{m+1}(\omega_1)}{(2m+1)(2m+3)} \int_a^b x^{m+1}(s) v^{(r+2)}(s) ds.$$

Hence, applying (2.3_{m-1}) , we get (2.3_m) .

Now (2.3_1) with r = 3 results in (2.1_1) .

Further, using the method of mathematical induction we will show that (2.1_p) holds. From (2.3_2) with r = 5 and (2.1_1) we have

$$\int_{a}^{b} x(s)v^{(3)}(s)ds = \frac{\omega_{1}^{2}}{6} \int_{a}^{b} v^{(3)}(s)ds - \frac{\omega_{1}^{4}}{360} \int_{a}^{b} v^{(5)}(s)ds + \frac{1}{360} \sum_{i=1}^{2} \frac{\omega_{1}^{4-2i}}{3-i} \int_{a}^{b} x^{i+1}(s)v^{(7)}(s)ds,$$

and so equality (2.1_2) is valid. Suppose now that equality (2.1_{p-1}) holds and show that (2.1_p) is fulfilled. For this it is sufficient to use equality (2.3_m) with $m = m_{p-2} + 1$, r = 2p + 1 in equality (2.1_{p-1}) .

Lemma 2.2. Let all the assumptions of Lemma 2.1 be fulfilled with $v \in \widetilde{C}^{2p+2}_{\omega}$. Then the following equalities hold:

$$\int_{a}^{b} x(s)v^{(3)}(s)ds = \frac{\omega_{1}^{2}}{6} \int_{a}^{b} v^{(3)}(s)ds + \frac{1}{12} \int_{a}^{b} (x^{2}(s))' v^{(4)}(s)ds \qquad (2.4)$$

if p = 1, and

$$\int_{a}^{b} x(s)v^{(3)}(s)ds = \frac{2}{3} \sum_{j=0}^{p-1} (-1)^{j} \left(\frac{\omega_{1}}{2}\right)^{2(j+1)} A_{j} \int_{a}^{b} v^{(2j+3)}(s)ds$$
$$+ (-1)^{p+1} \frac{2}{45} \left(\frac{\omega_{1}}{2}\right)^{2(p+1)} \sum_{m_{1}=1}^{2} \sum_{m_{2}=1}^{m_{1}+1} \cdots \sum_{m_{p-1}=1}^{m_{p-2}+1} \frac{Q_{m_{p-1}+1}(\omega_{1})}{\eta(m_{1})\dots\eta(m_{p-1})}$$
$$\times \int_{a}^{b} \left(x^{m_{p-1}+1}(s)\right)' v^{(2p+2)}(s)ds \qquad (2.4_{p})$$

if $p \geq 2$.

Proof. From Lemma 2.1, by integration by parts, it follows that (2.4_1) and (2.4_p) hold for $v \in \tilde{C}^{2p+3}_{\omega}$. Since $\tilde{C}^{2p+3}_{\omega}$ is a dense subset of $\tilde{C}^{2p+2}_{\omega}$, equalities (2.4_1) and (2.4_p) are fulfilled for every $v \in \tilde{C}^{2p+2}_{\omega}$ as well.

For $k \in N$ and $m \in N \cup \{0\}$, define the functions $W_{m,k} : [0,1] \to [-1,1]$ by the equalities

$$W_{0,k}(t) = \begin{cases} 1 & \text{for } 0 \le t \le \frac{1}{4} - \frac{1}{8k} ,\\ \sin \pi k (1 - 4t) & \text{for } \frac{1}{4} - \frac{1}{8k} < t < \frac{1}{4} + \frac{1}{8k} ,\\ -1 & \text{for } \frac{1}{4} + \frac{1}{8k} \le t \le \frac{1}{2} , \end{cases}$$
(2.5)

$$W_{0,k}\left(\frac{1}{2}+t\right) = W_{0,k}\left(\frac{1}{2}-t\right) \quad \text{for} \quad 0 \le t \le \frac{1}{2},$$
 (2.6)

and

$$W_{m,k}(t) = \int_{0}^{t} W_{m-1,k}(s)ds - \delta_m \int_{0}^{1/4} W_{m-1,k}(s)ds \quad \text{for } t \in [0,1], \ m \in N, \ (2.7)$$

where

$$\delta_m = \begin{cases} 0 & \text{if } m = 2\mu - 1, \\ 1 & \text{if } m = 2\mu, \end{cases} \qquad \mu \in N.$$
 (2.8)

Lemma 2.3. Let the functions $W_{m,k}$ be defined by (2.5)–(2.7). Then for every $p, k \in N$ and $m \in N \cup \{0\}$, the following equalities hold:

$$W_{m,k}(0) = W_{m,k}(1),$$
 (2.9)

$$\Delta(W_{2p,k}) = 2 \left| W_{2p,k} \left(\frac{1}{2} \right) \right|, \qquad (2.10)$$

$$\Delta(W_{2p-1,k}) = 2 \left| W_{2p-1,k} \left(\frac{1}{4} \right) \right|, \qquad (2.11)$$

and

$$W_{m,k}(t) = \int_{0}^{t} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{m-1}} W_{0,k}(t_{m}) dt_{m} \dots dt_{1}$$
$$+ \sum_{i=1}^{\left[\frac{m}{2}\right]} \frac{(-1)^{i} t^{m-2i}}{(m-2i)!} \left| W_{2i,k}\left(\frac{1}{2}\right) \right| \qquad for \quad 0 < t \le 1, \quad m \ge 2.$$
(2.12*m*)

Proof. First we show that the equalities

$$W_{m,k}\left(\frac{1}{2} - t\right) = (-1)^m W_{m,k}\left(\frac{1}{2} + t\right) \qquad \text{for} \quad 0 \le t \le \frac{1}{2}$$
(2.13_m)

and

$$W_{m,k}\left(\frac{1}{4}-t\right) = (-1)^{m-1} W_{m,k}\left(\frac{1}{4}+t\right) \quad \text{for} \quad 0 \le t \le \frac{1}{4} \quad (2.14_m)$$

hold. It is not difficult to verify that (2.13_m) and (2.14_m) are valid for m = 1, 2. Now assume that (2.13_{m-1}) and (2.14_{m-1}) hold and show that (2.13_m) and (2.14_m) are fulfilled.

First note that

$$W_{m,k}\left(\frac{1}{2}-t\right) - (-1)^m W_{m,k}\left(\frac{1}{2}+t\right)$$
$$= \int_{0}^{1/2-t} W_{m-1,k}(s)ds - (-1)^m \int_{0}^{1/2+t} W_{m-1,k}(s)ds.$$
(2.15)

In view of (2.13_{m-1}) and (2.14_{m-1}) we have

$$\int_{1/2-t}^{1/2+t} W_{m-1,k}(s)ds = 0 \quad \text{if } m \text{ is even}$$

and

$$\int_{0}^{1/2-t} W_{m-1,k}(s)ds = -\int_{0}^{1/2+t} W_{m-1,k}(s)ds \quad \text{if } m \text{ is odd.}$$

From (2.15) and the last two equalities, the validity of (2.13_m) immediately follows. Analogously, we can prove equality (2.14_m) .

It is clear that equalities (2.13_m) and (2.14_m) result in (2.9).

According to (2.14_m) and the definitions of the functions $W_{0,k}$ and $W_{m,k}$, using the method of mathematical induction, it is easy to show that

$$(-1)^{p}W_{2p,k}(t) > 0 \quad \text{for } 0 < t < \frac{1}{4}, \quad (-1)^{p}W_{2p-1,k}(t) < 0 \quad \text{for } 0 < t < \frac{1}{2}.$$

Consequently, in view of (2.13_m) and (2.14_m) , for $p \in N$ we have

$$(-1)^{p} W_{2p,k}(t) > 0 \quad \text{for } t \in]0, 1/4[\cup]3/4, 1[, (-1)^{p} W_{2p,k}(t) < 0 \quad \text{for } t \in]1/4, 3/4[,$$

$$(2.16_{p})$$

and

$$\begin{aligned} &(-1)^{p} W_{2p-1,k}(t) < 0 \quad \text{for } t \in]0, 1/2[, \\ &(-1)^{p} W_{2p-1,k}(t) > 0 \quad \text{for } t \in]1/2, 1[. \end{aligned}$$

From (2.16_p) and (2.17_p) , in view of the relation

$$W_{m,k}^{(i)}(t) = W_{m-i,k}(t)$$
 for $0 \le t \le 1$, $i = 0, \dots, m$, (2.18)

we get

$$\min\left\{(-1)^{p}W_{2p,k}(t): 0 \le t \le 1\right\} = (-1)^{p}W_{2p,k}\left(\frac{1}{2}\right),$$
(2.19)

$$\max\left\{(-1)^{p}W_{2p,k}(t): 0 \le t \le 1\right\} = (-1)^{p}W_{2p,k}(0).$$

On the other hand, from (2.14_m) , (2.16_p) , and (2.19) we obtain

$$\Delta(W_{2p,k}) = (-1)^p \left[W_{2p,k}(0) - W_{2p,k}\left(\frac{1}{2}\right) \right] = 2 \left| W_{2p,k}\left(\frac{1}{2}\right) \right|.$$
(2.20)

Therefore, (2.10) is valid. Analogously (2.13_m) , (2.16_p) , (2.17_p) , and (2.19) result in (2.11).

From (2.7) and (2.8) it immediately follows that

$$W_{m,k}(t) = \int_{0}^{t} \int_{0}^{t_{1}} \dots \int_{0}^{t_{m-1}} W_{0,k}(t_{m}) dt_{m} \dots dt_{1}$$
$$-\sum_{i=1}^{\left[\frac{m}{2}\right]} \frac{t^{m-2i}}{(m-2i)!} \int_{0}^{1/4} W_{2i-1,k}(s) ds \quad \text{for} \quad 0 < t \le 1, \quad m \ge 2.$$
(2.21_m)

However, in view of (2.14_m) , (2.16_p) , and (2.18), we have

$$\int_{0}^{1/4} W_{2i-1,k}(s)ds = -W_{2i,k}(0) = W_{2i,k}\left(\frac{1}{2}\right) = (-1)^{i-1} \left| W_{2i,k}\left(\frac{1}{2}\right) \right|,$$

and, consequently, (2.21_m) results in (2.12_m) .

Now define the functions $W_0 : [0,1] \to \{-1,1\}, W_m : [0,1] \to R$, and positive constants $l_{m,k}, l_m \ (m,k \in N)$ by the equalities

$$W_0(t) = \begin{cases} 1 & \text{for } t \in [0, \frac{1}{4}] \cup [\frac{3}{4}, 1], \\ -1 & \text{for } t \in]\frac{1}{4}, \frac{3}{4}[,] \end{cases}$$
(2.22)

$$W_m(t) = \int_0^t W_{m-1}(s)ds - \delta_m \int_0^{1/4} W_{m-1}(s)ds \quad \text{for} \quad t \in [0, 1], \quad (2.23)$$

$$l_{2p-1,k} = \frac{1}{|W_{2p-1,k}\left(\frac{1}{4}\right)|}, \qquad l_{2p,k} = \frac{1}{|W_{2p,k}\left(\frac{1}{2}\right)|}, \\ l_{2p-1} = \frac{1}{|W_{2p-1}\left(\frac{1}{4}\right)|}, \qquad l_{2p} = \frac{1}{|W_{2p}\left(\frac{1}{2}\right)|}, \qquad (2.24)$$

where $p \in N$ and δ_m are given by (2.8). Note that

$$\lim_{k \to +\infty} W_{0,k}(t) = W_0(t) \quad \text{almost everywhere on } [0,1], \tag{2.25}$$

and by the Lebesgue Dominated Convergence Theorem we have that

$$\lim_{k \to +\infty} W_{m,k}(t) = W_m(t) \quad \text{uniformly on } [0,1], \quad m \in N.$$
(2.26)

Therefore, on account of (2.24), we have

$$\lim_{k \to +\infty} l_{m,k} = l_m \quad \text{for} \quad m \in N.$$
(2.27)

Lemma 2.4. Let $k \in N$ and let the functions W_{0k} , W_0 , $W_{m,k}$, W_m , and the numbers $l_{m,k}$, l_m ($m \in N$) be defined by (2.5)–(2.7), and (2.22)–(2.24), respectively. Then

$$\Delta(W_{m,k}) = \frac{1}{l_{m,k}} \Delta(W_{0,k}) \qquad for \quad m \in N,$$
(2.28)

$$\Delta(W_m) = \frac{1}{l_m} \Delta(W_0) \qquad for \quad m \in N,$$
(2.29)

and

$$l_{2p-1} = \frac{(-1)^{p+1} 4^{2p-1}}{\sum_{i=0}^{p-1} \frac{(-1)^{i} 16^{i}}{(2p-2i-1)! l_{2i}}}, \quad l_{2p} = \frac{(-1)^{p+1} 4^{2p}}{\sum_{i=0}^{p-1} \frac{(-1)^{i} 16^{i}}{(2p-2i)! l_{2i}}} \quad for \quad p \in N,$$
(2.30)

where $l_0 = 1$.

Proof. Note that $\triangle(W_{0,k}) = 2$, and thus from (2.10), (2.11), and (2.24) we obtain (2.28), whence, in view of (2.25)–(2.27), we get (2.29).

By the definition of the functions $W_{0,k}$, we get

$$\lim_{k \to +\infty} \int_{0}^{1/4} \int_{0}^{t_1} \dots \int_{0}^{t_{m-1}} W_{0,k}(t_m) dt_m \dots dt_1 = \frac{1}{m! 4^m},$$
(2.31)

and also, on account of (2.16_p) , (2.17_p) , we have

$$\left| W_{2p-i,k} \left(\frac{1}{2(i+1)} \right) \right| = (-1)^{p+1} W_{2p-i,k} \left(\frac{1}{2(i+1)} \right) \quad (i=0,1).$$
(2.32)

Then from (2.12_m) with m = 2p - 1, t = 1/4, (2.24), (2.31) and (2.32) we get

$$l_{2p-1,k} = \frac{(-1)^{p+1}}{W_{2p-1,k}\left(\frac{1}{4}\right)} = \frac{(-1)^{p+1}}{\frac{1}{(2p-1)!4^{2p-1}} + \sum_{i=1}^{p-1} \frac{(-1)^i}{(2p-2i-1)!4^{2p-2i-1}l_{2i,k}}}$$

Hence, by virtue of (2.27), we obtain the first equality in (2.30).

Furthermore, note that from (2.14_{2p-1}) it follows that

$$\int_{0}^{1/4} W_{2p-1,k}(s) ds = \int_{1/4}^{1/2} W_{2p-1,k}(s) ds.$$

Therefore from (2.7), in view of (2.8), we have

$$W_{2p,k}\left(\frac{1}{2}\right) = \int_{0}^{1/4} W_{2p-1,k}(s)ds$$

Hence, together with (2.12_{2p-1}) , (2.24), (2.31) with m = 2p, and (2.32), we obtain

$$l_{2p,k} = \frac{(-1)^{p+1}}{W_{2p,k}\left(\frac{1}{2}\right)} = \frac{(-1)^{p+1}}{\frac{1}{(2p)!4^{2p}} + \sum_{i=1}^{p-1} \frac{(-1)^i}{(2p-2i)!4^{2p-2i}l_{2i,k}}}.$$

Consequently, the last equality, by virtue of (2.27), results in the second equality in (2.30).

105

•

Lemma 2.5. Let there exist $m \in N$ such that

$$d_m = l_m. (2.33)$$

Then for arbitrary $\varepsilon > 0$, there exists $v_0 \in \widetilde{C}^m_{\omega}$ such that

$$\Delta(v_0) \ge \frac{\omega^m}{d_m + \varepsilon} \Delta\left(v_0^{(m)}\right). \tag{2.34}$$

Proof. By virtue of (2.27) there exists $k_0 \in N$ such that

$$l_{m,k_0} \le l_m + \varepsilon. \tag{2.35}$$

On the other hand, (2.28), in view of (2.18), yields

$$\triangle\left(\widetilde{W}_{m,k_0}\right) = \frac{\omega^m}{l_{m,k_0}} \triangle\left(\widetilde{W}_{0,k_0}\right),$$

where

$$\widetilde{W}_{m,k_0}(t) \stackrel{def}{=} W_{m,k_0}\left(\frac{t}{\omega}\right) \quad \text{for} \quad t \in [0,\omega],$$

$$(t) \stackrel{def}{=} \widetilde{W}^{(i)}(t) \quad \text{for} \quad t \in [0,\omega], \quad i = 1$$

 $\widetilde{W}_{m-i,k_0}(t) \stackrel{def}{=} \widetilde{W}_{m,k_0}^{(i)}(t) \quad \text{for} \quad t \in [0,\omega], \quad i = 1, \dots, m.$

Now if we put

$$v_0(t) = \widetilde{W}_{m,k_0}(t) \quad \text{for} \quad t \in [0,\omega],$$

then, on account of (2.18) and the fact that $W_{0,k_0} \in \widetilde{C}_{\omega}$, we get $v_0 \in \widetilde{C}_{\omega}^m$, and

$$\Delta(v_0) = \frac{\omega^m}{l_{m,k_0}} \Delta\left(v_0^{(m)}\right).$$

The last equality, together with (2.33) and (2.35), results in (2.34).

Lemma 2.6. Let

$$g(t) = \gamma_0 t^2 + \gamma_1 t^4 + \gamma_2 t^6 \quad for \quad 0 \le t \le 1$$
 (2.36)

and

$$\gamma_i \ge 0$$
 $(i = 0, 1, 2), \qquad \gamma_0 \ge \frac{\gamma_2}{2} - \frac{\gamma_1}{4}.$ (2.37)

Then

$$\max\left\{g(t)g(1-t): 0 \le t \le 1\right\} = g^2\left(\frac{1}{2}\right).$$
(2.38)

Proof. Since the function g(t)g(1-t) is symmetric with respect to the point $t = \frac{1}{2}$, it is sufficient to show that

$$\frac{d}{dt}(g(t)g(1-t)) \ge 0 \qquad \text{for} \quad 0 \le t \le \frac{1}{2}.$$

$$(2.39)$$

First note that, in view of the equalities

$$t^{2} + (1-t)^{2} = 1 - 2x(t),$$
 $t^{4} + (1-t)^{4} = 2x^{2}(t) - 4x(t) + 1,$

where

$$x(t) = t(1-t),$$

we have

$$g(t)g(1-t) = \gamma_1^2 x^4(t) + \gamma_2^2 x^6(t) + \gamma_0 [(\gamma_0 + \gamma_1 + \gamma_2) x^2(t) - 2(\gamma_1 + 2\gamma_2) x^3(t)] + \gamma_2 [(2\gamma_0 + \gamma_1) x^4(t) - 2\gamma_1 x^5(t)].$$
(2.40)

On the other hand, on account of (2.37), we have

$$\frac{a}{x} \left((\gamma_0 + \gamma_1 + \gamma_2) x^2 - 2(\gamma_1 + 2\gamma_2) x^3 \right) \ge 0 \quad \text{for} \quad 0 \le x \le \frac{1}{4} \,, \tag{2.41}$$

$$\frac{d}{x} \left((2\gamma_0 + \gamma_1) x^4 - 2\gamma_1 x^5 \right) \ge 0 \quad \text{for} \quad 0 \le x \le \frac{1}{4} \,. \tag{2.42}$$

Furthermore, it is obvious that

$$x\left(\frac{1}{2}\right) = \frac{1}{4}, \qquad x'(t) \ge 0 \qquad \text{for} \quad 0 \le x \le \frac{1}{2}.$$
 (2.43)

Consequently, (2.40)-(2.43) result in (2.39).

Lemma 2.7. Let the function g be defined by (2.36) with

 $\gamma_0 \ge 0, \qquad \gamma_1 \ge 0, \qquad \gamma_2 = 0, \tag{2.44}$

and let

$$g_1(s,t) = g(t) + \gamma t^k s$$
 for $0 \le s \le 1$, $0 \le t \le 1$, (2.45)

where

$$\gamma > 0, \qquad k \ge 5. \tag{2.46}$$

/1 1)

Then

$$\max\left\{g_1(s,t)g_1(1-s,1-t): 0 \le s \le 1, 0 \le t \le 1\right\} = g_1^2\left(\frac{1}{2},\frac{1}{2}\right). \quad (2.47)$$

Proof. First note that

$$g_1(s,t)g_1(1-s,1-t) = g(t)g(1-t) + \gamma q_0(s,t) + \gamma q_1(s,t)t^2(1-t)^2 + \gamma^2 t^k (1-t)^k s(1-s), \qquad (2.48)$$

where

$$q_j(s,t) = \gamma_j t^2 (1-t)^2 \left((1-t)^{k-2(j+1)} (1-s) + t^{k-2(j+1)} s \right) \quad (j=0,1).$$

It can be easily verified that if $q_j \neq 0$, then

 $\Theta = \big\{(s,0), (s,1/2), (s,1): 0 \le s \le 1\big\}$

is a set of all zeros of the function $\frac{\partial}{\partial s}q_j(s,t)$. Moreover, since $k \ge 5$, the points

$$(1/2, 1/2), (s, 0), (s, 1)$$
 for $0 \le s \le 1$

are the only zeros of the function $\frac{\partial}{\partial t}q_j(s,t)$ in Θ . Consequently, only at these point the functions q_j may take extremal values. Hence, on account of (2.44), (2.46), and the fact that $q_j(s,0) = q_j(s,1) = 0$ for $0 \le s \le 1$, we obtain

$$0 \le q_j(s,t) \le q_j\left(\frac{1}{2},\frac{1}{2}\right) \quad \text{for} \quad 0 \le s \le 1, \quad 0 \le t \le 1 \quad (j=0,1).$$
(2.49)

Obviously, inequality (2.49) holds also in the case where $q_j \equiv 0$.

On the other hand, by virtue of (2.44), the assumptions of Lemma 2.6 are fulfilled. Consequently, from (2.48), in view of (2.38) and (2.49), it follows that (2.47) holds.

3. Proof of the Main Result

Proof of Theorem 1.1. First we will show that the theorem is valid for n = 1, 2, 3, and then we will prove the theorem by the method of mathematical induction separately for the case where n is odd and for the case where n is even.

First we introduce some notations. Let $n \in N$, $v \in \widetilde{C}^n_{\omega}$, and for every $m \in N \cup \{0\}$ put

$$M_{i,m} = \max\left\{ (-1)^m v^{(i)}(t) : 0 \le t \le \omega \right\} \quad \text{for} \quad i = 0, 1, \dots, n.$$
(3.1)

Choose $a_1 \in R$, $a_2 \in]a_1, a_1 + \omega[$ such that

$$v(a_1) = M_{0,0}, \qquad v(a_2) = -M_{0,1}.$$
 (3.2)

Let

$$\omega_1 = a_2 - a_1, \qquad \omega_2 = a_1 + \omega - a_2.$$
 (3.3)

Obviously,

$$v(a_1 + \omega) = M_{0,0}$$

It is not difficult to verify that for every $m_1, m_2 \in N \cup \{0\}$ and $i \in \{0, 1, ..., n\}$ we have

$$M_{i,m_1} + M_{i,m_1+1} = M_{i,m_2} + M_{i,m_2+1},$$

and, consequently, from (3.1) and (1.6), we get

$$\Delta(v^{(i)}) = M_{i,m} + M_{i,m+1}$$
 for $i = 0, 1, \dots, n.$ (3.4)

Moreover, in view of (3.1)–(3.3) it is clear that

$$v'(a_1) = 0, \quad v'(a_1 + \omega_1) = 0, \quad v'(a_2 + \omega_2) = 0.$$
 (3.5)

From (3.1) and (3.2) we have

$$\Delta(v) = (-1)^r \int_{a_r}^{a_r + \omega_r} v'(s) ds, \qquad r = 1, 2.$$
(3.6)

Put

$$x_r(t) = (a_r + \omega_r - t)(t - a_r), \qquad r = 1, 2$$

Then by integration by parts, from (3.6), in view of (3.5), for $v \in \widetilde{C}^2_{\omega}$ and $v \in \widetilde{C}^3_{\omega}$, we obtain

$$\Delta(v) = \frac{(-1)^r}{2} \int_{a_r}^{a_r + \omega_r} x'_r(s) v''(s) ds, \qquad r = 1, 2,$$
(3.7)

and

$$\Delta(v) = \frac{(-1)^{r-1}}{2} \int_{a_r}^{a_r + \omega_r} x_r(s) v^{(3)}(s) ds, \qquad r = 1, 2, \tag{3.8}$$

respectively.

Now let $n \in \{1, 2, 3\}$. From the conditions $v \in \widetilde{C}^n_{\omega}$ and (1.4) it follows that

$$v^{(n)}(t) \neq 0 \tag{3.9}$$

at least on one of the intervals $]a_r, a_r + \omega_r[$, (r = 1, 2). Assume that (3.9) is fulfilled on the interval $]a_1, a_1 + \omega_1[$ (the case where (3.9) holds on $]a_2, a_2 + \omega_2[$ is similar). Then from equalities (3.6)–(3.8_r) we get the following estimates, respectively:

$$\Delta(v) < \omega_1 M_{1,1}, \qquad \Delta(v) \le \omega_2 M_{1,2}, \tag{3.10}$$

$$\Delta(v) < \frac{1}{2} \left(M_{2,1} \int_{a_1}^{a_1 + \frac{\omega_1}{2}} x_1'(s) ds + M_{2,2} \int_{a_1 + \frac{\omega_1}{2}}^{a_1 + \omega_1} |x_1'(s)| ds \right)$$
$$= \frac{\omega_1^2}{8} (M_{2,1} + M_{2,2}), \qquad \Delta(v) \le \frac{\omega_2^2}{8} (M_{2,1} + M_{2,2}), \qquad (3.11)$$

$$\Delta(v) < \frac{{\omega_1}^3}{12} M_{3,0}, \qquad \Delta(v) \le \frac{{\omega_2}^3}{12} M_{3,1}. \tag{3.12}$$

Multiplying the corresponding sides of the inequalities in (3.10) and applying the numerical inequality

$$4\lambda_1\lambda_2 \le (\lambda_1 + \lambda_2)^2$$
 for $\lambda_1 \ge 0, \ \lambda_2 \ge 0,$ (3.13)

we get

$$\Delta(v) < \frac{\omega}{d_1} \Delta(v') \,. \tag{3.14}$$

Analogously, from (3.11) and (3.12), in view of (3.4) and (3.13), we respectively have

$$\Delta(v) < \frac{\omega^2}{d_2} \Delta(v''), \quad \Delta(v) < \frac{\omega^3}{d_3} \Delta(v^{(3)}).$$
(3.15)

Thus (3.14) and (3.15) show that the theorem is valid for n = 1, 2, 3.

Now let n = 2p + 3, $p \in N$, $v \in \widetilde{C}^n_{\omega}$, and assume that (1.5) holds for n = 2j+1 (j = 0, 1, ..., p). Then it is not difficult to see that $v^{(2j+2)} \in \widetilde{C}^{2(p-j)+1}_{\omega}$ (j = 0, 1, ..., p),

$$\Delta\left(v^{(2j+2)}\right) < \frac{\omega^{2(p-j)+1}}{d_{2(p-j)+1}} \Delta\left(v^{(2p+3)}\right), \qquad (3.16)$$

and

$$\int_{a_r}^{a_r+\omega_r} v^{(2j+3)}(s)ds \leq \Delta \left(v^{(2j+2)} \right) \quad \text{for} \quad r=1,2; \quad j=0,1,\dots p.$$

Hence, in view of (3.16), we get

$$\left| \int_{a_r}^{a_r + \omega_r} v^{(2j+3)}(s) ds \right| < \frac{\omega^{2(p-j)+1}}{d_{2(p-j)+1}} \triangle \left(v^{(2p+3)} \right)$$
(3.17)

for $r = 1, 2; j = 0, 1, \dots p$. It can also be verified that

$$\int_{a_r}^{a_r+\omega_r} x_r^m ds = \frac{m!m!}{(2m+1)!} \omega_r^{2m+1} \quad \text{for} \quad r = 1, 2; \quad m = 0, 1, \dots,$$

and, consequently,

$$(-1)^{r} \int_{a_{r}}^{a_{r}+\omega_{r}} x_{2}^{2} v^{(5)}(s) ds \leq \frac{A_{1}}{2} \omega_{r}^{5} M_{5,r} \quad \text{for} \quad r = 1, 2, \qquad (3.18)$$

$$(-1)^{p+r-1} \left(\frac{\omega_r}{2}\right)^{2(p+1)} Q_{m_{p-1}+1}(\omega_r) \int_{a_r}^{a_r+\omega_r} x_r^{m_{p-1}+1}(s) v^{(2p+3)}(s) ds$$

$$\leq 2 \left(\frac{\omega_r}{2}\right)^{2p+3} M_{2p+3,p+r-1} \quad \text{for} \quad r=1,2; \quad p=2,3,\dots.$$
(3.19)

From (3.8_r), by virtue of (2.1₁), (2.1_p) with $a = a_r, b = a_r + \omega_r$ (r = 1, 2), and estimates (3.17), (3.18), and (3.19), we get

$$\Delta(v) < \Delta\left(v^{(2p+3)}\right) \frac{1}{3} \sum_{j=0}^{p-1} \left(\frac{\omega_r}{2}\right)^{2(j+1)} \frac{\omega^{2(p-j)+1}}{d_{2(p-j)+1}} A_j$$

+ $\frac{2}{3} A_p \left(\frac{\omega_r}{2}\right)^{2p+3} M_{2p+3,p+r-1} \quad \text{for} \quad r = 1, 2; \quad p = 1, 2, \dots$

whence we obtain

$$\Delta(v) < \omega^{2p+3} \Delta(v^{(2p+3)}) f_p(s_r, t_r) \quad (r = 1, 2), \tag{3.20}$$

where

$$t_r = \frac{\omega_r}{\omega}, \quad s_r = \frac{M_{2p+3,p+r-1}}{\triangle (v^{(2p+3)})} \quad (r = 1, 2).$$

In view of (3.2) and (3.3),

$$t_1 + t_2 = 1, \quad s_1 + s_2 = 1.$$

Multiplying the corresponding sides in inequalities (3.20_1) and (3.20_2) we get

$$\Delta(v) < \omega^{2p+3} \Delta\left(v^{(2p+3)}\right) \left(f_p(s_1, t_1) \cdot f_p(1 - s_1, 1 - t_1)\right)^{1/2}$$

whence we get the validity of the theorem for n = 2p + 3.

Now let n = 2p + 2, $p \in N$, $v \in \widetilde{C}_{\omega}^n$, and assume that (1.5) holds for n = 2j $(j = 1, \ldots, p)$. Then

$$(-1)^{r-1} \int_{a_r}^{a_r+\omega_r} (x_r^{2}(s))' v^{(4)}(s) ds \leq M_{4,r-1} \int_{a_r}^{a_r+\frac{\omega_r}{2}} (x_r^{2}(s))' ds + M_{4,r} \int_{a_r}^{a_r+\frac{\omega_r}{2}} (x_r^{2}(s))' ds = \left(\frac{\omega_r}{2}\right)^{4} \Delta (v^{(4)}), \qquad (3.21)$$
$$(-1)^{p+r} Q_{m_{p-1}+1}(\omega_r) \int_{a_r}^{a_r+\omega_r} (x_r^{m_{p-1}+1}(s))' v^{(2p+2)}(s) ds \leq Q_{m_{p-1}+1}(\omega_r) \left(M_{2p+2,p+r} \int_{a_r}^{a_r+\frac{\omega_r}{2}} (x_r^{m_{p-1}+1}(s))' ds + M_{2p+2,p+r+1} \int_{a_r}^{a_r+\frac{\omega_r}{2}} (x_r^{m_{p-1}+1}(s))' ds \right) = \Delta \left(v^{(2p+2)} \right) \prod_{i=1}^{m_{p-1}+1} \left(1 + \frac{1}{2i} \right) \quad \text{for} \quad p = 2, 3, \dots. \qquad (3.22)$$

Analogously, we get

$$\left| \int_{a_r}^{a_r + \omega_r} v^{(2j+3)}(s) ds \right| < \frac{\omega^{2(p-j)}}{d_{2(p-j)}} \Delta \left(v^{(2p+2)} \right).$$
(3.23)

Now from (3.8_r), by virtue of (2.4₁) and (2.4_p) with $a = a_r$, $b = a_r + \omega_r$ (r = 1, 2), and estimates (3.21), (3.22), and (3.23), we obtain

$$\Delta(v) < \Delta\left(v^{(2p+2)}\right) \left(\frac{1}{3} \sum_{j=0}^{p-1} \left(\frac{\omega_r}{2}\right)^{2(j+1)} \frac{\omega^{2(p-j)} A_j}{d_{2(p-j)}} + \frac{B_p}{3} \left(\frac{\omega_r}{2}\right)^{2p+2}\right).$$

Hence we get

$$\Delta(v) < \omega^{2p+2} \Delta(v^{(2p+2)}) h_p(t_r) \qquad (r = 1, 2), \qquad (3.24_r)$$

where $t_r = \omega_r/\omega$, (r = 1, 2), and in view of (3.3) we have $t_2 = 1-t_1$. Multiplying the corresponding sides in inequalities (3.24₁) and (3.24₂) we obtain

$$\Delta(v) < \omega^{2p+2} \Delta(v^{(2p+2)}) \left(h_p(t_1) \cdot h_p(1-t_1) \right)^{1/2},$$

and, consequently, the theorem is valid for n = 2p + 2 as well.

4. On the Remarks

On Remark 1.2. Estimate (1.7) can be derived from (1.5) if we put $\omega = 2\pi$, $v(t) = \cos t$ for $t \in [0, 2\pi]$.

On Remark 1.3. According to Lemma 2.5 it is sufficient to show that for $n \in \{1, 2, ..., 7\}$ we have

$$d_n = l_n. \tag{4.1}_n$$

From (2.30) we immediately get

$$l_{1} = 4, \qquad l_{2} = 32, \qquad l_{3} = 192, \qquad l_{4} = \frac{2^{11} \cdot 3}{5}, \qquad (4.2)$$
$$l_{5} = 2^{9} \cdot 3 \cdot 5, \qquad l_{6} = \frac{2^{16} \cdot 3^{2} \cdot 5}{61}, \qquad l_{7} = \frac{2^{14} \cdot 3^{2} \cdot 5 \cdot 7}{17}.$$

For n = 1, 2, 3, the validity of (4.1_n) follows from (4.2) and the definition of d_n . Let n = 4. From (1.2) and (1.3) we obtain $\beta_{10} = \beta_{11} = 1/384$ and

$$h_1^{-1}\left(\frac{1}{2}\right) = \frac{2^{11} \cdot 3}{5} \,. \tag{4.3}$$

Consequently, all the assumptions of Lemma 2.6 are fulfilled with $g(t) = h_1(t)$, $\gamma_j = \beta_{1j}$ (j = 0, 1), $\gamma_2 = 0$, and thus, in view of (1.1) and (4.3) we have

$$d_4 = \frac{2^{11} \cdot 3}{5} \,. \tag{4.4}$$

Hence, on account of (4.2), we get (4.1_4) .

Let n = 6. From (1.2), (1.3), and (4.4) we obtain $\beta_{20} = 5/(2^{13} \cdot 3^2)$, $\beta_{21} = 1/(2^9 \cdot 3 \cdot 5)$, $\beta_{22} = 1/(2^{10} \cdot 3 \cdot 5)$, and

$$h_2^{-1}\left(\frac{1}{2}\right) = \frac{2^{16} \cdot 3^2 \cdot 5}{61}.$$
(4.5)

Consequently, all the assumptions of Lemma 2.6 are fulfilled with $g(t) = h_2(t)$, $\gamma_j = \beta_{2j}$ (j = 0, 1, 2), and thus, in view of (1.1), (4.3), and (4.5), we have (4.1₆). Let n = 5. From (1.2) and (1.3) we obtain $\alpha_{10} = 1/2304$, $\alpha_{11} = 1/720$, and

$$f_1^{-1}\left(\frac{1}{2}, \frac{1}{2}\right) = 2^9 \cdot 3 \cdot 5. \tag{4.6}$$

Consequently, all the assumptions of Lemma 2.7 are fulfilled with $g_1(s,t) = f_1(s,t)$, $\gamma_0 = \alpha_{10}$, $\gamma_1 = 0$, $\gamma_2 = \alpha_{11}$, and thus, in view of (1.1) and (4.6) we have

$$d_5 = 2^9 \cdot 3 \cdot 5. \tag{4.7}$$

Hence, on account of (4.2), we get (4.1_5) .

Let n = 7. From (1.2), (1.3), and (4.7) we obtain $\alpha_{20} = 1/(2^{11} \cdot 3^2 \cdot 5)$, $\alpha_{21} = 1/(2^{10} \cdot 3^5 \cdot 5)$, $\alpha_{22} = 1/(2^5 \cdot 3 \cdot 5 \cdot 7)$, and

$$f_2^{-1}\left(\frac{1}{2},\frac{1}{2}\right) = \frac{2^{14}\cdot 3^2\cdot 5\cdot 7}{17}.$$

Consequently, all the assumptions of Lemma 2.7 are fulfilled with $g_1(s,t) = f_2(s,t)$, $\gamma_j = \alpha_{2j}$ (j = 0, 1), $\gamma = \alpha_{22}$, and thus, analogously to the above we get (4.1_7) .

On Remark 1.4. Assuming that (1.10) and (1.11) are valid, it remains to show that equality (1.10) (equality (1.11)) implies (4.1_n) for n = 2p + 2 (n = 2p + 3), whence, in view of Lemma 2.5, the optimality of (1.5) follows.

The validity of (4.1_n) for n = 1, ..., 7 follows from Remark 1.3. Now assume that (4.1_j) holds for j = 1, ..., n - 1. We will show that (4.1_n) is valid under the hypothesis that (1.10) and (1.11) hold.

Let n = 2p + 2. Then, on account of (2.20), the equalities (2.4_p) $(p \ge 3)$ and (3.8₁) with $v(t) = (-1)^{p+1} W_{2p+2,k}(t)$, $a = a_1 = 0$, $b = a_1 + \omega_1 = 1/2$ result in

$$\Delta \left(W_{2p+2,k} \right) = \frac{2}{3} \sum_{j=0}^{p-1} \left(\frac{1}{4} \right)^{2(j+1)} A_j \left| W_{2(p-j),k} \left(\frac{1}{2} \right) \right|$$

$$+ \frac{1}{45} \left(\frac{1}{4} \right)^{2(p+1)} \sum_{m_1=1}^{2} \sum_{m_2=1}^{m_1+1} \cdots \sum_{m_{p-1}=1}^{m_{p-2}+1} \frac{Q_{m_{p-1}+1}(1/2)}{\eta(m_1) \dots \eta(m_{p-1})}$$

$$\times \int_{0}^{1/2} \left(x^{m_{p-1}+1}(s) \right)' W_{0,k}(s) ds.$$

$$(4.8)$$

Now using (2.22), (2.24), (2.25), (2.27), and (4.1_n) , from (4.8) we get

$$\triangle (W_{2p+2}) = h_p(1/2) \triangle (W_0).$$
(4.9₁)

Analogously, if n = 2p + 3, we can show that the equalities (2.1_p) $(p \ge 3)$ and (3.8_1) with $v(t) = (-1)^{p+1} W_{2p+3,k}(t)$, $a = a_1 = 1/4$, $b = a_1 + \omega_1 = 3/4$, yield

$$\Delta(W_{2p+3}) = f_p(1/2, 1/2) \Delta(W_0).$$
(4.9₂)

On the other hand, according to Lemma 2.4 we have

$$\Delta(W_{2p+2}) = \frac{1}{l_{2p+2}} \Delta(W_0), \quad \Delta(W_{2p+3}) = \frac{1}{l_{2p+3}} \Delta(W_0), \quad p \ge 3.$$
(4.10)

Consequently, if we prove that the maximal values of the polynomials $f_p(s,t) \cdot f_p(1-s, 1-t)$ and $h_p(t) \cdot h_p(1-t)$ are achieved at the points (s,t) = (1/2, 1/2) and t = 1/2, respectively, from the definition of d_n we will get

$$d_{2p+2} = h_p^{-1}(1/2), \qquad d_{2p+3} = f_p^{-1}(1/2, 1/2).$$
 (4.11)

However, then, in view of (4.9_1) –(4.11), we will obtain $d_n = l_n$.

It remains to show that the polynomials $f_p(s,t) \cdot f_p(1-s,1-t)$ and $h_p(t) \cdot h_p(1-t)$ achieve their maximal values at the points (s,t) = (1/2,1/2) and t = 1/2, respectively.

References

- 1. G. H. HARDY, J. E. LITTLEWOOD, and G. PÓLYA, Inequalities. 2d ed. Cambridge University Press, Cambridge, 1952.
- 2. I. KIGURADZE, Initial and boundary value problems for systems of ordinary differential equations, I. (Russian) *Metsniereba, Tbilisi*, 1997.
- I. KIGURADZE, On periodic solutions of n-th order ordinary differential equations. Nonlinear Anal. 40(2000), No. 1-8, 309-321.
- I. KIGURADZE and T. KUSANO, On periodic solutions of higher order nonautonomous ordinary differential equations. *Differentsial'nye Uravneniya* 35(1999), No. 1, 72–78; English transl.: *Differ. Equations* 35(1999), No. 1, 71–77.
- I. KIGURADZE and T. CHANTURIA, Asymptotic properties of solutions of nonautonomous ordinary differential equations. (Russian) Nauka, Moscow, 1990; English transl.: Kluwer Academic Publishers, Dordrecht-Boston-London, 1993.
- A. KUFNER, O. JOHN, and S. FUČÍK, Function spaces. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International Publishing, Leyden; Academia, Prague, 1977.

(Received 16.07.2004)

Authors' addresses:

R. Hakl Mathematical Institute Czech Academy of Science Žižkova 22, 616 62 Brno Czech Republic

E-mail: hakl@ipm.cz

S. Mukhigulashvili
A. Razmadze Mathematical Institute
Georgian Academy of Sciences
1, M. Aleksidze St, Tbilisi 0193
Georgia
E-mail: smukhig@rmi.acnet.ge