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ON ONE ESTIMATE FOR PERIODIC FUNCTIONS

ROBERT HAKL AND SULKHAN MUKHIGULASHVILI

Abstract. For v ∈ C̃n
ω (n ∈ N , ω > 0), the estimate

4 (v) <
ωn

dn
4

(
v(n)

)

is derived, where

4
(
v(i)

)
= max

{
v(i)(t) : t ∈ R

}
−min

{
v(i)(t) : t ∈ R

}
(i = 0, n)

and dn are defined by a certain recurrent formula.
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Introduction

The following notation is used throughout the paper:
N is the set of all natural numbers.
R is the set of all real numbers, R+ = [0, +∞[.

C̃n
ω , where ω > 0, is a set of ω-periodic functions u : R → R, which are

absolutely continuous together with their n-th derivative.
[k], where k ∈ R, is an integer part of k.

In many fields of mathematics, inequalities are used, in which a function is es-
timated by its derivatives, e.g., Wirtinger inequality (see [1]– [4]), Kolmogorov–
Hardy inequality (see [5]), Sobolev inequality, generalized Poincaré inequality,
etc. (see [6]). Inequalities of this type are frequently used in investigating
boundary value problems for differential equations (see, e.g., [2–4]). In this
paper, the difference of maximal and minimal values of an ω-periodic function
is estimated by using the difference of maximal and minimal values of its n-th
derivative. This inequality can be successfully applied in the investigation of a
periodic problem for functional differential equations of higher order.

1. The Main Result

In the sequel, the following notation is used:

A0 = 1, A1 =
1

15
, Aj = A1

2∑
m1=1

m1+1∑
m2=1

. . .

mj−2+1∑
mj−1=1

1

η(m1) . . . η(mj−1)
,
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B1 =
1

8
, Bj = A1

2∑
m1=1

m1+1∑
m2=1

. . .

mj−2+1∑
mj−1=1

1

η(m1) . . . η(mj−1)

mj−1+1∏
i=1

(
1 +

1

2i

)

for j ≥ 2, where

η(t) = (2t + 1)(2t + 3).

Let d1 = 4, d2 = 32, d3 = 192, and for p ∈ N put

d2p+2 =
1

max
{

(hp(t)hp(1− t))1/2 : 0 ≤ t ≤ 1
} ,

d2p+3 =
1

max
{

(fp(s, t)fp(1− s, 1− t))1/2 : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1
} ,

(1.1)

where the functions fp : [0, 1] × [0, 1] → R+, hp : [0, 1] → R+ are defined as
follows:

fp(s, t) =

p−1∑
j=0

αpjt
2(j+1) + αppt

2p+3s, hp(t) =

p∑
j=0

βpjt
2(j+1), (1.2)

and

αpj =
Aj

3 · 4j+1d2(p−j)+1

, βpj =
Aj

3 · 4j+1d2(p−j)

(j = 0, p− 1),

αpp =
Ap

3 · 4p+1
, βpp =

Bp

3 · 4p+1
.

(1.3)

Theorem 1.1. Let n ∈ N , v ∈ C̃n
ω , d1 = 4, d2 = 32, d3 = 192, and dn (if

n ≥ 4) be given by equalities (1.1). Let, moreover,

v(t) 6≡ const. (1.4)

Then

4 (v) <
ωn

dn

4 (
v(n)

)
, (1.5)

where

4 (
v(i)

)
= max

{
v(i)(t) : t ∈ R

}−min
{
v(i)(t) : t ∈ R

}
(i = 0, n). (1.6)

Remark 1.1. From Theorem 1.1 it follows that the inequalities

4 (
v(i)

)
<

ωn−i

dn−i

4 (
v(n)

)
for i = 1, . . . , n− 1

are also fulfilled.

Remark 1.2. An estimate

dn < (2π)n for n ∈ N (1.7)

holds.
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Remark 1.3. In Theorem 1.1, the numbers dn (n = 1, . . . , 7) are nonimprovable

in the sense that for every ε > 0 there exists v0 ∈ C̃n
ω such that

4 (v0) ≥ ωn

dn + ε
4

(
v

(n)
0

)
, (1.8)

where

d4 =
211 · 3

5
, d5 = 29 · 3 · 5,

d6 =
216 · 32 · 5

61
, d7 =

214 · 32 · 5 · 7
17

.

(1.9)

Remark 1.4. To prove the optimality of estimate (1.5) for n ≥ 8 (in the sense
of Remark 1.3) it is sufficient to show that for p ≥ 3 we have

max
{
hp(t) · hp(1− t) : 0 ≤ t ≤ 1

}
= h2

p(1/2), (1.10)

max
{
fp(s, t) · fp(1− s, 1− t) : 0 ≤ s, t ≤ 1

}
= f 2

p (1/2, 1/2), (1.11)

where the functions hp and fp are defined by (1.2). Equalities (1.10) and (1.11)
are proved for p = 1, 2 (see On Remark 1.3 in Section 4). In the general case
(started with p = 3), the proof of (1.10) and (1.11) is not known to the authors.

2. Auxiliary Propositions

Let Qm : ]0, +∞[→ ]0, +∞[ (m ∈ N) be the functions defined by the equality

Qm(t) =
2m

m!t2m

m∏
i=1

(2i + 1).

Lemma 2.1. Let p ∈ N , ω > 0, and v ∈ C̃2p+3
ω . Let, moreover, a ∈ R,

b ∈ ]a, a + ω[ , ω1 = b− a, (1.4) be fulfilled, and

x(t) = (b− t)(t− a) for a ≤ t ≤ b.

Then the following equalities hold:

b∫

a

x(s)v(3)(s)ds =
ω1

2

6

b∫

a

v(3)(s)ds− 1

12

b∫

a

x2(s)v(5)(s)ds (2.11)

if p = 1, and

b∫

a

x(s)v(3)(s)ds =
2

3

p−1∑
j=0

(−1)j
(ω1

2

)2(j+1)

Aj

b∫

a

v(2j+3)(s)ds

+(−1)p 2

45

(ω1

2

)2(p+1)
2∑

m1=1

m1+1∑
m2=1

. . .

mp−2+1∑
mp−1=1

Qmp−1+1(ω1)

η(m1) . . . η(mp−1)

×
b∫

a

xmp−1+1(s)v(2p+3)(s)ds (2.1p)
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if p ≥ 2.

Proof. Let m ∈ N , r ∈ {1, 2, . . . , 2p − 1}. Then the integration by parts, in
view of (1.4), yields

b∫

a

xm(s)v(r)(s)ds =
m

m + 1

b∫

a

(b− s)m+1(s− a)m−1v(r)(s)ds

+
1

m + 1

b∫

a

(b− s)m+1(s− a)mv(r+1)(s)ds,

b∫

a

xm(s)v(r)(s)ds =
m

m + 1

b∫

a

(b− s)m−1(s− a)m+1v(r)(s)ds

− 1

m + 1

b∫

a

(b− s)m(s− a)m+1v(r+1)(s)ds.

Summing the last two equalities and adding to both sides the term

2m

m + 1

b∫

a

xm(s)v(r)(s)ds,

we obtain
b∫

a

xm(s)v(r)(s)ds = ω1
2 m

2(2m + 1)

b∫

a

xm−1(s)v(r)(s)ds

− 1

2(m + 1)(2m + 1)

b∫

a

xm+1(s)v(r+2)(s)ds. (2.2m)

Now using the method of mathematical induction we will prove the following
equality:

Qm(ω1)

b∫

a

xm(s)v(r)(s)ds =

b∫

a

v(r)(s)ds

−
(ω1

2

)2
m∑

m1=1

Qm1+1(ω1)

(2m1 + 1)(2m1 + 3)

b∫

a

xm1+1(s)v(r+2)(s)ds. (2.3m)

The validity of equality (2.31) immediately follows from (2.21). Now suppose
that equality (2.3m−1) holds and show that (2.3m) is true. It is not difficult to
verify that

ω1
2 m

2(2m + 1)
Qm(ω1) = Qm−1(ω1),
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Qm(ω1)

2(2m + 1)(m + 1)
=

(ω1

2

)2 Qm+1(ω1)

(2m + 1)(2m + 3)
.

Then from (2.2m) we obtain

Qm(ω1)

b∫

a

xm(s)v(r)(s)ds = Qm−1(ω1)

b∫

a

xm−1(s)v(r)(s)ds

−
(ω1

2

)2 Qm+1(ω1)

(2m + 1)(2m + 3)

b∫

a

xm+1(s)v(r+2)(s)ds.

Hence, applying (2.3m−1), we get (2.3m).
Now (2.31) with r = 3 results in (2.11).
Further, using the method of mathematical induction we will show that (2.1p)

holds. From (2.32) with r = 5 and (2.11) we have

b∫

a

x(s)v(3)(s)ds =
ω1

2

6

b∫

a

v(3)(s)ds− ω4
1

360

b∫

a

v(5)(s)ds

+
1

360

2∑
i=1

ω4−2i
1

3− i

b∫

a

xi+1(s)v(7)(s)ds,

and so equality (2.12) is valid. Suppose now that equality (2.1p−1) holds and
show that (2.1p) is fulfilled. For this it is sufficient to use equality (2.3m) with
m = mp−2 + 1, r = 2p + 1 in equality (2.1p−1). ¤

Lemma 2.2. Let all the assumptions of Lemma 2.1 be fulfilled with v ∈ C̃2p+2
ω .

Then the following equalities hold:

b∫

a

x(s)v(3)(s)ds =
ω1

2

6

b∫

a

v(3)(s)ds +
1

12

b∫

a

(
x2(s)

)′
v(4)(s)ds (2.41)

if p = 1, and

b∫

a

x(s)v(3)(s)ds =
2

3

p−1∑
j=0

(−1)j
(ω1

2

)2(j+1)

Aj

b∫

a

v(2j+3)(s)ds

+(−1)p+1 2

45

(ω1

2

)2(p+1)
2∑

m1=1

m1+1∑
m2=1

. . .

mp−2+1∑
mp−1=1

Qmp−1+1(ω1)

η(m1) . . . η(mp−1)

×
b∫

a

(
xmp−1+1(s)

)′
v(2p+2)(s)ds (2.4p)

if p ≥ 2.
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Proof. From Lemma 2.1, by integration by parts, it follows that (2.41) and (2.4p)

hold for v ∈ C̃2p+3
ω . Since C̃2p+3

ω is a dense subset of C̃2p+2
ω , equalities (2.41) and

(2.4p) are fulfilled for every v ∈ C̃2p+2
ω as well. ¤

For k ∈ N and m ∈ N ∪ {0}, define the functions Wm,k : [0, 1] → [−1, 1] by
the equalities

W0,k(t) =





1 for 0 ≤ t ≤ 1
4
− 1

8k
,

sin πk(1− 4t) for 1
4
− 1

8k
< t < 1

4
+ 1

8k
,

−1 for 1
4

+ 1
8k
≤ t ≤ 1

2
,

(2.5)

W0,k

(
1

2
+ t

)
= W0,k

(
1

2
− t

)
for 0 ≤ t ≤ 1

2
, (2.6)

and

Wm,k(t) =

t∫

0

Wm−1,k(s)ds− δm

1/4∫

0

Wm−1,k(s)ds for t ∈ [0, 1], m ∈ N, (2.7)

where

δm =

{
0 if m = 2µ− 1,

1 if m = 2µ,
µ ∈ N. (2.8)

Lemma 2.3. Let the functions Wm,k be defined by (2.5)–(2.7). Then for
every p, k ∈ N and m ∈ N ∪ {0}, the following equalities hold:

Wm,k(0) = Wm,k(1), (2.9)

4 (W2p,k) = 2

∣∣∣∣W2p,k

(
1

2

)∣∣∣∣ , (2.10)

4 (W2p−1,k) = 2

∣∣∣∣W2p−1,k

(
1

4

)∣∣∣∣ , (2.11)

and

Wm,k(t) =

t∫

0

t1∫

0

· · ·
tm−1∫

0

W0,k(tm)dtm . . . dt1

+

[m
2 ]∑

i=1

(−1)itm−2i

(m− 2i)!

∣∣∣∣W2i,k

(
1

2

)∣∣∣∣ for 0 < t ≤ 1, m ≥ 2. (2.12m)

Proof. First we show that the equalities

Wm,k

(
1

2
− t

)
= (−1)mWm,k

(
1

2
+ t

)
for 0 ≤ t ≤ 1

2
(2.13m)

and

Wm,k

(
1

4
− t

)
= (−1)m−1Wm,k

(
1

4
+ t

)
for 0 ≤ t ≤ 1

4
(2.14m)
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hold. It is not difficult to verify that (2.13m) and (2.14m) are valid for m = 1, 2.
Now assume that (2.13m−1) and (2.14m−1) hold and show that (2.13m) and
(2.14m) are fulfilled.

First note that

Wm,k

(
1

2
− t

)
− (−1)mWm,k

(
1

2
+ t

)

=

1/2−t∫

0

Wm−1,k(s)ds− (−1)m

1/2+t∫

0

Wm−1,k(s)ds. (2.15)

In view of (2.13m−1) and (2.14m−1) we have

1/2+t∫

1/2−t

Wm−1,k(s)ds = 0 if m is even

and
1/2−t∫

0

Wm−1,k(s)ds = −
1/2+t∫

0

Wm−1,k(s)ds if m is odd.

From (2.15) and the last two equalities, the validity of (2.13m) immediately
follows. Analogously, we can prove equality (2.14m).

It is clear that equalities (2.13m) and (2.14m) result in (2.9).
According to (2.14m) and the definitions of the functions W0,k and Wm,k,

using the method of mathematical induction, it is easy to show that

(−1)pW2p,k(t) > 0 for 0 < t <
1

4
, (−1)pW2p−1,k(t) < 0 for 0 < t <

1

2
.

Consequently, in view of (2.13m) and (2.14m), for p ∈ N we have

(−1)pW2p,k(t) > 0 for t ∈ ]0, 1/4[∪ ]3/4, 1[ ,

(−1)pW2p,k(t) < 0 for t ∈ ]1/4, 3/4[ ,
(2.16p)

and
(−1)pW2p−1,k(t) < 0 for t ∈ ]0, 1/2[ ,

(−1)pW2p−1,k(t) > 0 for t ∈ ]1/2, 1[ .
(2.17p)

From (2.16p) and (2.17p), in view of the relation

W
(i)
m,k(t) = Wm−i,k(t) for 0 ≤ t ≤ 1, i = 0, . . . ,m, (2.18)

we get

min
{
(−1)pW2p,k(t) : 0 ≤ t ≤ 1

}
= (−1)pW2p,k

(
1

2

)
,

max
{
(−1)pW2p,k(t) : 0 ≤ t ≤ 1

}
= (−1)pW2p,k (0) .

(2.19)

On the other hand, from (2.14m), (2.16p), and (2.19) we obtain

4 (W2p,k) = (−1)p

[
W2p,k (0)−W2p,k

(
1

2

)]
= 2

∣∣∣∣W2p,k

(
1

2

)∣∣∣∣ . (2.20)
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Therefore, (2.10) is valid. Analogously (2.13m), (2.16p), (2.17p), and (2.19)
result in (2.11).

From (2.7) and (2.8) it immediately follows that

Wm,k(t) =

t∫

0

t1∫

0

. . .

tm−1∫

0

W0,k(tm)dtm . . . dt1

−
[m

2 ]∑
i=1

tm−2i

(m− 2i)!

1/4∫

0

W2i−1,k(s)ds for 0 < t ≤ 1, m ≥ 2. (2.21m)

However, in view of (2.14m), (2.16p), and (2.18), we have

1/4∫

0

W2i−1,k(s)ds = −W2i,k(0) = W2i,k

(
1

2

)
= (−1)i−1

∣∣∣∣W2i,k

(
1

2

)∣∣∣∣ ,

and, consequently, (2.21m) results in (2.12m). ¤
Now define the functions W0 : [0, 1] → {−1, 1}, Wm : [0, 1] → R, and positive

constants lm,k, lm (m, k ∈ N) by the equalities

W0(t) =

{
1 for t ∈ [

0, 1
4

] ∪ [
3
4
, 1

]
,

−1 for t ∈ ]
1
4
, 3

4

[
,

(2.22)

Wm(t) =

t∫

0

Wm−1(s)ds− δm

1/4∫

0

Wm−1(s)ds for t ∈ [0, 1], (2.23)

l2p−1,k =
1∣∣W2p−1,k

(
1
4

)∣∣ , l2p,k =
1∣∣W2p,k

(
1
2

)∣∣ ,

l2p−1 =
1∣∣W2p−1

(
1
4

)∣∣ , l2p =
1∣∣W2p

(
1
2

)∣∣ ,

(2.24)

where p ∈ N and δm are given by (2.8). Note that

lim
k→+∞

W0,k(t) = W0(t) almost everywhere on [0, 1], (2.25)

and by the Lebesgue Dominated Convergence Theorem we have that

lim
k→+∞

Wm,k(t) = Wm(t) uniformly on [0, 1], m ∈ N. (2.26)

Therefore, on account of (2.24), we have

lim
k→+∞

lm,k = lm for m ∈ N. (2.27)

Lemma 2.4. Let k ∈ N and let the functions W0k, W0, Wm,k, Wm, and
the numbers lm,k, lm (m ∈ N) be defined by (2.5)–(2.7), and (2.22)–(2.24),
respectively. Then

4 (Wm,k) =
1

lm,k

4 (W0,k) for m ∈ N, (2.28)
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4 (Wm) =
1

lm
4 (W0) for m ∈ N, (2.29)

and

l2p−1 =
(−1)p+142p−1

p−1∑
i=0

(−1)i16i

(2p−2i−1)!l2i

, l2p =
(−1)p+142p

p−1∑
i=0

(−1)i16i

(2p−2i)!l2i

for p ∈ N, (2.30)

where l0 = 1.

Proof. Note that 4 (W0,k) = 2, and thus from (2.10), (2.11), and (2.24) we
obtain (2.28), whence, in view of (2.25)–(2.27), we get (2.29).

By the definition of the functions W0,k, we get

lim
k→+∞

1/4∫

0

t1∫

0

. . .

tm−1∫

0

W0,k(tm)dtm . . . dt1 =
1

m!4m
, (2.31)

and also, on account of (2.16p), (2.17p), we have
∣∣∣∣W2p−i,k

(
1

2(i + 1)

)∣∣∣∣ = (−1)p+1W2p−i,k

(
1

2(i + 1)

)
(i = 0, 1). (2.32)

Then from (2.12m) with m = 2p − 1, t = 1/4, (2.24), (2.31) and (2.32) we
get

l2p−1,k =
(−1)p+1

W2p−1,k

(
1
4

) =
(−1)p+1

1
(2p−1)!42p−1 +

p−1∑
i=1

(−1)i

(2p−2i−1)!42p−2i−1l2i,k

.

Hence, by virtue of (2.27), we obtain the first equality in (2.30).
Furthermore, note that from (2.142p−1) it follows that

1/4∫

0

W2p−1,k(s)ds =

1/2∫

1/4

W2p−1,k(s)ds.

Therefore from (2.7), in view of (2.8), we have

W2p,k

(
1

2

)
=

1/4∫

0

W2p−1,k(s)ds

Hence, together with (2.122p−1), (2.24), (2.31) with m = 2p, and (2.32), we
obtain

l2p,k =
(−1)p+1

W2p,k

(
1
2

) =
(−1)p+1

1
(2p)!42p +

p−1∑
i=1

(−1)i

(2p−2i)!42p−2il2i,k

.

Consequently, the last equality, by virtue of (2.27), results in the second equality
in (2.30). ¤
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Lemma 2.5. Let there exist m ∈ N such that

dm = lm. (2.33)

Then for arbitrary ε > 0, there exists v0 ∈ C̃m
ω such that

4 (v0) ≥ ωm

dm + ε
4

(
v

(m)
0

)
. (2.34)

Proof. By virtue of (2.27) there exists k0 ∈ N such that

lm,k0 ≤ lm + ε. (2.35)

On the other hand, (2.28), in view of (2.18), yields

4
(
W̃m,k0

)
=

ωm

lm,k0

4
(
W̃0,k0

)
,

where

W̃m,k0(t)
def
= Wm,k0

(
t

ω

)
for t ∈ [0, ω],

W̃m−i,k0(t)
def
= W̃

(i)
m,k0

(t) for t ∈ [0, ω], i = 1, . . . , m.

Now if we put

v0(t) = W̃m,k0(t) for t ∈ [0, ω],

then, on account of (2.18) and the fact that W0,k0 ∈ C̃ω, we get v0 ∈ C̃m
ω , and

4 (v0) =
ωm

lm,k0

4
(
v

(m)
0

)
.

The last equality, together with (2.33) and (2.35), results in (2.34). ¤
Lemma 2.6. Let

g(t) = γ0t
2 + γ1t

4 + γ2t
6 for 0 ≤ t ≤ 1 (2.36)

and

γi ≥ 0 (i = 0, 1, 2), γ0 ≥ γ2

2
− γ1

4
. (2.37)

Then

max
{
g(t)g(1− t) : 0 ≤ t ≤ 1

}
= g2

(
1

2

)
. (2.38)

Proof. Since the function g(t)g(1 − t) is symmetric with respect to the point
t = 1

2
, it is sufficient to show that

d

dt

(
g(t)g(1− t)

) ≥ 0 for 0 ≤ t ≤ 1

2
. (2.39)

First note that, in view of the equalities

t2 + (1− t)2 = 1− 2x(t), t4 + (1− t)4 = 2x2(t)− 4x(t) + 1,

where

x(t) = t(1− t),
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we have

g(t)g(1− t) = γ2
1x

4(t) + γ2
2x

6(t)

+ γ0

[
(γ0 + γ1 + γ2)x

2(t)− 2(γ1 + 2γ2)x
3(t)

]

+ γ2

[
(2γ0 + γ1)x

4(t)− 2γ1x
5(t)

]
. (2.40)

On the other hand, on account of (2.37), we have

d

x

(
(γ0 + γ1 + γ2)x

2 − 2(γ1 + 2γ2)x
3
) ≥ 0 for 0 ≤ x ≤ 1

4
, (2.41)

d

x

(
(2γ0 + γ1)x

4 − 2γ1x
5
) ≥ 0 for 0 ≤ x ≤ 1

4
. (2.42)

Furthermore, it is obvious that

x

(
1

2

)
=

1

4
, x′(t) ≥ 0 for 0 ≤ x ≤ 1

2
. (2.43)

Consequently, (2.40)–(2.43) result in (2.39). ¤
Lemma 2.7. Let the function g be defined by (2.36) with

γ0 ≥ 0, γ1 ≥ 0, γ2 = 0, (2.44)

and let
g1(s, t) = g(t) + γtks for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, (2.45)

where
γ > 0, k ≥ 5. (2.46)

Then

max
{
g1(s, t)g1(1− s, 1− t) : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1

}
= g2

1

(
1

2
,
1

2

)
. (2.47)

Proof. First note that

g1(s, t)g1(1− s, 1− t) = g(t)g(1− t) + γq0(s, t)

+ γq1(s, t)t
2(1− t)2 + γ2tk(1− t)ks(1− s), (2.48)

where

qj(s, t) = γjt
2(1− t)2

(
(1− t)k−2(j+1)(1− s) + tk−2(j+1)s

)
(j = 0, 1).

It can be easily verified that if qj 6≡ 0, then

Θ =
{
(s, 0), (s, 1/2), (s, 1) : 0 ≤ s ≤ 1

}

is a set of all zeros of the function ∂
∂s

qj(s, t). Moreover, since k ≥ 5, the points

(1/2, 1/2), (s, 0), (s, 1) for 0 ≤ s ≤ 1

are the only zeros of the function ∂
∂t

qj(s, t) in Θ. Consequently, only at these
point the functions qj may take extremal values. Hence, on account of (2.44),
(2.46), and the fact that qj(s, 0) = qj(s, 1) = 0 for 0 ≤ s ≤ 1, we obtain

0 ≤ qj(s, t) ≤ qj

(
1

2
,
1

2

)
for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 (j = 0, 1). (2.49)
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Obviously, inequality (2.49) holds also in the case where qj ≡ 0.
On the other hand, by virtue of (2.44), the assumptions of Lemma 2.6 are

fulfilled. Consequently, from (2.48), in view of (2.38) and (2.49), it follows that
(2.47) holds. ¤

3. Proof of the Main Result

Proof of Theorem 1.1. First we will show that the theorem is valid for n =
1, 2, 3, and then we will prove the theorem by the method of mathematical
induction separately for the case where n is odd and for the case where n is
even.

First we introduce some notations. Let n ∈ N , v ∈ C̃n
ω , and for every

m ∈ N ∪ {0} put

Mi,m = max
{
(−1)mv(i)(t) : 0 ≤ t ≤ ω

}
for i = 0, 1, . . . , n. (3.1)

Choose a1 ∈ R, a2 ∈ ]a1, a1 + ω[ such that

v(a1) = M0,0, v(a2) = −M0,1. (3.2)

Let

ω1 = a2 − a1, ω2 = a1 + ω − a2. (3.3)

Obviously,

v(a1 + ω) = M0,0.

It is not difficult to verify that for every m1,m2 ∈ N ∪{0} and i ∈ {0, 1, . . . , n}
we have

Mi,m1 + Mi,m1+1 = Mi,m2 + Mi,m2+1,

and, consequently, from (3.1) and (1.6), we get

4 (
v(i)

)
= Mi,m + Mi,m+1 for i = 0, 1, . . . , n. (3.4)

Moreover, in view of (3.1)–(3.3) it is clear that

v′(a1) = 0, v′(a1 + ω1) = 0, v′(a2 + ω2) = 0. (3.5)

From (3.1) and (3.2) we have

4 (v) = (−1)r

ar+ωr∫

ar

v′(s)ds, r = 1, 2. (3.6)

Put

xr(t) = (ar + ωr − t)(t− ar), r = 1, 2.

Then by integration by parts, from (3.6), in view of (3.5), for v ∈ C̃2
ω and

v ∈ C̃3
ω, we obtain

4 (v) =
(−1)r

2

ar+ωr∫

ar

x′r(s)v
′′(s)ds, r = 1, 2, (3.7)
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and

4 (v) =
(−1)r−1

2

ar+ωr∫

ar

xr(s)v
(3)(s)ds, r = 1, 2, (3.8r)

respectively.

Now let n ∈ {1, 2, 3}. From the conditions v ∈ C̃n
ω and (1.4) it follows that

v(n)(t) 6≡ 0 (3.9)

at least on one of the intervals ]ar, ar + ωr[ , (r = 1, 2). Assume that (3.9) is
fulfilled on the interval ]a1, a1 +ω1[ (the case where (3.9) holds on ]a2, a2 +ω2[
is similar). Then from equalities (3.6)–(3.8r) we get the following estimates,
respectively:

4 (v) < ω1M1,1, 4 (v) ≤ ω2M1,2, (3.10)

4 (v) <
1

2

(
M2,1

a1+
ω1
2∫

a1

x′1(s)ds + M2,2

a1+ω1∫

a1+
ω1
2

|x′1(s)|ds

)

=
ω1

2

8
(M2,1 + M2,2), 4 (v) ≤ ω2

2

8
(M2,1 + M2,2), (3.11)

4 (v) <
ω1

3

12
M3,0, 4 (v) ≤ ω2

3

12
M3,1. (3.12)

Multiplying the corresponding sides of the inequalities in (3.10) and applying
the numerical inequality

4λ1λ2 ≤ (λ1 + λ2)
2 for λ1 ≥ 0, λ2 ≥ 0, (3.13)

we get

4 (v) <
ω

d1

4 (v′) . (3.14)

Analogously, from (3.11) and (3.12), in view of (3.4) and (3.13), we respectively
have

4 (v) <
ω2

d2

4 (v′′) , 4 (v) <
ω3

d3

4 (
v(3)

)
. (3.15)

Thus (3.14) and (3.15) show that the theorem is valid for n = 1, 2, 3.

Now let n = 2p + 3, p ∈ N , v ∈ C̃n
ω , and assume that (1.5) holds for

n = 2j+1 (j = 0, 1, . . . , p). Then it is not difficult to see that v(2j+2) ∈ C̃
2(p−j)+1
ω

(j = 0, 1, . . . , p),

4 (
v(2j+2)

)
<

ω2(p−j)+1

d2(p−j)+1

4 (
v(2p+3)

)
, (3.16)

and ∣∣∣∣∣∣

ar+ωr∫

ar

v(2j+3)(s)ds

∣∣∣∣∣∣
≤ 4 (

v(2j+2)
)

for r = 1, 2; j = 0, 1, . . . p.
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Hence, in view of (3.16), we get
∣∣∣∣∣∣

ar+ωr∫

ar

v(2j+3)(s)ds

∣∣∣∣∣∣
<

ω2(p−j)+1

d2(p−j)+1

4 (
v(2p+3)

)
(3.17)

for r = 1, 2; j = 0, 1, . . . p. It can also be verified that

ar+ωr∫

ar

xr
mds =

m!m!

(2m + 1)!
ωr

2m+1 for r = 1, 2; m = 0, 1, . . . ,

and, consequently,

(−1)r

ar+ωr∫

ar

x2
2v(5)(s)ds ≤ A1

2
ωr

5M5,r for r = 1, 2, (3.18)

(−1)p+r−1
(ωr

2

)2(p+1)

Qmp−1+1(ωr)

ar+ωr∫

ar

xr
mp−1+1(s)v(2p+3)(s)ds

≤ 2
(ωr

2

)2p+3

M2p+3,p+r−1 for r = 1, 2; p = 2, 3, . . . . (3.19)

From (3.8r), by virtue of (2.11), (2.1p) with a = ar, b = ar + ωr (r = 1, 2), and
estimates (3.17), (3.18), and (3.19), we get

4 (v) < 4 (
v(2p+3)

) 1

3

p−1∑
j=0

(ωr

2

)2(j+1) ω2(p−j)+1

d2(p−j)+1

Aj

+
2

3
Ap

(ωr

2

)2p+3

M2p+3,p+r−1 for r = 1, 2; p = 1, 2, . . .

whence we obtain

4 (v) < ω2p+34 (
v(2p+3)

)
fp(sr, tr) (r = 1, 2), (3.20r)

where

tr =
ωr

ω
, sr =

M2p+3,p+r−1

4 (v(2p+3))
(r = 1, 2).

In view of (3.2) and (3.3),

t1 + t2 = 1, s1 + s2 = 1.

Multiplying the corresponding sides in inequalities (3.201) and (3.202) we get

4 (v) < ω2p+34 (
v(2p+3)

) (
fp(s1, t1) · fp(1− s1, 1− t1)

)1/2

whence we get the validity of the theorem for n = 2p + 3.
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Now let n = 2p + 2, p ∈ N , v ∈ C̃n
ω , and assume that (1.5) holds for n = 2j

(j = 1, . . . , p). Then

(−1)r−1

ar+ωr∫

ar

(
xr

2(s)
)′

v(4)(s)ds ≤ M4,r−1

ar+ωr
2∫

ar

(
xr

2(s)
)′

ds

+M4,r

ar+ωr
2∫

ar

(
xr

2(s)
)′

ds =
(ωr

2

)4

4 (
v(4)

)
, (3.21)

(−1)p+rQmp−1+1(ωr)

ar+ωr∫

ar

(
xr

mp−1+1(s)
)′

v(2p+2)(s)ds

≤ Qmp−1+1(ωr)


M2p+2,p+r

ar+ωr
2∫

ar

(
xr

mp−1+1(s)
)′

ds

+M2p+2,p+r+1

ar+ωr
2∫

ar

(
xr

mp−1+1(s)
)′

ds




= 4 (
v(2p+2)

) mp−1+1∏
i=1

(
1 +

1

2i

)
for p = 2, 3, . . . . (3.22)

Analogously, we get
∣∣∣∣∣∣

ar+ωr∫

ar

v(2j+3)(s)ds

∣∣∣∣∣∣
<

ω2(p−j)

d2(p−j)

4 (
v(2p+2)

)
. (3.23)

Now from (3.8r), by virtue of (2.41) and (2.4p) with a = ar, b = ar+ωr (r = 1, 2),
and estimates (3.21), (3.22), and (3.23), we obtain

4 (v) < 4 (
v(2p+2)

)
(

1

3

p−1∑
j=0

(ωr

2

)2(j+1) ω2(p−j)Aj

d2(p−j)

+
Bp

3

(ωr

2

)2p+2
)

.

Hence we get

4 (v) < ω2p+24 (
v(2p+2)

)
hp(tr) (r = 1, 2), (3.24r)

where tr = ωr/ω, (r = 1, 2), and in view of (3.3) we have t2 = 1−t1. Multiplying
the corresponding sides in inequalities (3.241) and (3.242) we obtain

4 (v) < ω2p+24 (
v(2p+2)

) (
hp(t1) · hp(1− t1)

)1/2
,

and, consequently, the theorem is valid for n = 2p + 2 as well. ¤
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4. On the Remarks

On Remark 1.2. Estimate (1.7) can be derived from (1.5) if we put ω = 2π,
v(t) = cos t for t ∈ [0, 2π].

On Remark 1.3. According to Lemma 2.5 it is sufficient to show that for
n ∈ {1, 2, . . . , 7} we have

dn = ln. (4.1n)

From (2.30) we immediately get

l1 = 4, l2 = 32, l3 = 192, l4 =
211 · 3

5
,

l5 = 29 · 3 · 5, l6 =
216 · 32 · 5

61
, l7 =

214 · 32 · 5 · 7
17

.

(4.2)

For n = 1, 2, 3, the validity of (4.1n) follows from (4.2) and the definition of dn.
Let n = 4. From (1.2) and (1.3) we obtain β10 = β11 = 1/384 and

h−1
1

(
1

2

)
=

211 · 3
5

. (4.3)

Consequently, all the assumptions of Lemma 2.6 are fulfilled with g(t) = h1(t),
γj = β1j (j = 0, 1), γ2 = 0, and thus, in view of (1.1) and (4.3) we have

d4 =
211 · 3

5
. (4.4)

Hence, on account of (4.2), we get (4.14).
Let n = 6. From (1.2), (1.3), and (4.4) we obtain β20 = 5/(213 · 32), β21 =

1/(29 · 3 · 5), β22 = 1/(210 · 3 · 5), and

h−1
2

(
1

2

)
=

216 · 32 · 5
61

. (4.5)

Consequently, all the assumptions of Lemma 2.6 are fulfilled with g(t) = h2(t),
γj = β2j (j = 0, 1, 2), and thus, in view of (1.1), (4.3), and (4.5), we have (4.16).

Let n = 5. From (1.2) and (1.3) we obtain α10 = 1/2304, α11 = 1/720, and

f−1
1

(
1

2
,
1

2

)
= 29 · 3 · 5. (4.6)

Consequently, all the assumptions of Lemma 2.7 are fulfilled with g1(s, t) =
f1(s, t), γ0 = α10, γ1 = 0, γ2 = α11, and thus, in view of (1.1) and (4.6) we have

d5 = 29 · 3 · 5. (4.7)

Hence, on account of (4.2), we get (4.15).
Let n = 7. From (1.2), (1.3), and (4.7) we obtain α20 = 1/(211 · 32 · 5),

α21 = 1/(210 · 35 · 5), α22 = 1/(25 · 3 · 5 · 7), and

f−1
2

(
1

2
,
1

2

)
=

214 · 32 · 5 · 7
17

.



ON ONE ESTIMATE FOR PERIODIC FUNCTIONS 113

Consequently, all the assumptions of Lemma 2.7 are fulfilled with g1(s, t) =
f2(s, t), γj = α2j (j = 0, 1), γ = α22, and thus, analogously to the above we get
(4.17).

On Remark 1.4. Assuming that (1.10) and (1.11) are valid, it remains to show
that equality (1.10) (equality (1.11)) implies (4.1n) for n = 2p+2 (n = 2p+3),
whence, in view of Lemma 2.5, the optimality of (1.5) follows.

The validity of (4.1n) for n = 1, . . . , 7 follows from Remark 1.3. Now assume
that (4.1j) holds for j = 1, . . . , n − 1. We will show that (4.1n) is valid under
the hypothesis that (1.10) and (1.11) hold.

Let n = 2p + 2. Then, on account of (2.20), the equalities (2.4p) (p ≥ 3) and
(3.81) with v(t) = (−1)p+1W2p+2,k(t), a = a1 = 0, b = a1 + ω1 = 1/2 result in

4 (W2p+2,k) =
2

3

p−1∑
j=0

(
1

4

)2(j+1)

Aj

∣∣∣∣W2(p−j),k

(
1

2

)∣∣∣∣

+
1

45

(
1

4

)2(p+1) 2∑
m1=1

m1+1∑
m2=1

· · ·
mp−2+1∑
mp−1=1

Qmp−1+1(1/2)

η(m1) . . . η(mp−1)

×
1/2∫

0

(
xmp−1+1(s)

)′
W0,k(s)ds. (4.8)

Now using (2.22), (2.24), (2.25), (2.27), and (4.1n), from (4.8) we get

4 (W2p+2) = hp(1/2)4 (W0) . (4.91)

Analogously, if n = 2p + 3, we can show that the equalities (2.1p) (p ≥ 3) and
(3.81) with v(t) = (−1)p+1W2p+3,k(t), a = a1 = 1/4, b = a1 + ω1 = 3/4, yield

4 (W2p+3) = fp(1/2, 1/2)4 (W0) . (4.92)

On the other hand, according to Lemma 2.4 we have

4 (W2p+2) =
1

l2p+2

4 (W0) , 4 (W2p+3) =
1

l2p+3

4 (W0) , p ≥ 3. (4.10)

Consequently, if we prove that the maximal values of the polynomials fp(s, t) ·
fp(1− s, 1− t) and hp(t) ·hp(1− t) are achieved at the points (s, t) = (1/2, 1/2)
and t = 1/2, respectively, from the definition of dn we will get

d2p+2 = h−1
p (1/2), d2p+3 = f−1

p (1/2, 1/2). (4.11)

However, then, in view of (4.91)–(4.11), we will obtain dn = ln.
It remains to show that the polynomials fp(s, t) · fp(1 − s, 1 − t) and hp(t) ·

hp(1 − t) achieve their maximal values at the points (s, t) = (1/2, 1/2) and
t = 1/2, respectively.
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University Press, Cambridge, 1952.

2. I. Kiguradze, Initial and boundary value problems for systems of ordinary differential
equations, I. (Russian) Metsniereba, Tbilisi, 1997.

3. I. Kiguradze, On periodic solutions of n-th order ordinary differential equations. Non-
linear Anal. 40(2000), No. 1-8, 309-321.

4. I. Kiguradze and T. Kusano, On periodic solutions of higher order nonautonomous
ordinary differential equations. Differentsial’nye Uravneniya 35(1999), No. 1, 72–78; Eng-
lish transl.: Differ. Equations 35(1999), No. 1, 71–77.

5. I. Kiguradze and T. Chanturia, Asymptotic properties of solutions of nonautonomous
ordinary differential equations. (Russian) Nauka, Moscow, 1990; English transl.: Kluwer
Academic Publishers, Dordrecht-Boston-London, 1993.
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