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UNIQUENESS OF NON-LINEAR DIFFERENTIAL
POLYNOMIALS SHARING 1-POINTS

INDRAJIT LAHIRI AND PULAK SAHOO

Abstract. We prove two theorems on the uniqueness of nonlinear differential
polynomials sharing 1-points which improve an earlier result of Fang and
Hong.
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1. Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C. Let k be a positive integer or infinity and a ∈ {∞} ∪ C. We
denote by Ek)(a; f) the set of all a-points of f with multiplicities not exceeding
k, where an a-point is counted according to its multiplicity. If for some a ∈
{∞} ∪ C, E∞)(a; f) = E∞)(a; g), then we say that f , g share the value a CM
(counting multiplicities).

In [3, 5], the problem of uniqueness of meromorphic functions when two linear
differential polynomials share the same 1-points was studied. Also in [3] the
following question was asked: What can be said if two non-linear differential
polynomials generated by two meromorphic functions share 1 CM ?

In the meantime some works have been done in this direction (cf. [1, 7]).
Recently, Fang and Hong [1] have proved the following result.

Theorem A ([1]). Let f and g be two transcendental entire functions and
n(≥ 11) be an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share 1 CM, then f ≡ g.

In this paper we prove the following two theorems which improve Theorem A.

Theorem 1.1. Let f and g be two transcendental entire functions and n(≥ 7)
be an integer. If E3)(1; fn(f − 1)f ′) = E3)(1; gn(g − 1)g′), then f ≡ g.

Theorem 1.2. Let f and g be two transcendental meromrophic functions
such that Θ(∞; f) > 0, Θ(∞; g) > 0, Θ(∞; f) + Θ(∞; g) > 4

n+1
, and n(≥ 11)

be an integer. If E3)(1; fn(f − 1)f ′) = E3)(1; gn(g − 1)g′), then f ≡ g.

Remark 1.1. If we choose n (≥ 12), then in Theorem 1.2 the condition
Θ(∞; f) > 0 and Θ(∞; g) > 0 can be removed.

The following example shows that the condition Θ(∞; f) + Θ(∞; g) > 4
n+1

is
sharp for Theorem 1.2.
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Example 1.1. Let

f =
(n + 2)(1− hn+1)

(n + 1)(1− hn+2)
, g =

(n + 2)h(1− hn+1)

(n + 1)(1− hn+2)
and h =

α2(ez − 1)

ez − α
,

where α = exp
(

2πi
n+2

)
and n is a positive integer.

Then T (r, f) = (n + 1)T (r, h) + O(1) and T (r, g) = (n + 1)T (r, h) + O(1).
Further we see that h 6= α, α2 and a root of h = 1 is not a pole of f and g. Hence
Θ(∞; f) = Θ(∞; g) = 2/(n + 1). Also, fn+1

(
f

n+1
− 1

n+1

) ≡ gn+1
(

g
n+1

− 1
n+1

)
and fn(f − 1)f ′ ≡ gn(g − 1)g′ but f 6≡ g.

Though we do not explain the standard notation of the value distribution
theory (see [2]) we give the following definitions.

Definition 1.1 ([4]). For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the
counting functions of simple a-points of f .

For a positive integer m we denote by N(r, a; f |≤ m) (N(r, a; f |≥ m)) the
counting function of those a-points of f whose multiplicities are not greater(less)
than m, where each a-point is counted according to its multiplicity.

N(r, a; f |≤ m) and N(r, a; f |≥ m) are defined similarly, where in counting
the a-points of f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m)
are defined analogously.

Definition 1.2 (cf. [12]). For a ∈ C ∪ {∞} we put

N2(r, a; f) = N(r, a; f) + N(r, a; f |≥ 2).

2. Lemmas

In this section we present some lemmas which are needed in the sequel. We
denote by h the function

h =

(
f ′′

f ′
− 2f ′

f − 1

)
−

(
g′′

g′
− 2g′

g − 1

)
.

Lemma 2.1. If E1)(1; f) = E1)(1; g) and h 6≡ 0, then

N(r, 1; f |≤ 1) ≤ N(r, 0; h) ≤ N(r, h) + S(r, f) + S(r, g).

Proof. By a simple calculation we see that a simple zero of f is a zero of h and
the lemma follows. ¤

Lemma 2.2. If E3)(1; f) = E3)(1; g) and h 6≡ 0, then

N(r, h) ≤ N(r,∞; f |≥ 2) + N(r, 0; f |≥ 2) + N(r,∞; g |≥ 2)

+ N(r, 0; g |≥ 2) + N(r, 1; f |≥ 4) + N(r, 1; g |≥ 4)

+ N0(r, 0; f ′) + N0(r, 0; g′),

where N0(r, 0; f ′) and N0(r, 0; g′) are the reduced counting functions of the zeros
of f ′ and g′ which are not the zeros of f(f − 1) and g(g − 1), respectively.

The proof is omitted.



UNIQUENESS OF NON-LINEAR DIFFERENTIAL POLYNOMIALS 133

Lemma 2.3 ([13]). If h ≡ 0, then f and g share 1 CM.

Lemma 2.4 ([8, 10]). If f and g share 1 CM, then one of the following cases
holds:

(i) T (r, f)+T (r, g) ≤ 2{N2(r, 0; f)+N2(r, 0; g)+N2(r,∞; f)+N2(r,∞; g)}+
S(r, f) + S(r, g),

(ii) f ≡ g;
(iii) fg ≡ 1.

Lemma 2.5. If E3)(1; f) = E3)(1; g), then the conclusion of Lemma 2.4
holds.

Proof. If h ≡ 0, then the result follows from Lemmas 2.3 and 2.4. So we suppose
that h 6≡ 0. Then by the second fundamental theorem, Lemmas 2.1 and 2.2 we
get

T (r, f) ≤ N(r, 0; f) + N(r, 1; f) + N(r,∞; f)−N0(r, 0; f ′) + S(r, f)

≤ N(r, 0; f) + N(r, 1; f) + N(r,∞; f) + N(r,∞; f |≥ 2)

+ N(r, 0; f |≥ 2) + N(r,∞; g |≥ 2) + N(r, 0; g |≥ 2)

+ N(r, 1; f |≥ 4) + N(r, 1; g |≥ 4)−N(r, 1; f |≤ 1)

+ N0(r, 0; g′). (2.1)

Again, by the second fundamental theorem we get

T (r, g) ≤ N(r, 0; g) + N(r,∞; g) + N(r, 1; g)−N0(r, 0; g′) + S(r, g). (2.2)

Also, we note that

N(r, 1; f)− 1

2
N(r, 1; f |≤ 1) + N(r, 1; f |≥ 4) ≤ 1

2
N(r, 1; f) ≤ 1

2
T (r, f) (2.3)

and

N(r, 1; g)− 1

2
N(r, 1; g |≤ 1) + N(r, 1; g |≥ 4) ≤ 1

2
N(r, 1; g) ≤ 1

2
T (r, g). (2.4)

Adding (2.1) and (2.2) and using (2.3) and (2.4), we obtain

T (r, f) + T (r, g) ≤ 2{N2(r, 0; f) + N2(r,∞; f) + N2(r, 0; g) + N2(r,∞; g)}
+ S(r, f) + S(r, g).

This proves the lemma. ¤
Lemma 2.6. Let f and g be two nonconstant meromorphic functions such

that

Θ(∞; f) + Θ(∞; g) >
4

n + 1
,

where n(≥ 2) is an integer. Then

fn+1(af + b) ≡ gn+1(ag + b)

implies f ≡ g, where a, b are finite nonzero constants and n is an integer.

We omit the proof because it can be carried out that of Lemma 6 [6].
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Lemma 2.7. Let f and g be nonconstant meromorphic functions. Then

fn(f − 1)f ′gn(g − 1)g′ 6≡ 1,

where n (≥ 5) is an integer.

Proof. If possible, let

fn(f − 1)f ′gn(g − 1)g′ ≡ 1.

Let z0 be an 1-point of f with multiplicity p(≥ 1). Then z0 is a pole of g with
multiplicity q(≥ 1) such that

2p− 1 = (n + 2)q + 1,

i.e.,

2p = (n + 2)q + 2 ≥ n + 4,

i.e.,

p ≥ n + 4

2
.

Let z0 be a zero of f with multiplicity p(≥ 1) and it be a pole of g with
multiplicity q(≥ 1). Then

(n + 1)p− 1 = (n + 2)q + 1. (2.5)

From (2.5) we get

q + 2 = (n + 1)(p− q) ≥ n + 1

i.e., q ≥ n− 1.

Again, from(2.5) we get

(n + 1)p = (n + 2)q + 2 ≥ (n + 2)(n− 1) + 2

i.e., p ≥ (n + 2)(n− 1) + 2

n + 1
= n.

Since a pole of f is either a zero of g(g − 1) or a zero of g′, we see that

N(r,∞; f) ≤ N(r, 0; g) + N(r, 1; g) + N0(r, 0; g′)

≤ 1

n
N(r, 0; g) +

2

n + 4
N(r, 1; g) + N0(r, 0; g′)

≤
(

1

n
+

2

n + 4

)
T (r, g) + N0(r, 0; g′).

Now by the second fundamental theorem we obtain

T (r, f) ≤ N(r, 0; f) + N(r, 1; f) + N(r,∞; f)−N0(r, 0; f ′) + S(r, f)

≤ 1

n
N(r, 0; f) +

2

n + 4
N(r, 1; f) + N(r,∞; f)−N0(r, 0; f ′) + S(r, f),
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i.e., (
1− 1

n
− 2

n + 4

)
T (r, f) ≤

(
1

n
+

2

n + 4

)
T (r, g) + N0(r, 0; g′)

−N0(r, 0; f ′) + S(r, f). (2.6)

Similarly, we get(
1− 1

n
− 2

n + 4

)
T (r, g) ≤

(
1

n
+

2

n + 4

)
T (r, f) + N0(r, 0; f ′)

−N0(r, 0; g′) + S(r, g). (2.7)

Adding (2.6) and (2.7) we get
(

1− 2

n
− 4

n + 4

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which is a contradiction because 1− 2
n
− 4

n+4
> 0. This proves the lemma. ¤

Lemma 2.8 ([9]). Let f be a nonconstant meromorphic function and P (f) =
a0 + a1f + a2f

2 + · · · + anf
n, where a0, a1, . . . , an are constants and an 6= 0.

Then
T (r, P (f)) = nT (r, f) + O(1).

Lemma 2.9 ([11]). Let f be a nonconstant meromorphic function. Then

N(r, 0; f (k)) ≤ kN(r,∞; f) + N(r, 0; f) + S(r, f).

Lemma 2.10. Let f and g be two nonconstant meromorphic functions and

F = fn+1

(
f

n + 2
− 1

n + 1

)
and G = gn+1

(
g

n + 2
− 1

n + 1

)
,

where n(≥ 4) is an integer. Then F ′ ≡ G′ implies F ≡ G.

Proof. If F ′ ≡ G′ then F ≡ G + c, where c is a constant. If possible, let c 6= 0.
Then by the second fundamental theorem and Lemma 2.8 we get

(n + 2)T (r, f) ≤ N(r,∞; F ) + N(r, 0; F ) + N(r, c; F ) + S(r, F )

= N(r,∞; f) + N(r, 0; f) + N(r,
n + 2

n + 1
; f) + N(r, 0; g)

+ N(r,
n + 2

n + 1
; g) + S(r, f)

≤ 3T (r, f) + 2T (r, g) + S(r, f),

i.e.,
(n− 1)T (r, f) ≤ 2T (r, g) + S(r, f).

Similarly, we get
(n− 1)T (r, g) ≤ 2T (r, f) + S(r, g).

This shows that

(n− 3)T (r, f) + (n− 3)T (r, g) ≤ S(r, f) + S(r, g),
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which is a contradiction. Therefore c = 0 and so F ≡ G. This proves the
lemma. ¤

3. Proofs of the Theorems

Proof of Theorem 1.2. Let F and G be defined as in Lemma 2.10. Now in view
of the first fundamental theorem and Lemma 2.8 we get

T (r, F ) = T (r,
1

F
) + O(1)

= N(r, 0; F ) +

(
r,

1

F

)
+ O(1)

≤ N(r, 0; F ) + m

(
r,

F ′

F

)
+ m

(
r,

1

F ′

)

= T (r, F ′) + N(r, 0; F )−N(r, 0; F ′) + S(r, F )

= T (r, F ′) + (n + 1)N(r, 0; f) + N

(
r,

n + 2

n + 1
; f

)
− nN(r, 0; f)

−N(r, 1; f)−N(r, 0; f ′) + S(r, f)

= T (r, F ′) + N(r, 0; f) + N

(
r,

n + 2

n + 1
; f

)

−N(r, 1; f)−N(r, 0; f ′) + S(r, f).

If possible, suppose that

T (r, F ′) + T (r,G′) ≤ 2{N2(r, 0; F ′) + N2(r, 0; G′) + N2(r,∞; F ′)

+ N2(r,∞; G′)}+ S(r, F ′) + S(r,G′). (3.1)

Then we get by Lemma 2.9

T (r, F ) + T (r,G) ≤ T (r, F ′) + T (r,G′) + N(r, 0; f) + N

(
r,

n + 2

n + 1
; f

)

−N(r, 1; f)−N(r, 0; f ′) + N(r, 0; g) + N

(
r,

n + 2

n + 1
; g

)

−N(r, 1; g)−N(r, 0; g′) + S(r, f) + S(r, g)

≤ 2N2(r, 0; F ′) + 2N2(r, 0; G′) + 2N2(r,∞; F ′)

+ 2N2(r,∞; G′) + N(r, 0; f) + N

(
r,

n + 2

N + 1
; f

)

−N(r, 1; f)−N(r, 0; f ′) + N(r, 0, g) + N

(
r,

n + 2

n + 1
; g

)

−N(r, 1; g)−N(r, 0; g′) + S(r, f) + S(r, g)

≤ 4N(r, 0; f) + 2N(r, 1; f) + 2N(r, 0; f ′)

+ 4N(r, 0; g) + 2N(r, 1; g) + 2N(r, 0; g′)

+ 4N(r,∞; f) + 4N(r,∞; g) + N(r, 0; f)
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+ N

(
r,

n + 2

n + 1
; f

)
−N(r, 1; f)−N(r, 0; f ′)

+ N(r, 0; g) + N

(
r,

n + 2

n + 1
; g

)
−N(r, 1; g)−N(r, 0; g′)

+ S(r, f) + S(r, g)

≤ 6N(r, 0; f) + N(r, 1; f) + 5N(r,∞; f) + N

(
r,

n + 2

n + 1
; f

)

+ 6N(r, 0; g) + N(r, 1; g) + 5N(r,∞; g) + N

(
r,

n + 2

n + 1
; g

)

+ S(r, f) + S(r, g)

≤ 8T (r, f) + 8T (r, g) + 5N(r,∞; f) + 5N(r,∞; g)

+ S(r, f) + S(r, g).

So by Lemma 2.8 we obtain

(n− 6)T (r, f) + (n− 6)T (r, g)

≤ 5N(r,∞; f) + 5N(r,∞; g) + S(r, f) + S(r, g). (3.2)

Let us choose ε such that

0 < ε < n− 11 + min{Θ(∞; f), Θ(∞; g)}.
Then from (3.2) we get

(n−11+Θ(∞; f)−ε)T (r, f)+(n−11+Θ(∞; g)−ε)T (r, g) ≤ S(r, f)+S(r, g),

which is a contradiction.
Therefore inequality (3.1) does not hold. Since E3)(1; F ′) = E3)(1; G′), by

Lemmas 2.5, 2.6, 2.7 and 2.10 we get f ≡ g. This proves the theorem. ¤
Proof of Theorem 1.1. If (3.1) holds, then from (3.2) we get

(n− 6)T (r, f) + (n− 6)T (r, g) ≤ S(r, f) + S(r, g),

which is a contradiction.
Therefore inequality (3.1) does not hold. Since E3)(1; F ′) = E3)(1; G′), by

Lemmas 2.5, 2.6, 2.7 and 2.10 we get f ≡ g. This proves the theorem. ¤
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