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SOME ALGEBRAIC AND GEOMETRIC STRUCTURES ON
POISSON MANIFOLDS

ZAZA TEVDORADZE

Abstract. In this paper we study some algebraic properties of harmonic
forms on Poisson manifolds. It is well known that in the classical case (on
Riemannian manifolds) the product of harmonic forms is not harmonic. Here
we describe the algebraic and analytical mechanisms explaining this fact. We
also obtain a condition under which the product of de Rham cohomology
classes, which includes harmonic representatives, can be represented by a
harmonic form.
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Introduction

The main aim of this paper is to study some algebraic properties of harmonic
forms on Poisson manifolds.

It is well known that δ operator can be introduced on a Poisson manifold Mn

([1], [2]) (by analogy with the classical Hodge theory on Riemannian manifolds)
and in case when Mn is symplectic manifold, the notion of harmonic forms was
introduced by Brylinski ([1]).

In this paper we introduce the notion of harmonic form on Poisson manifold
and examine algebraic and analytic obstructions to the existence of a multi-
plicative structure in the space of harmonic forms (Corollary 2.2, Theorem 2.4,
Corollary 2.5). As a corollary we will allocate the class of harmonic forms which
is closed with respect to the exterior product (Corollary 2.3). In this section
we also have established one simple property of harmonic forms with respect to
compatible Poisson structures (Theorem 2.7).

J.-L. Brylinski conjectured that on a compact symplectic manifold every de
Rham cohomology class contains a harmonic representative [1]. In the same
paper this conjecture was proved in case when Mn is Kähler manifold. In ([3])
O. Mathieu disproved Brylinski’s conjecture. About this question one can also
see D. Yan’s paper [4]. As the examples which are constructed in these papers
are rather complicated, at the end of the paper we give a simple example of
compact Poisson manifold which disproves Brylinski’s conjecture (obviously in
more weak case, where Mn is Poisson manifold).

The paper is organized as follows. In the first section some well-known basic
definitions and facts are given; one can see them, for example, in [7].
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In Section 2 we consider the notion of harmonic form on a Poisson manifold
and construct the cohomology groups which contain obstructions to existence
of a multiplicative structure in the space of harmonic forms. In this section we
also establish one simple property of harmonic forms with respect to compatible
Poisson structures and show that not every cohomology class on a Poisson
manifold can be represented by harmonic forms.

1. Some Basic Definitions and Facts

1.1. The Schouten–Nijenhuis bracket. Let Mn be a smooth real manifold,
and let A = C∞(Mn) be the algebra of smooth real-valued functions on Mn.

Also, let
∧

(Mn) =
n⊕

i=0

∧
i(M

n) be the contravariant Grassmann algebra on Mn.

It is well known that for arbitrary X ∈ ∧
1(M

n) there is a well defined Lie
derivative operator LX which, in particular, acts on

∧
i(M

n) by

(LXY )(x0) =
d

dt

∣∣∣
t=0
{exp(−tX)∗Y (exp(tX(x0)))}, (1.1)

where x0 ∈ Mn, Y ∈ ∧
i(M

n). It is well known that LXY coincides with [X,Y ]
when i = 1. Thus, for arbitrary vector fields X1, X2, . . . , Xp and Y ∈ ∧

i(M
n),

it is natural to define the operation

[X1 ∧ · · · ∧Xp, Y ] = (−1)p+1

p∑
i=1

(−1)i+1X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xp ∧ LXi
Y, (1.2)

where ∧ denotes that the corresponding factor is omitted.
There exists a unique R-bilinear map, defined on

∧
(Mn) × ∧

(Mn), with
values in

∧
(Mn), called the Schouten–Nijenhuis bracket (SNB) and denoted by

[ , ] and satisfying the following properties:
(a) for f, g ∈ A, [f, g] = 0,
(b) for a vector field X ∈ ∧

1(M
n) and a multi-vector field Y ∈ ∧

q(M
n),

[X,Y ] coincides with the Lie derivation LXY ,
(c) for A ∈ ∧

p(M
n), B ∈ ∧

q(M
n),

[A,B] = −(−1)(p−1)(q−1)[B,A], (1.3)

(d) for A ∈ ∧
p(M

n), B ∈ ∧
q(M

n) and C ∈ ∧
r(M

n),

[A,B ∧ C] = [A,B] ∧ C + (−1)(p−1)qB ∧ [A,C]. (1.4)

For the proof of these properties one can see, for example, [1] or [7].
From (1.3) and (1.4) we can conclude that the SNB is a local type bracket

(its values in an open subset of Mn depend only on the values of multi-vector
fields on that open subset) and defines a bilinear mapping

∧
p(M

n)×∧
q(M

n) →∧
p+q−1(M

n) by the condition

[X1 ∧ · · · ∧Xp, Y1 ∧ · · · ∧ Yq] =
∑
t,s

(−1)p+1+t+sX1 ∧ · · · ∧ X̂s ∧ · · · ∧Xp

∧[Xs, Yt] ∧ Y1 ∧ · · · ∧ Ŷt ∧ · · · ∧ Yq, (1.5)
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where X1, . . . , Xp, Y1, . . . , Yq are vector fields on Mn. From formulae (1.3),(1.4),
(1.5) we can obtain the following graded Jacobi identity:

(−1)(p−1)(r−1)[[A,B], C] + (−1)(q−1)(p−1)[[B, C], A]

+ (−1)(q−1)(r−1)[[C, A], B] = 0, (1.6)

where A ∈ ∧
p(M

n), B ∈ ∧
q(M

n) and C ∈ ∧
r(M

n).

Remark 1.1. Identities (1.3) and (1.6) imply that the graded vector space
∧

(Mn) =
n⊕

i=0

∧
i(M

n), with the Schouten–Nijenhuis bracket as a composition

law, is a graded Lie algebra. In order to have a simple rule for composing the
degrees, one has to state that the “Lie degree” of a homogeneous multi-vector
field A ∈ ∧

p(M
n) is p − 1. Of course, the Lie degree of A ∈ ∧

p(M
n) should

not be confused with its ordinary degree (so-called exterior degree) which is p.

Remark 1.2. According to Remark 1.1, the graded Jacobi identity can be
written in other forms, in which its meaning is clearer than in the form (1.6).
For each p ∈ 0, n, let us define the mapping

adp
− :

∧
p
(Mn) → Hom(

∧
(Mn)), (1.7)

by the formula adp
A(B) = [A,B], where A ∈ ∧

p(M
n), B ∈ ∧

(Mn) and

Hom(
∧

(Mn)) denotes the space of endomorphisms of the linear space
∧

(Mn).
These mappings can be extended by linearity on the space

∧
(Mn) and we

denote it by

ad− :
∧

(Mn) → Hom(
∧

(Mn)). (1.8)

Then, as we know, the values of the operator adp
− are graded linear endomor-

phisms of
∧

(Mn) and thus the graded Jacobi identity (1.6) can be written in a
more acceptable form (from the viewpoint of the theory of Lie algebras)

adA[B, C] = [adAB, C] + (−1)(p−1)(q−1)[B, adAC] (1.9)

or as
ad[A,B] = adA ◦ adB − (−1)(p−1)(q−1)adB ◦ adA, (1.10)

where A ∈ ∧
p(M

n), B ∈ ∧
q(M

n) and C ∈ ∧
r(M

n). Equation (1.9) has a clear
meaning: the graded endomorphism adA, of degree p− 1, is a derivation of the
graded Lie algebra

∧
(Mn) with the SNB as a composition law (the degree of

B ∈ ∧
q(M

n) considered here being its Lie degree q − 1 rather than its exterior

degree q). Equation (1.10) means that the endomorphism ad[A,B] of degree
p+ q−2, is the graded commutator of the endomorphisms adA (of degree p−1)
and adB (of degree q − 1).

1.2. Lichnerowicz derivation. Let Mn be a smooth Poisson manifold, i.e.,
there exists a (2, 0)-type contravariant antisymmetric tensor field G ∈ ∧

2(M
n)

on Mn such that [G,G] = 0, where [ , ] denotes the Schouten–Nijenhuis bracket.
Then we can define the Poisson bracket of the functions f and g from A by the
formula

{f, g} = iG(df ∧ dg), (1.11)
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satisfying the following properties:

a) {f, g} = −{g, f};

b) {f, g · h} = {f, g} · h + g · {f, h};

c) {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0,

where f, g, h ∈ A.
From the property b) it is clear that, for a given function H ∈ A, the mapping

f → {H, f} defines the differentiation of the algebra A and so there exists a
(uniquely defined) vector field VH on Mn such that {H, g} = VHg for all g ∈ A.
The vector field VH is called the Hamiltonian vector field of H. It is easy to
check that V{f,g} = [Vf , Vg]. Further by dG we denote the operator adG. From
(1.10) it follows that the operator dG :

∧
p(M

n) → ∧
p+1(M

n) is nilpotent, more

precisely, dG
2 = 0. From (1.4) and (1.6) we have

dG(B ∧ C) = dG(B) ∧ C + (−1)qB ∧ dG(C) (1.12)

and

dG[B, C] = [dGB, C] + (−1)q−1[B, dGC], (1.13)

where B ∈ ∧
q(M

n) and C ∈ ∧
r(M

n). The cohomology of the complex

(
∧
∗(M

n), dG) is called the Lichnerowicz–Poisson cohomology and we denote
it by HLP

∗(Mn) (for this see [5]).
The Poisson structure defines a very important polar mapping P : T ∗Mn →

TMn by the formula P (α) = Gbα, where α ∈ ∧1(Mn) is a differential 1-form
on Mn.

1.2.1. Coordinate expressions. Let (xi)i=1,n be a local coordinate system in the
neighborhood U ⊂ Mn, and let the restriction of the (2,0)-contravariant tensor
field G on U be represented by the formula G = 1

2!
Gij ∂

∂xi ∧ ∂
∂xj . Then if f, g ∈ A

are smooth functions on Mn, from (1.11) we obtain

{f, g}|U = Gij ∂f

∂xi
· ∂g

∂xj
(1.14)

and

Vf |U = Gij ∂f

∂xi

∂

∂xj
. (1.15)

We have dG(f)|U = −Gij ∂f
∂xi

∂
∂xj = −Vf |U .

If B = 1
q!
Bj1···jq ∂

∂xj1
∧ · · · ∧ ∂

∂xjq is a restriction of the multi-vector field on

Mn, then from (1.12) we conclude

dG(B) = − 1

q!
Gui ∂Bj1···jq

∂xu

∂

∂xi
∧ ∂

∂xj1
∧ · · · ∧ ∂

∂xjq

− 1

2(q − 1)!
Buj2···jq

∂Gij

∂xu

∂

∂xi
∧ ∂

∂xi
∧ ∂

∂xj2
∧ · · · ∧ ∂

∂xjq
. (1.16)
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If α|U = aidxi is the restriction of an arbitrary one-dimensional differential form
on U , it is easy to verify that

P (α) = Gijai
∂

∂xj
(1.17)

and so we conclude that

P (dH) = VH = −dG(H) (1.18)

for all H ∈ A.

1.3. De Rham cohomology versus Lichnerowicz–Poisson cohomology.
By analogy with the SNB on

∧
(Mn), one can define the R-bilinear bracket

{·, ·}G on Ω(Mn) =
n⊕

i=0

∧i(Mn), whose restriction on

{·, ·}G :
∧p

(Mn)×
∧q

(MN) →
∧p+q−1

(Mn)

satisfies the following two conditions (see [7]):
i) the restriction of {, }G on

∧1(Mn) × ∧1(Mn) defines a Lie structure on∧1(Mn) such that P is a homomorphism of Lie algebras;

ii) {α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βq}G =
∑
t,s

(−1)k+1+t+sα1 ∧ · · · ∧ α̂s · · · ∧ αk

∧{αs, βt}G ∧ β1 ∧ · · · ∧ β̂t · · · ∧ βq. (1.19)

So, Ω(Mn) is also a graded Lie algebra with { , }G as a composition law. From
the conditions i) and ii) we can conclude that the mapping ∧∗(P ) :

∧∗(Mn) →∧
∗(M

n) is a homomorphism of graded Lie algebras, where ∧∗(P ) is deduced
from P as an exterior product of P .

1.3.1. Coordinate expression. Let (xi)i=1,n be the local coordinate system in
the neighborhood U ⊂ Mn, and let the restriction of the (2,0)-contravariant
tensor field G on U be represented by the formula G = 1

2!
Gij ∂

∂xi ∧ ∂
∂xj . Let

α|U = 1
p!
αi1...ipdxi1∧· · ·∧dxip and β|U = 1

q!
βj1...jqdxj1∧· · ·∧dxjq be the restriction

of differential forms α ∈ ∧p(Mn) and β ∈ ∧q(Mn) on U ; then

{α|U , β|U}G
i1...ip+q−1

=
(−1)p

(p− 1)!q!
ε

j2...jpt1...tq
i1...ip+q−1

Gusαsj2...jp ·
∂

∂xu
(βt1...tq)

+
1

(q − 1)!p!
ε

j1...jpt2...tq
i1...ip+q−1

Gus ∂

∂xu
(αj1...jp) · βst2...tq

+
1

(q − 1)!(p− 1)!
ε

uj2...jpt2...tq
i1...ip+q−1

∂

∂xu
(Gsl)αsj2...jp · βlt2...tq , (1.20)

where ε······ is the Kronecker multi-index, i.e., 1 (or -1) if the upper indices are an
even (odd) permutation of lower indices, and 0 otherwise.
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One can verify that ∧(P ) =
n⊕

i=0

∧i(P ) induces an antihomomorphism between

de Rham and Lichnerowicz–Poisson differential complexes ([7]), i.e.,

∧p+1(P ) ◦ d = −dG ◦ ∧p(P ), (1.21)

where ∧0(P ) = id and ∧1(P ) = P .
So the polar mapping P induces homomorphisms

∧∗(P ) : HDR
∗(Mn) → HLP

∗(Mn), (1.22)

which are obviously isomorphisms when P is an isomorphism (it is so if and
only if Mn is a symplectic manifold).

1.4. Canonical homologies. One can verify that on
∧1(Mn) aforementioned

bracket { , }G has the form

{fdH, gdQ}G = fgd{H,Q} − f{g, H}dQ + g{f, Q}dH, (1.23)

where f, g,H, Q ∈ A. In a more invariant way, for arbitrary 1-forms α and β
we have

{α, β}G = LP (α)β − LP (β)α + d(Gb(α ∧ β)). (1.24)

J.-L. Koszul (see, e.g., [2], [5]) introduced a differential δ∗ :
∧∗(Mn) →∧∗−1(Mn) defined as δ∗ = iG ◦ d∗ − d∗−2 ◦ iG, which satisfies condition δ2 = 0.

In [1] this differential is expressed by the formula

δ(f0df1 ∧ · · · ∧ dfk) =
∑

1≤i≤k

(−1)i+1{f0, fi}df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ dfk

+
∑

1≤i<j≤k

(−1)i+jf0d{fi, fj} ∧ df1 ∧ · · · ∧ d̂fi

∧ · · · ∧ d̂fj ∧ · · · ∧ dfk. (1.25)

So, for a Poisson manifold (Mn, G), there is a canonical complex (
∧∗(Mn), δ∗)

whose homology groups are denoted by Hcan
∗ (Mn) and called canonical homolo-

gies of (Mn, G).
The canonical complex (

∧∗(Mn), δ∗) is not a differential complex. The dec-
lination of δ from the differentiability can be expressed by the bracket {, }G.
More precisely, we have the following proposition (the proof can be found in
[7]).

Proposition 1.3. If α ∈ ∧p(Mn) and β ∈ ∧q(Mn), then

(−1)p+1{α, β}G = δα ∧ β + (−1)pα ∧ δβ − δ(α ∧ β). (1.26)

2. Harmonic Forms on Poisson Manifolds

From (1.25), by direct calculations we can conclude that the operators di−1δi+
δi+1d

i are identically zero, so, on Poisson manifolds, “Laplacian” operators are
not defined as they are on Riemannian manifolds.

Similarly to Brylinski’s definition of the harmonic forms on symplectic man-
ifolds we can define harmonic forms on Poisson manifolds.
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Definition 2.1. A differential form α ∈ Λ∗(Mn) on the Poisson manifold
(Mn, G) is called harmonic if it satisfies the condition dα = δα = 0.

It is well known that even in the classical case the product of harmonic forms
is not a harmonic form.

From Proposition 1.3 we have the following corollary.

Corollary 2.2. If α and β are harmonic differential forms on a Poisson
manifold Mn, then α∧β is a harmonic differential form if and only if {α, β}G =
0.

Now let us consider the regular Poisson manifold (Mn, G), i.e., the rank(G) =
const, and fix on it some torsionless connection ∇. For the existence of a
torsionless connection on such Poisson manifolds see ([7]). If γi

jk denotes the
coefficients of connection ∇ in local coordinates, then for the differential p-form
α we have

∇uαi1···ip =
∂

∂xu
αi1···ip − γj

i1uαji2···ip − · · · − γj
ipuαi1···ip−1j.

Taking into account this equality and the fact that {α, β}Gi1···ip+q−1 is antisym-
metric tensor, we can rewrite (1.20) as follows:

{α|U , β|U}G
i1...ip+q−1

=
(−1)p

(p− 1)!q!
ε

j2...jpt1...tq
i1...ip+q−1

Gusαsj2...jp · ∇u(βt1...tq)

+
1

(q − 1)!p!
ε

j1...jpt2...tq
i1...ip+q−1

Gus∇u(αj1...jp) · βst2...tq

+
1

(q − 1)!(p− 1)!
ε

uj2...jpt2...tq
i1...ip+q−1

∇u(G
sl)αsj2...jp · βlt2...tq . (2.1)

Corollary 2.3. Let ∇ be a Poisson connection on the Poisson manifold Mn

of constant rank, and let α and β be parallel harmonic differential forms with
respect to the connection ∇, then α ∧ β is also a harmonic differential form.

Now let us pose the following question: if α ∈ Λi(Mn) and β ∈ Λi(Mn) are
the harmonic forms on the Poisson manifold (Mn, G), then does there exist a
harmonic representative of the class [α ∧ β] in the de Rham cohomology?

The answer on this question, in general, is negative: we construct the coho-
mology groups which contain the obstruction to this fact. Below (see Example
2.9) we show that, in general, not every de Rham cohomology class can be
represented by the harmonic forms.

Let Bi denotes the Im di−1, then as di−1δi + δi+1d
i = 0, the chain complex

(B∗, δ∗) is defined correctly and the homology of this complex we denote as
HT
∗ (Mn).

Theorem 2.4. Let α ∈ Λi(Mn) and β ∈ Λi(Mn) be harmonic forms on the
Poisson manifold (Mn, G). Then the de Rham cohomology class of the form
α∧β can be represented by a harmonic form if and only if [{α, β}G] is a trivial
homology class in HT

i+j−1(M
n) homology group.
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Proof. Let us assume that the de Rham homology class α∧β can be represented
by a harmonic form γ ∈ Λi+j(M

n), i.e., δγ = dγ = 0 and there is a form
a ∈ Λi+j−1(M

n) such that γ = α ∧ β + da. Then δγ = δα ∧ β + (−1)iα ∧
δβ + (−1)i{α, β}G + δda = (−1)i{α, β}G + δda = 0. From this equation we get
{α, β}G = δd((−1)i+1a), which means that [{α, β}G] =0 in the homology group
HT

i+j−1(M
n). Now let {α, β}G = δda for some i + j − 1 dimensional differential

form a ∈ Λi+j−1(M
n). Then δ(α ∧ β) = (−1)i{α, β}G = (−1)iδda. We denote

the i + j dimensional differential form α ∧ β + (−1)i+1da by γ. It is clear that
dγ = 0 and δγ = (−1)iδda + (−1)i+1δda = 0, i.e., γ is a harmonic form and
[γ] = [α ∧ β] in the de Rham cohomology group H i+j(Mn). ¤

Corollary 2.5. If any cohomology class in de Rham cohomologies can be rep-
resented by a harmonic form, then for arbitrary differential forms α ∈ Λi(Mn)
and β ∈ Λi(Mn), [{α, β}G] = 0 in T -homologies. In particular, this occurs
when Mn is the Kähler manifold.

As a di−1δi + δi+1d
i = 0, it is clear that δ̂i = (−1)iδi defines homomorphisms

between de Rham cohomologies δ̂∗i : H i(Mn) → H i−1(Mn). It is also clear that
the necessary condition for [α] ∈ H i(Mn) could be represented by a harmonic

form such that δ̂∗i ([α]) = 0, i.e., if in every cohomology class there exists a

harmonic form, then homomorphisms δ̂∗i are identically zero. Below (in example
2.9) we will see that this condition is not sufficient.

Now let us consider two compatible Poisson structures on manifold Mn.

Definition 2.6. Two Poisson structures G1 and G2 on the manifold Mn are
called compatible if [G1, G2] = 0, i.e., G1 and G2 are compatible if and only if
any linear combination λ1G1 + λ2G2 defines the Poisson structure on Mn.

Theorem 2.7. If G′ and G′′ are compatible Poisson structures on the manifold
Mn, then if α ∈ Λi(Mn) is harmonic form corresponding to the structure G′,
then δ′′α is also a harmonic form corresponding to the structure G′, where δ′′

is the operator δ defined by the structure G′′.

Proof. One can immediately verify the formula i[G′,G′′] = iG′diG′′ + iG′′diG′ −
iG′iG′′d − diG′∧G′′ . According to this formula and the facts that dα = δ′α = 0,
we obtain iG′δ

′′α = diG′′iG′α. From the latter formula we get δ′(δ′′α) = 0. It is
also clear that d(δ′′α) = −δ′′dα = 0. ¤

Example 2.8. In this example we show that if G′ and G′′ are compat-
ible Poisson structures on the manifold Mn and α ∈ Λi(Mn) is a harmonic
form corresponding to the structure G′, then it is not necessary that it be
harmonic corresponding to the structure G′′. Let us consider two compatible
Poisson structure G′ = ∂

∂x1 ∧ ∂
∂x2 and G′′ = ∂

∂x3 ∧ ∂
∂x4 on the manifold R4,

where (x1, x2, x3, x4) is the coordinate system in R4. It is clear that the form
α = x3dx3∧dx4 is harmonic under the structure G′, but δ′′α = diG′′α = dx3 6= 0.

Example 2.9. Let us consider the flat torus T 3 and let ϕ, ψ, ϑ ∈ [0, 2π] is the
local coordinate system on T 3. G = cos ψ ∂

∂ϕ
∧ ∂

∂ψ
defines the Poisson structure
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on T 3. Let α = fdϕ ∧ dψ + gdψ ∧ dϑ + hdϕ∧ dϑ be a harmonic 2-form on T 3,
where f, g, h ∈ C∞(T 3). Then dα = 0 implies, that ∂f

∂ϑ
+ ∂g

∂ϕ
− ∂h

∂ψ
= 0. From

the equation δα = 0 we get f cos ψ = k = const. The latter equation implies
f = k

cos ψ
and as the function f is continuous on T 3, we conclude that k = 0 and

so f = 0. Summarizing these facts, we conclude that every harmonic form on
the above-mentioned Poisson manifold has the form α = gdψ ∧ dϑ + hdϕ ∧ dϑ,
where ∂g

∂ϕ
= ∂h

∂ψ
. It is well known that H2(T 3) = (H1(T 1

ϕ)⊗H1(T 1
ψ)⊗H0(T 1

ϑ))

⊕(H1(T 1
ϕ)⊗H0(T 1

ψ)⊗H1(T 1
ϑ)) ⊕(H0(T 1

ϕ)⊗H1(T 1
ψ)⊗H1(T 1

ϑ)) = R ⊕ R ⊕ R,

where T 1
ϕ, T 1

ψ, T 1
ϑ defines coordinate circles in the torus. It is clear that the

harmonic forms α = gdψ ∧ dϑ + hdϕ ∧ dϑ cannot represent cohomology classes
from the item H1(T 1

ϕ)⊗H1(T 1
ψ)⊗H0(T 1

ϑ).

So Example 2.9 shows that in the general case not every cohomology class
can be represented by harmonic forms.
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