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WINTNER-TYPE OSCILLATION CRITERIA OF SEMILINEAR
ELLIPTIC INEQUALITIES

ZHITING XU

Abstract. Wintner-type oscillation criteria of semilinear elliptic inequali-
ties are obtained by using partial Riccati technique. The results presented
improve the oscillation criteria due to E. S. Noussair and C.A. Swanson [3].
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1. Introduction

In this paper, we are concerned with obtaining Wintner-type oscillation cri-
teria for semilinear elliptic inequalities

(Ly)(x) + q(x)f(y(x)) ≤ 0, x ∈ Ω(r0), (1.1)

where Ω(r0) = {x ∈ RN : |x| ≥ r0} for r0 ≥ 0, | · | is the usual Euclidean norm
in RN , and N ≥ 2.

Throughout this paper it is always assumed that the following hypotheses are
valid without further mention.

(H1) L is an elliptic operator of the form

L =
N∑

i,j=1

Di

[
aij(x)Dj

]
+

N∑
i=1

bi(x)Di, x ∈ Ω(r0),

where x = (xi), Di = ∂/∂xi, aij ∈ C1+ν
loc (Ω(r0),R), bi ∈ Cν

loc(Ω(r0),R) for all i, j,
(ν ∈ (0, 1)), and the symmetric matrix A(x) = (aij) is positive definite at each

x ∈ Ω(r0). Let λmax(x) ∈ C(Ω(r0),R) be the largest eigenvalue of the matrix
A(x). We suppose that there exists a function λ ∈ C( [r0,∞),R+ ) such that

λ(r) ≥ max
|x|=r

λmax(x), for r ≥ r0;

(H2) f ∈ C(R,R)∪C1(R− {0},R), yf(y) > 0 and f ′(y) ≥ k > 0 for y 6= 0;
(H3) q ∈ Cν

loc(Ω(r0),R), (ν ∈ (0, 1)).
By a solution of (1.1), we mean a function y ∈ C2+ν

loc (Ω(r0),R) (ν ∈ (0, 1))
satisfying (1.1) almost everywhere on Ω(r0). For the question of the existence
of a solution of (1.1) we refer the reader to the monograph [1]. Our attention is
restricted to those solutions which do not vanish identically in any neighborhood
of |x|. A nontrivial solution y(x) of (1.1) is said to be oscillatory if, for any
R > 0, y(x) has zero on Ω(r0) ∩ { x : |x| > R}, otherwise it is said to be
nonoscillatory. (1.1) is called oscillatory if all its solutions are oscillatory.
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In the qualitative theory of nonlinear partial differential equations, one of the
important problems is to determine whether solutions of the equation under
consideration are or are not oscillatory. A number of results on the oscillation
of (1.1) are obtained by imposing restrictions on the elliptic operator L. An
important special case of (1.1) is the case bi(x) ≡ 0 (for all i), for which (1.1)
becomes

N∑
i, j=1

Di

[
aij(x) Djy

]
+ q(x)f(y) ≤ 0. (1.2)

Concerning (1.2) there exists a well-elaborated oscillation theory. In 1980,
Noussair and Swanson [3] first extended the well-known Wintner theorem [5]
to (1.2) based on the partial Riccati transformation. The survey paper by
Swanson [4] contains a complete bibliography till 1979. Recently, Xu [6] and
Zhang et. al. [8] obtained Kamenev-type oscillation criteria [2]. On the other
hand, using the averaging functions from a general class of parameter functions,
Xu [7] gave new oscillation criteria for (1.2). It seems, however, that a very few
results are established for (1.1) in general form. Motivated by this fact, in
this paper we develop the technique exploited by Noussair and Swanson [3] to
establish Wintner-type oscillation criteria for (1.1), which extend and improve
the results in [3]. Finally, some examples are given to illustrate the advantages
of our results. It is to be emphasized that we do not assume any condition on
the functions bi and q except the conditions bi, q ∈ Cν

loc(Ω) (for all i). The
results obtained here are new even for (1.2).

2. Main Results

Lemma 2.1. Let α, β ∈ RN , C > 0, then

CααT + αβT ≥ C

2
ααT − 1

2C
ββT . (2.1)

Lemma 2.1 is easy to verify and the proof is omitted.
We now introduce our principal notations. For any given functions ρ ∈

C1( [r0,∞),R+ ) and ( λη ) ∈ C1( [ r0,∞),R), we define

g(r) =
k

2 ω

r1−N

λ(r)ρ(r)
, p(r) =

ρ′(r)
ρ(r)

+
k

ω
η(r)r1−N ,

and

θ(r) =ρ(r)

{ ∫

Sr

[
q(x)− 1

2k
λ(x)

∣∣BT A−1
∣∣2

]
dσ +

k

2ω
r1−Nλ(r)η2(r)

− [
λ(r)η(r)

]′ }
+

1

2

( p(r)

g(r)

)′
− p2(r)

4g(r)
,

where Sr = {x ∈ RN : |x| = r}, ω and dσ denote the surface measure of
unit sphere and the spherical integral element in RN , respectively, and BT =
( b1(x), . . . , bN(x) ).
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Theorem 2.1. Suppose that there exist functions ρ ∈ C1( [ r0,∞ ),R+ ),
( λη ) ∈ C1([r0,∞),R), satisfying

∞∫

r0

g(r) dr = ∞ (2.2)

and
∞∫

r0

θ(r) dr = ∞, (2.3)

then (1.1) is oscillatory.

Proof. Let y = y(x) be a nonoscillatory solution of (1.1). Without loss of
generality we assume that y(x) > 0 for |x| > r0. Put

W (x) =
1

f(y(x))
(A∇y)(x),

where ∇y denotes the gradient of y. Differentiation of the i-th component of
W (x) with respect to xi gives

DiW (x)i = − f ′(y)

f 2(y)
Diy

[ N∑
j=1

aij(x)Djy

]
+

1

f(y)
Di

[ N∑
j=1

aij(x)Djy

]

for all i. Summation over i and the use of (1.1) lead to

div W (x) ≤ −f ′(y)(W T A−1W )(x)− (BT A−1W )(x)− q(x)

≤ −k (W T A−1W )(x)− (BT A−1W )(x)− q(x) ( by (H2) )

≤ − k

λ(x)
(W T W )(x)− (BT A−1W )(x)− q(x) ( by (H1) )

≤ − k

2λ(x)
(W T W )(x) +

1

2k
λ(x)|BT A−1|2 − q(x)

(by Lemma 2.1 ). (2.4)

Let

w(r) = ρ(r)

[ ∫

Sr

W (x) · ν(x) dσ + λ(r)η(r)

]
for r ≥ r0, (2.5)

where ν(x) = x/|x|, ( |x| 6= 0 ), denotes the outward unit normal. Using the
divergence theorem in (2.5), we obtain by (2.4)

w′(r) =
ρ′(r)
ρ(r)

w(r) + ρ(r)

{∫

Sr

div W (x) dσ +
[
λ(r)η(r)

]′ }

≤ ρ′(r)
ρ(r)

w(r)− ρ(r)

{
k

2λ(r)

∫

Sr

(W T W )(x) dσ
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+

∫

Sr

[
q(x)− 1

2k
λ(x)

∣∣BT A−1
∣∣2

]
dσ − [

λ(r)η(r)
]′ }

.

By the Schwartz inequality
∫

Sr

∣∣W (x)
∣∣2 dσ ≥ r1−N

ω

[ ∫

Sr

W (x) · ν(x) dσ

]2

.

Thus for r ≥ r0

w′(r) ≤ ρ′(r)
ρ(r)

w(r)− ρ(r)

{
k

2ω

r1−N

λ(r)

[∫

Sr

W (x) · ν(x) dσ

]2

+

∫

Sr

[
q(x)− 1

2k
λ(x)

∣∣BT A−1
∣∣2

]
dσ − [

λ(r)η(r)
]′

}

=
ρ′(r)
ρ(r)

w(r)− ρ(r)

{
k

2ω

r1−N

λ(r)

[w(r)

ρ(r)
− λ(r)η(r)

]2

+

∫

Sr

[
q(x)− 1

2k
λ(x)

∣∣BT A−1
∣∣2

]
dσ − [

λ(r)η(r)
]′

}

= −g(r)w2(r) + p(r)w(r)− ρ(r)

{ ∫

Sr

[
q(x)− 1

2k
λ(x)

∣∣BT A−1
∣∣2

]
dσ

+
k

2ω
r1−Nλ(r)η2(r)− [

λ(r)η(r)
]′
}

,

that is

Z ′(r) ≤ −g(r)Z2(r)− θ(r), (2.6)

where

Z(r) = w(r)− 1

2

p(r)

g(r)
.

Hence, for all r ≥ r0, we have

Z(r) ≤ Z(r0)−
r∫

r0

g(s)Z2(s) ds−
r∫

r0

θ(s) ds. (2.7)

By (2.3) and (2.7) we can find a number a ≥ r0 such that for all r ≥ a

Z(r) ≤ −
r∫

r0

g(s)Z2(s) ds =: −H(r).

Thus

H ′(r) = g(r)Z2(r) ≥ g(r)H2(r).
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This yields
r∫

r0

g(s) ds ≤
r∫

r0

dH(r)

H2(r)
≤ 1

H(r0)
for r ≥ r0,

which contradicts (2.2), and this completes the proof. ¤

Remark 2.1. For (1.2), let η(r) ≡ 0, then Theorem 2.1 improves Theorem 4
in [3].

The following oscillation criteria (Theorems 2.2–2.4) treat the cases when it
is not possible to verify easily conditions (2.2) or (2.3).

Theorem 2.2. Suppose that there exist functions ρ ∈ C1([r0,∞),R+), (λη) ∈
C1 ([r0,∞),R), ϕ ∈ C(R, [0,∞)) with ϕ nondecreasing on [0,∞), and φ ∈
C([r0,∞),R+) satisfying

∞∫

r0

[ s∫

r0

φ2(τ)

g(τ)
dτ

]−1

φ(s) ϕ

( s∫

r0

φ(τ) dτ

)
ds = ∞, (2.8)

∞∫

r0

ϕ(s)

s2
ds < ∞. (2.9)

If

lim
r→∞

[ r∫

r0

φ(s) ds

]−1
r∫

r0

φ(s)

s∫

r0

θ(τ) dτ ds = ∞, (2.10)

then (1.1) is oscillatory.

Proof. By using the same argument as in the proof of Theorem 2.1, we get (2.7)
holds for r ≥ r0. Multiplying (2.7) by φ(s) and integrating from r0 to r, we
have

r∫

r0

φ(s)Z(s) ds + G(r)

≤
[ r∫

r0

φ(s) ds

][
Z(r0)−

( r∫

r0

φ(s) ds

)−1
r∫

r0

φ(s)

s∫

r0

θ(τ) dτ ds

]
,

where G(r) =
∫ r

r0
φ(s)

∫ s

r0
g(τ)Z2(τ) dτ ds. In view of condition (2.10), there

exists a constant a > r0 such that

Z(r0)−
[ r∫

r0

φ(s) ds

]−1
r∫

r0

φ(s)

s∫

r0

θ(τ) dτds < 0, for all r ≥ a.
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So, for every r ≥ a

G(r) ≤ −
r∫

r0

φ(s)Z(s) ds.

In virtue of the Schwartz inequality

G2(r) ≤
[ r∫

r0

φ(s)Z(s) ds

]2

≤
[ r∫

r0

φ2(s)

g(s)
ds

][ r∫

r0

g(s)Z2(s) ds

]
,

that is [ r∫

r0

φ2(s)

g(s)
ds

]−1

φ(r) ≤ G′(r)
G2(r)

. (2.11)

But, for all r ≥ a

G(r) ≥
[ r∫

a

φ(s) ds

][ a∫

r0

g(s)Z2(s) ds

]
= C

r∫

a

φ(s) ds,

where C =
∫ a

r0
g(s)Z2(s)ds. Since g(s)Z2(s) is continuous and not identically

zero on [r0, a], we have C > 0. Thus, for all r ≥ a,

ϕ

( r∫

a

φ(s) ds

)
≤ ϕ(C−1G(r)). (2.12)

From (2.11) and (2.12) it follows that
r∫

a

[ s∫

r0

φ2(τ)

g(τ)
dτ

]−1

φ(s)ϕ

( s∫

a

φ(τ) dτ

)
ds

≤
r∫

a

ϕ(C−1G(s))

G2(s)
dG(s) =

C−1G(r)∫

C−1G(a)

ϕ(s)

s2
ds < ∞,

which contradicts condition (2.8). ¤
Lemma 2.2. Suppose that there exist functions ρ ∈ C1([r0,∞),R) and

(λη) ∈ C1([r0, ∞),R) such that (2.2) and

Θ(r) :=

∞∫

r

θ(r) dr < ∞ for r ≥ r0, (2.13)

hold. If (1.1) is nonoscillatory, then there exist a constant a > r0 and a function
Z ∈ C1([a,∞),R) satisfying

Z(r) ≥
∞∫

r

θ(s) ds +

∞∫

r

g(s)Z2(s)ds for r ≥ a. (2.14)



WINTNER-TYPE OSCILLATION CRITERIA 195

Proof. Proceeding as in the proof of Theorem 2.1, there exist a number a > r0

and a function Z ∈ C1([a,∞),R) satisfying (2.6). Therefore for b ≥ r ≥ a

Z(b) +

b∫

r

θ(τ) dτ +

b∫

r

g(s)Z2(s) ds ≤ Z(r). (2.15)

Now we claim that
∞∫

r

g(s)Z2(s) ds < ∞. (2.16)

Otherwise
∞∫

r

g(s)Z2(s) ds = ∞,

then there is a number a1 ≥ a such that, taking into account (2.13) and (2.15),

Z(b) ≤ −
b∫

a1

g(s)Z2(s) ds for b ≥ a1.

As in the proof of Theorem 2.1, it is easy to show that
∞∫

a1

g(s) ds < ∞,

which contradicts (2.2). Thus (2.16) holds. Therefore, from (2.15), for r ≥ a

Z(r) ≥ lim sup
b→∞

Z(b) +

∞∫

r

θ(s) ds +

∞∫

r

g(s)Z2(s) ds. (2.17)

If lim supr→∞ Z(b) < 0, then there exist two numbers δ < 0 and a2 ≥ a1 such
that Z(b) < δ for b ≥ a2. It follows from (2.2) that, for r ≥ b,

∞∫

r

g(s)Z2(s) ds ≥ δ2

∞∫

r

g(s) ds = ∞,

which contradicts (2.16). Thus lim supb→∞ Z(b) ≥ 0. It follows from (2.17) that
(2.14) holds. ¤

Theorem 2.3. Suppose that there exist functions ρ ∈ C1([r0,∞),R+) and
(λη) ∈ C1([r0,∞),R) such that (2.2) and (2.13) hold. If

∞∫

r0

g(s)Θ2
+(s) exp

[
2

s∫

r0

g(τ)Θ(τ) dτ

]
ds = ∞, (2.18)

then equation (1.1) is oscillatory.
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Proof. Suppose that (1.1) is nonoscillatory. Then it follows from Lemma 2.2
that there exist a constant a > r0 and a function Z ∈ C1([a,∞),R) satisfying
(2.14) for r ≥ a. Define

v(r) =

∞∫

r

g(s)Z2(s) ds,

then

v′(r) = −g(r)Z2(r). (2.19)

Multiplying (2.19) by exp[ 2
∫ s

r
g(τ)Θ(τ) dτ ] and integrating from r to b, we

obtain

v(r) = exp

[
2

b∫

r

g(s)Θ(s) ds

]
v(b)

+

b∫

r

g(s)[Z2(s)− 2Θ(s)v(s)] exp

[
2

s∫

r

g(τ)Θ(τ)dτ

]
ds. (2.20)

It follows from (2.14) that Z(r) ≥ Θ(r) + v(r) for r ≥ a, which implies Z2(r)−
2Θ(r)v(r) ≥ Θ2

+(r) + v2(r) for r ≥ a. This and (2.20) imply

v(r) ≥
∞∫

r

g(s)Θ2
+(s) exp

[
2

s∫

r

g(τ)Θ(τ) dτ

]
ds

+

∞∫

r

g(s)v2(s) exp

[
2

s∫

r

g(τ)Θ(τ) dτ

]
ds. (2.21)

This contradicts (2.18). The proof is completed. ¤

Theorem 2.4. Suppose that there exist functions ρ ∈ C1([r0,∞),R+) and
(λη) ∈ C1([r0,∞),R) such that (2.2), (2.13) and

Θ1(r) :=

∞∫

r

g(s)Θ2
+(s) exp

[
2

s∫

r

g(τ)Θ(τ) dτ

]
ds < ∞ for r ≥ r0

hold. If

∞∫

r0

g(s)Θ2
1(s) exp

[
2

s∫

r0

g(τ)( Θ(τ) + Θ1(τ) )dτ

]
ds = ∞, (2.22)

then (1.1) is oscillatory.
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Proof. Proceeding as in the proof of Theorem 2.3, we can find a constant a > r0

and a function v ∈ C1([a,∞),R) satisfying (2.21) for all r ≥ a. Define

u(r) =

∞∫

r

g(s)v2(s) exp

[
2

s∫

r

g(τ)Θ(τ)dτ

]
ds.

Then

u′(r) = −g(r)
[
v2(r) + 2Θ(r)u(r)

]

≤ −g(r)
{ [

Θ2
1(r) + u2(r)

]
+ 2

[
Θ(r) + Θ1(r)

]
u(r)

}
. (2.23)

Using exp[ 2
∫ s

r
g(τ)[ Θ(τ) + Θ1(τ) ] dτ as an integrating factor, we integrate

(2.23) from r to b and obtain

u(r) ≥ exp

[
2

b∫

r

g(s)
(
Θ(s) + Θ1(s)

)
ds

]
u(b)

+

b∫

r

g(s)
[
Θ2

1(s) + u2(s)
]
exp

[
2

s∫

r

g(τ)
(
Θ(τ) + Θ1(τ)

)
dτ

]
ds

≥
b∫

r

g(s)Θ2
1(s) exp

[
2

s∫

r

g(τ)
(
Θ(τ) + Θ1(τ)

)
dτ

]
ds

+

b∫

r

g(s)u2(s) exp

[
2

s∫

r

g(τ)
(
Θ(τ) + Θ1(τ)

)
dτ

]
ds.

Letting b → ∞ in the above inequality, we get a contradiction to (2.22). This
completes the proof. ¤

Remark 2.2. If we assume further that Θ(r), Θ1(r), . . . are integrable, simi-
larly to Theorems 2.3 and 2.4, we can establish a number of oscillation criteria
for equation(1.1).

3. Corollaries and Examples

The results in Section 2 are of high degree of generality. With an appropriate
choice of the functions ρ, η and ϕ. Some interesting corollaries can be obtain
from Theorems 2.1–2.4, for example.

The following is an oscillation result for the linear equations

∆y +
N∑

i=1

bi(x)
∂y

∂xi

+ q(x)y = 0, x ∈ Ω(r0), (3.1)

where bi, q ∈ Cν
loc(Ω), ν ∈ C(0, 1).
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Corollary 3.1. Suppose that the conditions

lim
r→∞

r∫

r0

[
s ln s qM(s)− 1

2s ln s

]
ds = ∞, N = 2, (3.2)

and

lim
r→∞

r∫

r0

[
s qM(s)− (2−N)2

2s

]
ds = ∞, N ≥ 3, (3.3)

where

qM(r) =
1

ωrN−1

∫

Sr

[
q(x)− 1

2

N∑
i=1

b2
i (x)

]
dσ,

hold. Then (3.1) is oscillatory.

Proof. The assertion of Corollary 3.1 follows from that of Theorem 2.1 if we
choose η(r) ≡ 0 and

ρ(r) =

{
ln r, for N = 2,

r2−N , for N ≥ 3.
¤

Remark 3.1. Corollary 3.1 improves some results in [3,4].

Example 3.1. Consider the elliptic equation

∆y +
sin |x|
|x|

∂y

∂x1

+
cos |x|
|x|

∂y

∂x2

+
µ

|x|2 y = 0, (3.4)

for |x| ≥ e, where µ is a constant with 2µ > 1, and N = 2.
A direct calculation gives

r∫

e

[
s lnsqM(s)− 1

2s ln s

]
ds

=
2µ− 1

2
ln2 r − 1

2
ln(ln r)− 2µ− 1

2
→∞ as r →∞.

Hence (3.4) is oscillatory by Corollary 3.1.

Example 3.2. Consider the elliptic equation

∂

∂x1

( 1

|x|2
∂y

∂x1

)
+

∂

∂x2

( 1

|x|2
∂y

∂x2

)
+

2 + cos |x| − 2|x| sin |x|
4|x| 52

(4y+ 3
√

y) = 0 (3.5)

for |x| ≥ e, where N = 2.
Here, we choose ρ(r) = r, η(r) = −2π, φ(r) = 1/r, and ϕ(r) =

√
r; then

p(r) = 0, g(r) =
1

π
, θ(r) =

π(2 + cos r − 2r sin r)

2
√

r
,
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r∫

e

θ(s) ds = π
[√

r(2 + cos r)−√e(2 + cos e)
] ≥ √

r for r ≥ e,

lim
r→∞

[ r∫

e

φ(s) ds

]−1
r∫

e

φ(s)

s∫

e

θ(τ) dτ ds ≥ lim
r→∞

1

ln r

r∫

e

s−
1
2 ds = ∞,

lim
r→∞

r∫

e

[ s∫

e

φ2(τ)

g(τ)
dτ

]−1

φ(s) ϕ

( s∫

e

φ(τ) dτ

)
ds

= lim
r→∞

e

π

r∫

e

(ln s− 1)1/2

s− e
ds = ∞.

Thus, all conditions of Theorem 2.2 are satisfied and hence (3.5) is oscillatory.

Example 3.3. Consider the elliptic equation

∂

∂x1

( 1

|x|
∂y

∂x1

)
+

∂

∂x2

( 1

|x|
∂y

∂x2

)
+

1

|x| 2
( ∂y

∂x1

+
∂y

∂x2

)
+

υ

|x|3 (y + y3) = 0 (3.6)

for |x| ≥ 1, where υ is a constant with υ ≥ 7/2 and N = 2.
Taking ρ(r) = 1/r, η(r) = 2π, we have
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Consequently, by Theorem 2.3, (3.6) is oscillatory.

Remark 3.2. The results obtained in this paper hold true if we replace con-
dition (H2) by

f ∈ C(R,R), yf(y) > 0 and
f(y)

y
≥ k > 0 for y 6= 0,

but the function q(x) should be nonnegative in this case.

Acknowledgement

The author would like to thank the referee for his valuable suggestions and
useful comments.



200 ZHITING XU

References

1. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second
order. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983.

2. I. V. Kamenev, On the question of the oscillation of the solutions of a second or-
der differential equation with an “integrally small” coefficient. (Russian) Differencial’nye
Uravneniya 13(1977), No. 12, 2141–2148, 2300–2301.

3. E. S. Noussair and C. A. Swanson, Oscillation of semilinear elliptic inequalities by
Riccati transformations. Canad. J. Math. 32(1980), No. 4, 908–923.

4. C. A. Swanson, Semilinear second-order elliptic oscillation. Canad. Math. Bull.
22(1979), No. 2, 139–157.

5. A. Wintner, A criterion of oscillatory stability. Quart. Appl. Math. 7(1949), 115–117.
6. Z. T. Xu, Oscillation of solutions to second-order elliptic partial differential equa-

tions with a “weakly integrally small” coefficient. (Chinese) J. Systems Sci. Math. Sci.
18(1998), No. 4, 478–484.

7. Z. T. Xu, A Riccati technique and oscillation for semilinear elliptic equations. (Chi-
nese) Chinese Ann. Math. Ser. A 24(2003), No. 5, 565–574; English transl.: Chinese J.
Contemp. Math. 24(2003), No. 4, 329–340 (2004).

8. B. G. Zhang, T. Zhao, and B. S. Lalli, Oscillation criteria for nonlinear second order
elliptic differential equations. Chinese Ann. Math. Ser. B 17(1996), No. 1, 89–102.

(Received 28.12.2003)

Author’s address:

Department of Mathematics
South China Normal University
Guangzhou 510631
P. R. China
E-mail: xztxhyyj@pub.guangzhou.gd.cn


