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QUADRIC HYPERSURFACES CONTAINING A
PROJECTIVELY NORMAL CURVE

EDOARDO BALLICO AND CHANGHO KEEM

Abstract. Let C ⊂ Pn be a smooth projectively normal curve. Let Z
be the scheme-theoretic base locus of H0(Pn, IC(2)) and Z ′ the connected
component of Z containing C. Here we show that Z ′ = C in certain cases
(e.g., non-special line bundles with degree near to 2pa(C)−2 or certain special
line bundles on general k-gonal curves).
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1. Introduction

Let C ⊂ Pn be a smooth projectively normal curve. Let Z denote the scheme-
theoretic base locus of H0(Pn, IC(2)). Let Z ′ denote the connected component
of Z containing C. A very natural problem is the description of Z and Z ′. Set
d := deg(C) and g := pa(C). If g = n − 1 and d = 2n, i.e., if C is canonically
embedded, then a classical theorem of Enriques and Petri gives that C = Z
if and only if C is neither trigonal nor isomorphic to a smooth plane quintic,
while if C is trigonal (resp. isomorphic to a smooth plane quintic), then Z is
a degree n − 1 rational surface scroll (resp. the Veronese surface of P5). If
d ≥ 2g + 2, then the homogeneous ideal of C is generated by quadrics ([4]) and
hence Z = C. If d = 2g + 1 F. Serrano described Z, up to possibly finitely
many points and one line: either Z is a two-dimensional rational normal scroll
or Z is the union of C and at most one line and finitely many points and in
the former case C must be hyperelliptic or trigonal ([11]). The quoted result
of F. Serrano completes the remark at the end of [2], covering the case “ C
linearly normal of degree δ = 2g +1 ”. A cursory reading of [2] shows that even
a partial description of Z ′ may have some geometric consequence. Notice that
D ⊂ Z ′ for any line D ⊂ Pn such that length(C ∩ D) ≥ 3. Let Sec(C) ⊆ Pn

be the secant variety of C, i.e., the 3-dimensional irreducible variety which is
the union of all secant lines and all tangent lines to C, i.e., the closure in Pn of
the set of all secant lines to C ([9]). Hence Sec(C) is irreducible. Since n ≥ 3,
dim(Sec(C)) = 3 ([9]).

In Section 2 we will prove the following results.

Theorem 1. Let X be a smooth projective curve of genus g ≥ 2 and L ∈
Picd(X), 2d ≥ 3g + 1, L very ample. Let φL : X → Pn, n := h0(X, L) − 1,
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be the complete embedding associated to L. Set C := φL(X). Let Z be the
scheme-theoretic base locus of H0(Pn, IC(2)).

(a) Assume that for every integer x such that 1 ≤ x ≤ n − 3 there is no
A ∈ Pic(X) such that deg(A) ≤ d− 2x− 3 and h0(X, A) ≥ n− x. Then
C is scheme-theoretically a connected component of Z.

(b) Assume that for every integer x with 1 ≤ x ≤ n − 3 there are at most
finitely many A ∈ Pic(X) such that deg(A) ≤ d−2x−3 and h0(X,A) ≥
n − x. Then C is an irreducible component of Zred and for a general
P ∈ X the schemes Z and C coincide in a neighborood of φL(P ).

(c) Assume that there is no A ∈ Pic(X) such that deg(A) ≤ d− 2x− 4 and
h0(X, A) ≥ n− x− 1 for some integer x such that 1 ≤ x ≤ n− 4. Then
Zred ∩ Sec(C) = C.

Theorem 2. Fix integers g, k, d such that g ≥ 2k−1 ≥ 7, and d > (3g−1)/2.
Let X be a general k-gonal curve of genus g. Fix L ∈ Picd(X) such that
h1(X, L) > 0 and L is very ample. Let B be the scheme-theoretic base locus of
the line bundle KX⊗L∗. Set b := deg(B), n := h0(X,L)−1, and t := n+g−d.
Assume b + 1 ≤ ((d− 1)− (3g− 1)/2)(k− 2)/2. Let R ∈ Pick(X) be the degree
k line bundle computing the gonality of X. Let φL : X → Pn denote the
linearly normal embedding of X associated to L. Set C := φL(X). Let Z ⊂ Pn

denote the scheme-theoretic base locus of the linear system |IC(2)| of all quadric
hypersurfaces of Pn containing C. Then:

(a) Fix P ∈ C. There is an open neighborhood U of P in Pn such that
Z ∩ U = C ∩ U (scheme-theoretically) if and only if there is no line
D ⊂ Pn such that P ∈ D and the scheme C ∩D has length at least 3.

(b) Assume that there is no degree 2 effective divisor A of X such that
h0(X,OX(B+A)⊗R∗) > 0; this condition is always satisfied if b ≤ k−4.
Then C is a connected component of Z.

(c) Fix non-negative integers β and τ such that 2β+6+τk ≤ g+τ . Let E ⊂
X a general subset of X with card(E) = β. Set d′ := 2g−2−kτ−β and

M := KX⊗ (R⊗τ )∗(−E) ∈ Picd′(X). Then h0(X,OX(E +A)⊗R∗) = 0,
M is very ample, E is the base locus of KX ⊗M∗ and h0(X,OX(E +
A)⊗ R∗) = 0. We may apply parts (a) and (b) taking d′ := d, L := M
and B := E.

We will say that a line D as in part (a) of Theorem 2 is a trisecant line of
C, although the set (C ∩D)red may just be one or two points and the scheme
C ∩D may have length 4 or more. Notice that D ⊂ Z for any trisecant line of
C.

To prove our results we will use a method due to M. Green and R. Lazarsfeld
([10], Proposition 2.5.2).

We work over an algebraically closed field K with char(K) = 0.
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2. Proofs of Theorems 1, 2 and Related Results

Proof of Theorem 1. By [5], Theorem 0.3, L is normally generated, i.e., C
is projectively normal. Fix P ∈ X. Let Y ⊂ Pn−1 be the image of the linear
projection of C from the point φL(P ). Since L is very ample, L(−P ) is spanned
and hence Y is just the image of X by the complete linear system associated to
L(−P ). Since h0(X,L(−P −B)) = h0(X, L)−3 = h0(X, L(−P ))−2 for every
degree two effective divisor B on X, L(−P ) is very ample, Y ∼= X and deg(Y ) =
d−1. By [5], Theorem 0.3, Y is projectively normal unless there is an integer x
with 1 ≤ x ≤ n− 3 and an effective divisor D on X such that deg(D) ≥ 2x+2,
h1(X, L⊗2(−2P−D)) = 0 and φL(−P )(D) spans a linear subspace of dimension x
of Pn−1 in which φL(−P )(D) fails to impose independent conditions to quadrics.
We do not use the last assertion, but only that deg(P + D) ≥ 2x + 3, while
dim(〈φL(P +D)〉) ≤ x+1, i.e., h0(X, L(−P −D)) ≥ n−x. Hence parts (a) and
(b) follow. Now we will check part (c). Fix Q ∈ (Pn\C) ∩ Zred. First assume
the existence of a line T ⊂ Pn and P ∈ C such that card(C ∩ T ) ≥ 2 and T
intersects quasi-transversally C at P . Hence T ⊂ Z and we see that this case
is impossible if the assumptions of part (a) are satisfied. Now assume that Q is
contained in a tangent line of C, say the tangent line to C at φL(P ). Apply part
(a) to L(−P ) and use again the linear projection from φL(P ) to see that this
case is impossible under the assumptions of part (c), concluding the proof. ¤

Proof of Theorem 2. By [1], Theorem 1, C is projectively normal. By
Riemann–Roch we have t = h1(X, L)− 1.

(i) Proof of part (a). Set P ′ := φ−1
L (P ). It is easy to check that L(−P ′) is

very ample if and only there is no trisecant line to C passing through P . Hence
we may assume L(−P ′) very ample. Fix a hyperplane H of Pn such that P /∈ H
and identify the curve φL(−P ′)(X) ∼= X with the linear projection, C ′, of C from
P into H. Since the base locus of KX ⊗ (L(−P ′))∗ is contained in B + P ′ and
b+1 ≤ ((d−1)−(3g−1)/2)(k−2)/2, L(−P ′) is normally generated ([1], Theorem
1), i.e., the projective space Γ of all quadric cones of Pn with vertex containg P
has dimension −1 + h0(H,OH(2))− h0(C ′,OC′(2)) =

(
n+1

2

)− 2(d− 1) + g − 2;
here we use the vanishing of h1(X, L⊗2(−2P ′)) which is true because 2d > 2g.
Since h1(X, L⊗2) = 0 and L is normally generated, the projective space Ψ of all
quadric hypersurfaces of Pn containing C has dimension −1+

(
n+2

2

)−2d+g−1.
Hence Γ has codimension n− 1 in Ψ. Since every singular quadric hypersurface
is a cone, this equality is equivalent to the fact that for every tangent vector v to
Pn at P different from the tangent vector to C at P there is S ∈ |IC(2)| smooth
at P and such that its Zariski tangent space at P does not contain v. Since C
is smooth at P , this is equivalent to the existence of an open neighborhood U
of P in Pn such that Z ∩ U = C ∩ U .

(ii) Proof of part (b). By part (a) it is sufficient to show that there is no line
D ⊂ Pn such that the scheme D∩C has length at least three. By [3], Proposition
1.1, we have KX ⊗L∗ ∼= R⊗t(B) and in particular b = 2g− 2− d− tk. Fix any
degree 3 effective divisor Z of X. By assumption we have h0(X,OX(B + Z)⊗
R∗) = 0. Since 2(b + 3) + t(k− 1) ≤ g, we obtain h0(X,L(−Z)) = h0(X, L)− 3
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(use Riemann–Roch and Serre duality). Hence the degree 3 subscheme φL(Z)
of C is not contained in a line.

(iii) Proof of part (c). By the generality of E no two points of it are contained
in the same fiber of the degree k morphism φR : X → P1 and no point of E is
one of the ramification points of φR; here we use the uniqueness of R, i.e., a very
weak form of the generality of X. Since k ≥ 4 this implies that for any degree
x ≤ 3 effective divisor F no fiber of φR is contained in B + F . Since 2β + 6 ≤ g
we obtain h0(X,OX(E + F )) = 1 ([3], Propoposition 1.1). This equality for
x = 2 gives the very ampleness of M (use Serre duality and Riemann–Roch).
The last assertion follows from the case x = 3 of the first one. ¤

In [7] S. Kim and Y. R. Kim studied the very ampleness and the projective
normality of the line bundle KX⊗ (R∗)⊗r for any k-gonal curve X whose degree
k pencil |T | is simple, i.e., it does not factor through a covering of a curve of
genus > 0. It is very easy to extend some of their results to our set-up and
obtain the following result.

Proposition 1. Fix integers g, k, r such that k ≥ 4, r > 0 and rk ≤ 2g/(k−
1) − 2k − 2, Let X be a smooth genus g curves equipped with a base point free
R ∈ Pick(X) such that the associated pencil |R| is simple. Set L := KX⊗(R∗)⊗r.
Then:

(a) L is very ample and the associated embedded curve φL(X) has no trise-
cant line.

(b) L(−P ) is very ample for every P ∈ X.

Proof. The ampleness of L was proved in [7], Theorem B, under the weaker
assumptions k ≥ 3 and rk ≤ 2g/(k − 1) − 2k − 1. To check part (b) and the
second assertion of part (a) following the proof of [7] or the discussion of quadric
cones made in part (i) of the proof of Theorem 2, it is sufficient to show that
for all P1, P2 ∈ X we have h0(X,R⊗r(P +P1 +P2)) = r +1. This is true by [7],
Theorem A. ¤

Remark 1. Let X be a smooth genus g curve, L ∈ Picd(X) such that
h1(X, L) = 0 and A ⊂X an effective divisor. We have h0(X,L)−h0(X, L(−A))<
deg(A) if and only if there is an effective divisor B ⊂ X such that L(−A) ∼=
KX(−B). Notice that deg(B) = 2g − 2 − d + deg(A) and that if deg(A) +
deg(B) < g, then for a general L ∈ Picd(X) there is no such pair (A,B). Now
assume L very ample. Let φL : X → Pd−g denote the associated embedding.
Fix an integer m such that 0 < m < d − g − 1. There is an m-dimensional
linear space U ⊂ Pd−g such that the scheme-theoretic intersection φL(X) ∩ U
has length at least m + 2 if and only if there are effective divisors A,B on X
such that deg(A) = m + 2 and L(−A) ∼= KX(−B). Now take m = 1. There
is a trisecant line of φL(X) passing through φL(P ) if and only if there is an
effective 2g + 1 − d divisor B and an effective degree two divisor E such that
L(−P −E) ∼= KX(−B). We see in this way that for any X and any d such that
2g−5 ≤ d ≤ 2g−2 some of the non-special very ample and normally generated
degree d line bundles considered in [6] and [8] have images with trisecant lines
and hence their images are not set-theoretically cut out by quadrics.
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Proposition 2. Fix an integer c such that 0 ≤ c ≤ 2. Let X be a smooth
curve of genus g > [(c + 6)(c + 5)/2], P ∈ X and L ∈ Pic2g−2−c(X) such that
h1(X, L) = 0 and L is very ample. Let Z be the scheme-theoretic intersection of
all quadric hypersurfaces of Pg−2−c containing φL(X). Assume that there is no
trisecant line to φL(X) containing φL(P ). Then there is an open neighborhood
of φL(P ) in Pg−2−c such that Z ∩ U = φL(X) ∩ U except in the cases of pairs
(X,L) considered in [6] and [8], Theorem 1.1.

Proof. Since L is very ample, the two conditions on φL(P ) are equivalent and
equivalent to the very ampleness of L(−P ) (Remark 1). Apply the quoted
results [6] and [8], Theorem 1.1, to the pair (X,L(−P )) and use Remark 1. ¤
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