QUADRIC HYPERSURFACES CONTAINING A PROJECTIVELY NORMAL CURVE

EDOARDO BALLICO AND CHANGHO KEEM

Abstract. Let $C \subset \mathbf{P}^n$ be a smooth projectively normal curve. Let Z be the scheme-theoretic base locus of $H^0(\mathbf{P}^n, \mathcal{I}_C(2))$ and Z' the connected component of Z containing C. Here we show that Z' = C in certain cases (e.g., non-special line bundles with degree near to $2p_a(C)-2$ or certain special line bundles on general k-gonal curves).

2000 Mathematics Subject Classification: 14H45, 14H50. Key words and phrases: Quadric hypersurfaces, *k*-gonal curves, gonality, projective normality, normally generated line bundle.

1. INTRODUCTION

Let $C \subset \mathbf{P}^n$ be a smooth projectively normal curve. Let Z denote the schemetheoretic base locus of $H^0(\mathbf{P}^n, \mathcal{I}_C(2))$. Let Z' denote the connected component of Z containing C. A very natural problem is the description of Z and Z'. Set $d := \deg(C)$ and $g := p_a(C)$. If g = n - 1 and d = 2n, i.e., if C is canonically embedded, then a classical theorem of Enriques and Petri gives that C = Zif and only if C is neither trigonal nor isomorphic to a smooth plane quintic, while if C is trigonal (resp. isomorphic to a smooth plane quintic), then Z is a degree n-1 rational surface scroll (resp. the Veronese surface of \mathbf{P}^5). If $d \geq 2g+2$, then the homogeneous ideal of C is generated by quadrics ([4]) and hence Z = C. If d = 2g + 1 F. Serrano described Z, up to possibly finitely many points and one line: either Z is a two-dimensional rational normal scroll or Z is the union of C and at most one line and finitely many points and in the former case C must be hyperelliptic or trigonal ([11]). The quoted result of F. Serrano completes the remark at the end of [2], covering the case " Clinearly normal of degree $\delta = 2g + 1$ ". A cursory reading of [2] shows that even a partial description of Z' may have some geometric consequence. Notice that $D \subset Z'$ for any line $D \subset \mathbf{P}^n$ such that length $(C \cap D) > 3$. Let $Sec(C) \subset \mathbf{P}^n$ be the secant variety of C, i.e., the 3-dimensional irreducible variety which is the union of all secant lines and all tangent lines to C, i.e., the closure in \mathbf{P}^n of the set of all secant lines to C ([9]). Hence Sec(C) is irreducible. Since n > 3, $\dim(\operatorname{Sec}(C)) = 3$ ([9]).

In Section 2 we will prove the following results.

Theorem 1. Let X be a smooth projective curve of genus $g \ge 2$ and $L \in \operatorname{Pic}^{d}(X)$, $2d \ge 3g + 1$, L very ample. Let $\phi_{L} : X \to \mathbf{P}^{n}$, $n := h^{0}(X, L) - 1$,

be the complete embedding associated to L. Set $C := \phi_L(X)$. Let Z be the scheme-theoretic base locus of $H^0(\mathbf{P}^n, \mathcal{I}_C(2))$.

- (a) Assume that for every integer x such that $1 \le x \le n-3$ there is no $A \in \operatorname{Pic}(X)$ such that $\operatorname{deg}(A) \le d-2x-3$ and $h^0(X,A) \ge n-x$. Then C is scheme-theoretically a connected component of Z.
- (b) Assume that for every integer x with 1 ≤ x ≤ n − 3 there are at most finitely many A ∈ Pic(X) such that deg(A) ≤ d − 2x − 3 and h⁰(X, A) ≥ n − x. Then C is an irreducible component of Z_{red} and for a general P ∈ X the schemes Z and C coincide in a neighborood of φ_L(P).
- (c) Assume that there is no $A \in \operatorname{Pic}(X)$ such that $\operatorname{deg}(A) \leq d 2x 4$ and $h^0(X, A) \geq n x 1$ for some integer x such that $1 \leq x \leq n 4$. Then $Z_{red} \cap \operatorname{Sec}(C) = C$.

Theorem 2. Fix integers g, k, d such that $g \ge 2k-1 \ge 7$, and d > (3g-1)/2. Let X be a general k-gonal curve of genus g. Fix $L \in \operatorname{Pic}^{d}(X)$ such that $h^{1}(X, L) > 0$ and L is very ample. Let B be the scheme-theoretic base locus of the line bundle $K_X \otimes L^*$. Set $b := \deg(B), n := h^0(X, L) - 1$, and t := n+g-d. Assume $b+1 \le ((d-1)-(3g-1)/2)(k-2)/2$. Let $R \in \operatorname{Pic}^k(X)$ be the degree k line bundle computing the gonality of X. Let $\phi_L : X \to \mathbf{P}^n$ denote the linearly normal embedding of X associated to L. Set $C := \phi_L(X)$. Let $Z \subset \mathbf{P}^n$ denote the scheme-theoretic base locus of the linear system $|\mathcal{I}_C(2)|$ of all quadric hypersurfaces of \mathbf{P}^n containing C. Then:

- (a) Fix $P \in C$. There is an open neighborhood U of P in \mathbf{P}^n such that $Z \cap U = C \cap U$ (scheme-theoretically) if and only if there is no line $D \subset \mathbf{P}^n$ such that $P \in D$ and the scheme $C \cap D$ has length at least 3.
- (b) Assume that there is no degree 2 effective divisor A of X such that $h^0(X, \mathcal{O}_X(B+A)\otimes R^*) > 0$; this condition is always satisfied if $b \leq k-4$. Then C is a connected component of Z.
- (c) Fix non-negative integers β and τ such that $2\beta+6+\tau k \leq g+\tau$. Let $E \subset X$ a general subset of X with $\operatorname{card}(E) = \beta$. Set $d' := 2g-2-k\tau-\beta$ and $M := K_X \otimes (R^{\otimes \tau})^*(-E) \in \operatorname{Pic}^{d'}(X)$. Then $h^0(X, \mathcal{O}_X(E+A) \otimes R^*) = 0$, M is very ample, E is the base locus of $K_X \otimes M^*$ and $h^0(X, \mathcal{O}_X(E+A) \otimes R^*) = 0$. We may apply parts (a) and (b) taking d' := d, L := M and B := E.

We will say that a line D as in part (a) of Theorem 2 is a trisecant line of C, although the set $(C \cap D)_{red}$ may just be one or two points and the scheme $C \cap D$ may have length 4 or more. Notice that $D \subset Z$ for any trisecant line of C.

To prove our results we will use a method due to M. Green and R. Lazarsfeld ([10], Proposition 2.5.2).

We work over an algebraically closed field \mathbb{K} with char(\mathbb{K}) = 0.

QUADRIC HYPERSURFACES

2. PROOFS OF THEOREMS 1, 2 AND RELATED RESULTS

Proof of Theorem 1. By [5], Theorem 0.3, L is normally generated, i.e., Cis projectively normal. Fix $P \in X$. Let $Y \subset \mathbf{P}^{n-1}$ be the image of the linear projection of C from the point $\phi_L(P)$. Since L is very ample, L(-P) is spanned and hence Y is just the image of X by the complete linear system associated to L(-P). Since $h^0(X, L(-P-B)) = h^0(X, L) - 3 = h^0(X, L(-P)) - 2$ for every degree two effective divisor B on X, L(-P) is very ample, $Y \cong X$ and deg(Y) =d-1. By [5], Theorem 0.3, Y is projectively normal unless there is an integer x with $1 \le x \le n-3$ and an effective divisor D on X such that $\deg(D) \ge 2x+2$, $h^1(X, L^{\otimes 2}(-2P - D)) = 0$ and $\phi_{L(-P)}(D)$ spans a linear subspace of dimension x of \mathbf{P}^{n-1} in which $\phi_{L(-P)}(D)$ fails to impose independent conditions to quadrics. We do not use the last assertion, but only that $deg(P+D) \ge 2x+3$, while $\dim(\langle \phi_L(P+D) \rangle) \leq x+1$, i.e., $h^0(X, L(-P-D)) \geq n-x$. Hence parts (a) and (b) follow. Now we will check part (c). Fix $Q \in (\mathbf{P}^n \setminus C) \cap Z_{red}$. First assume the existence of a line $T \subset \mathbf{P}^n$ and $P \in C$ such that $\operatorname{card}(C \cap T) \geq 2$ and T intersects quasi-transversally C at P. Hence $T \subset Z$ and we see that this case is impossible if the assumptions of part (a) are satisfied. Now assume that Q is contained in a tangent line of C, say the tangent line to C at $\phi_L(P)$. Apply part (a) to L(-P) and use again the linear projection from $\phi_L(P)$ to see that this case is impossible under the assumptions of part (c), concluding the proof. \Box

Proof of Theorem 2. By [1], Theorem 1, C is projectively normal. By Riemann–Roch we have $t = h^1(X, L) - 1$.

(i) Proof of part (a). Set $P' := \phi_L^{-1}(P)$. It is easy to check that L(-P') is very ample if and only there is no trisecant line to C passing through P. Hence we may assume L(-P') very ample. Fix a hyperplane H of \mathbf{P}^n such that $P \notin H$ and identify the curve $\phi_{L(-P')}(X) \cong X$ with the linear projection, C', of C from P into H. Since the base locus of $K_X \otimes (L(-P'))^*$ is contained in B + P' and $b+1 \leq ((d-1)-(3q-1)/2)(k-2)/2, L(-P')$ is normally generated ([1], Theorem 1), i.e., the projective space Γ of all quadric cones of \mathbf{P}^n with vertex containg P has dimension $-1 + h^0(H, \mathcal{O}_H(2)) - h^0(C', \mathcal{O}_{C'}(2)) = \binom{n+1}{2} - 2(d-1) + g - 2;$ here we use the vanishing of $h^1(X, L^{\otimes 2}(-2P'))$ which is true because 2d > 2g. Since $h^1(X, L^{\otimes 2}) = 0$ and L is normally generated, the projective space Ψ of all quadric hypersurfaces of \mathbf{P}^n containing C has dimension $-1 + \binom{n+2}{2} - 2d + g - 1$. Hence Γ has codimension n-1 in Ψ . Since every singular quadric hypersurface is a cone, this equality is equivalent to the fact that for every tangent vector v to \mathbf{P}^n at P different from the tangent vector to C at P there is $S \in |\mathcal{I}_C(2)|$ smooth at P and such that its Zariski tangent space at P does not contain v. Since Cis smooth at P, this is equivalent to the existence of an open neighborhood Uof P in \mathbf{P}^n such that $Z \cap U = C \cap U$.

(ii) Proof of part (b). By part (a) it is sufficient to show that there is no line $D \subset \mathbf{P}^n$ such that the scheme $D \cap C$ has length at least three. By [3], Proposition 1.1, we have $K_X \otimes L^* \cong R^{\otimes t}(B)$ and in particular b = 2g - 2 - d - tk. Fix any degree 3 effective divisor Z of X. By assumption we have $h^0(X, \mathcal{O}_X(B+Z) \otimes R^*) = 0$. Since $2(b+3) + t(k-1) \leq g$, we obtain $h^0(X, L(-Z)) = h^0(X, L) - 3$

(use Riemann–Roch and Serre duality). Hence the degree 3 subscheme $\phi_L(Z)$ of C is not contained in a line.

(iii) Proof of part (c). By the generality of E no two points of it are contained in the same fiber of the degree k morphism $\phi_R : X \to \mathbf{P}^1$ and no point of E is one of the ramification points of ϕ_R ; here we use the uniqueness of R, i.e., a very weak form of the generality of X. Since $k \ge 4$ this implies that for any degree $x \le 3$ effective divisor F no fiber of ϕ_R is contained in B + F. Since $2\beta + 6 \le g$ we obtain $h^0(X, \mathcal{O}_X(E + F)) = 1$ ([3], Propoposition 1.1). This equality for x = 2 gives the very ampleness of M (use Serre duality and Riemann-Roch). The last assertion follows from the case x = 3 of the first one. \Box

In [7] S. Kim and Y. R. Kim studied the very ampleness and the projective normality of the line bundle $K_X \otimes (R^*)^{\otimes r}$ for any k-gonal curve X whose degree k pencil |T| is simple, i.e., it does not factor through a covering of a curve of genus > 0. It is very easy to extend some of their results to our set-up and obtain the following result.

Proposition 1. Fix integers g, k, r such that $k \ge 4, r > 0$ and $rk \le 2g/(k-1) - 2k - 2$, Let X be a smooth genus g curves equipped with a base point free $R \in \operatorname{Pic}^{k}(X)$ such that the associated pencil |R| is simple. Set $L := K_X \otimes (R^*)^{\otimes r}$. Then:

- (a) L is very ample and the associated embedded curve $\phi_L(X)$ has no trisecant line.
- (b) L(-P) is very ample for every $P \in X$.

Proof. The ampleness of L was proved in [7], Theorem B, under the weaker assumptions $k \geq 3$ and $rk \leq 2g/(k-1) - 2k - 1$. To check part (b) and the second assertion of part (a) following the proof of [7] or the discussion of quadric cones made in part (i) of the proof of Theorem 2, it is sufficient to show that for all $P_1, P_2 \in X$ we have $h^0(X, R^{\otimes r}(P+P_1+P_2)) = r+1$. This is true by [7], Theorem A.

Remark 1. Let X be a smooth genus g curve, $L \in \operatorname{Pic}^{d}(X)$ such that $h^1(X,L) = 0$ and $A \subset X$ an effective divisor. We have $h^0(X,L) - h^0(X,L(-A)) < 0$ $\deg(A)$ if and only if there is an effective divisor $B \subset X$ such that $L(-A) \cong$ $\deg(B) < g$, then for a general $L \in \operatorname{Pic}^{d}(X)$ there is no such pair (A, B). Now assume L very ample. Let $\phi_L : X \to \mathbf{P}^{d-g}$ denote the associated embedding. Fix an integer m such that 0 < m < d - g - 1. There is an m-dimensional linear space $U \subset \mathbf{P}^{d-g}$ such that the scheme-theoretic intersection $\phi_L(X) \cap U$ has length at least m+2 if and only if there are effective divisors A, B on X such that $\deg(A) = m + 2$ and $L(-A) \cong K_X(-B)$. Now take m = 1. There is a trisecant line of $\phi_L(X)$ passing through $\phi_L(P)$ if and only if there is an effective 2g + 1 - d divisor B and an effective degree two divisor E such that $L(-P-E) \cong K_X(-B)$. We see in this way that for any X and any d such that $2g-5 \leq d \leq 2g-2$ some of the non-special very ample and normally generated degree d line bundles considered in [6] and [8] have images with trisecant lines and hence their images are not set-theoretically cut out by quadrics.

Proposition 2. Fix an integer c such that $0 \le c \le 2$. Let X be a smooth curve of genus g > [(c+6)(c+5)/2], $P \in X$ and $L \in Pic^{2g-2-c}(X)$ such that $h^1(X, L) = 0$ and L is very ample. Let Z be the scheme-theoretic intersection of all quadric hypersurfaces of \mathbf{P}^{g-2-c} containing $\phi_L(X)$. Assume that there is no trisecant line to $\phi_L(X)$ containing $\phi_L(P)$. Then there is an open neighborhood of $\phi_L(P)$ in \mathbf{P}^{g-2-c} such that $Z \cap U = \phi_L(X) \cap U$ except in the cases of pairs (X, L) considered in [6] and [8], Theorem 1.1.

Proof. Since L is very ample, the two conditions on $\phi_L(P)$ are equivalent and equivalent to the very ampleness of L(-P) (Remark 1). Apply the quoted results [6] and [8], Theorem 1.1, to the pair (X, L(-P)) and use Remark 1. \Box

Acknowledgements

The first author was partially supported by MIUR and GNSAGA of INdAM (Italy) and the second author partially supported by KOSEF #2002-000-00051-0.

References

- E. BALLICO, C. KEEM and S. KIM, Normal generation of line bundles on a general k-gonal algebraic curve. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 6(2003), No. 3, 557–562.
- C. CILIBERTO and J. HARRIS, Surfaces of low degree containing a general canonical curve. Comm. Algebra 27(1999), No. 3, 1127–1140.
- M. COPPENS, C. KEEM and G. MARTENS, The primitive length of a general k-gonal curve. Indag. Math. (N.S.) 5(1994), No. 2, 145–159.
- M. L. GREEN, Koszul cohomology and the geometry of projective varieties. J. Differential Geom. 19(1984), No. 1, 125–171.
- 5. M. GREEN and R. LAZARSFELD, On the projective normality of complete linear series on an algebraic curve. *Invent. Math.* 83(1985), No. 1, 73–90.
- T. KATO, C. KEEM and A. OHBUCHI, Normal generation of line bundles of high degrees on smooth algebraic curves. *Abh. Math. Sem. Univ. Hamburg* 69(1999), 319–333.
- S. KIM and Y. R. KIM, Projectively normal embedding of a k-gonal curve. Comm. Algebra 32(2004), No. 1, 187–201.
- S. KIM and Y. R. KIM, Normal generation of line bundles on algebraic curves. J. Pure Appl. Algebra 192(2004), No. 1-3, 173–186.
- H. LANGE, Higher secant varieties of curves and the theorem of Nagata on ruled surfaces. Manuscripta Math. 47(1984), No. 1-3, 263–269.
- R. LAZARSFELD, A sampling of vector bundle techniques in the study of linear series. Lectures on Riemann surfaces (Trieste, 1987), 500–559, World Sci. Publishing, Teaneck, NJ, 1989.
- F. SERRANO, A note on quadrics through an algebraic curve. Proc. Amer. Math. Soc. 102(1988), No. 3, 451–454.

(Received 8.07.2004)

Author's addresses:

E. Ballico Dept. of Mathematics University of Trento 38050 Povo (TN), Italy E-mail: ballico@science.unitn.it

Changho Keem Department of Mathematics College of Natural Sciences Seoul National University Seoul 151-742, South Korea E-mail: ckeem@math.snu.ac.kr

206