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SOME APPROXIMATION PROPERTIES FOR MODIFIED
BASKAKOV TYPE OPERATORS

VIJAY GUPTA

Abstract. We study some direct results for the recently introduced family
of modified Baskakov type operators. In particular, we obtain local direct
results on ordinary and simultaneous approximation and an estimation of
error for linear combinations in terms of higher order modulus of continuity.
We have applied the Steklov mean as a tool for the linear approximating
method.
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1. Introduction

Gupta et al. [5] introduced the integral modification of Baskakov operators
to approximate Lebesgue integrable functions on the interval [0,∞) as

Gn(f, x) =

∞∫

0

W (n, x, t)f(t) dt, x ∈ [0,∞), (1)

where the kernel W (n, x, t) in terms of Dirac-delta functions is defined by

W (n, x, t) =
∞∑

ν=1

pn,ν(x)bn,ν−1(t) + (1 + x)−nδ(t),

and

pn,ν(x) =

(
n + ν − 1

ν

)
xν

(1 + x)n+ν
, bn,ν(t) =

tν

B(ν + 1, n)(1 + t)n+ν+1
.

It is easily verified that the operators Gn are linear positive operators. Also,
Gn(1, x) = 1.

Let CB[0,∞) be the space of all real-valued continuous bounded functions f
on [0,∞) endowed with the norm ‖f‖ = sup

x≥0
|f(x)|. We consider the following

K-functional:

K2(f, δ) = inf
{‖f − g‖+ δ‖g′′‖ : g ∈ W 2

∞
}

, δ > 0,

where W 2
∞ = {g ∈ CB[0,∞) : g′, g′′ ∈ CB[0,∞)}. Positive constants that may

have different values at different occurences are denoted by c. By [1, p. 177,
Theorem 2.4] there exists c > 0 such that

K2(f, δ) ≤ cω2(f,
√

δ), (2)
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where δ > 0 and

ω2(f,
√

δ) = sup
0<h≤

√
δ

sup
x∈[0,∞)

|f(x + 2h)− 2f(x + h) + f(x)|,

is the second modulus of smoothness of f ∈ CB[0,∞). Furthermore, let

ω(f, δ) = sup
0<h≤δ

sup
x∈[0,∞)

|f(x + h)− f(x)|,

be the usual modulus of continuity of f ∈ CB[0,∞).
Similar types of operators have recently been studied by Srivastava and Gupta

[9]. We estimate local direct results in terms of modulus of smoothness and
modulus of continuity in ordinary and simultaneous approximation. In the
last section an error estimate is also established for linear combinations of the
operators Gn for an unbounded function with some growth property.

2. Auxiliary Results

We need the following lemmas in the sequel.

Lemma 2.1. Let the function µn,m(x), x ∈ [0,∞), be defined as

µn,m(x) =
∞∑

ν=1

pn,ν(x)

∞∫

0

bn,ν−1(t)(t− x)mdt + (−x)m(1 + x)−n.

Then

µn,0(x) = 1, µn,1(x) =
x

n− 1
, n > 1,

µn,2(x) =
x(x + 1)(2n− 1) + (1 + 3x)x

(n− 1)(n− 2)
, n > 2,

and for n > m + 1 there holds the recurrence relation

(n−m− 1)µn,m+1(x) = x(1 + x)
[
µ(1)

n,m(x) + 2mµn,m−1(x)
]

+ [m(1 + 2x) + x] µn,m(x),

which implies that
µn,m(x) = O

(
n−[(m+1)/2]

)

for each x ∈ [0,∞).

Proof. The values of µn,0, µn,1(x) easily follow from the definition. We prove
the recurrence relation

x(1 + x)µ(1)
n,m =

∞∑
ν=1

x(1 + x)p(1)
n,ν(x)

∞∫

0

bn,ν−1(t)(t− x)mdt

−m

∞∑
ν=1

x(1 + x)pn,ν(x)

∞∫

0

bn,ν−1(t)(t− x)m−1dt

− {
n(−x)m(1 + x)−n−1 + m(−x)m−1(1 + x)−n

}
x(x + 1).
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Now using the identities x(1 + x)p
(1)
n,ν(x) = (ν − nx)pn,ν(x) and t(1 + t)b

(1)
n,ν(t) =

[ν − (n + 1)t]bn,ν(t), we obtain

x(1 + x)
[
µ(1)

n,m(x) + mµn,m−1(x)
]

=
∞∑

ν=1

(ν − nx)pn,ν(x)

∞∫

0

bn,ν−1(t)(t− x)mdt + n(−x)m+1(1 + x)−n

=
∞∑

ν=1

pn,ν(x)

∞∫

0

t(1 + t)b
(1)
n,ν−1(t)(t− x)mdt

+ (n + 1)
∞∑

ν=1

pn,ν(x)

∞∫

0

bn,ν−1(t)(t− x)m+1dt

+ (1 + x)
∞∑

ν=1

pn,ν(x)

∞∫

0

bn,ν−1(t)(t− x)mdt + n(−x)m+1(1 + x)−n

=
∞∑

ν=1

pn,ν(x)

∞∫

0

[(1 + 2x)(t− x) + (t− x)2 + x(1 + x)]b
(1)
n,ν−1(t)(t− x)mdt

+ (n + 1)
∞∑

ν=1

pn,ν(x)

∞∫

0

bn,ν−1(t)(t− x)m+1dt

+ (1 + x)
∞∑

ν=1

pn,ν(x)

∞∫

0

bn,ν−1(t)(t− x)mdt + n(−x)m+1(1 + x)−n

= −[m(1 + 2x) + x]µn,m(x) + (n−m− 1)µn,m+1(x)−mx(1 + x)µn,m−1(x).

This completes the proof of the recurrence relation. The values µn,2(x), µn,m(x)
follow from the recurrence relation. ¤

Lemma 2.2. Let n > r ≥ 1 and f (i) ∈ CB[0,∞) for i ∈ {0, 1, 2, . . . , r}, then

G(r)
n (f, x) =

(n + r − 1)!(n− r − 1)!

((n− 1)!)2

∞∑
ν=0

pn+r,ν(x)

∞∫

0

bn−r,ν+r−1(t)f
(r)(t) dt.

Proof. The following relation follows by simple calculation:

p(1)
n,ν(x) = n[pn+1,ν−1(x)− pn+1,ν(x)], (3)

b(1)
n,ν(t) = n[bn+1,ν−1(t)− bn+1,ν(t)], (4)

where x, t ∈ [0,∞).



220 V. GUPTA

Furthermore, we prove our lemma by mathematical induction. Using the
above identities (3) and (4), we have

G(1)
n (f, x) =

∞∑
ν=1

p(1)
n,ν(x)

∞∫

0

bn,ν−1(t)f(t) dt− n(1 + x)−n−1f(0)

=
∞∑

ν=1

n[pn+1,ν−1(x)−pn+1,ν(x)]

∞∫

0

bn,ν−1(t)f(t) dt−n(1 + x)−n−1f(0)

= n(1 + x)−n−1

∞∫

0

n(1 + t)−n−1f(t) dt

+ n

∞∑
ν=1

pn+1,ν(x)

∞∫

0

( −1

n− 1

)
b
(1)
n−1,ν(t)f(t) ft− n(1 + x)−n−1f(0).

Applying the integration by parts, we get

G(1)
n (f, x) = n(1 + x)−n−1f(0) + n(1 + x)−n−1

∞∫

0

(1 + t)−nf (1)(t) dt

+
∞∑

ν=1

n

n− 1
pn+1,ν(x)

∞∫

0

bn−1,ν(t)f
(1)(t) dt− n(1 + x)−n−1f(0)

=
n

n− 1

∞∑
ν=0

pn+1,ν(x)

∞∫

0

bn−1,ν(t)f
(1)(t) dt,

thus the result is true for r = 1. The result easily follows by the principle of
mathematical induction. ¤

Lemma 2.3 (see [8], [2, p. 128]). For m ∈ N∪{0}, if the m-th order moment
is defined as

Un,m(x) =
∞∑

ν=0

pn,ν(x)

(
ν

n
− x

)m

,

then Un,0(x) = 1, Un,1(x) = 0 and

nUn,m+1(x) = x(1 + x)
[
U (1)

n,m(x) + mUn,m−1(x)
]
.

Consequently, Un,m(x) = O
(
n−[(m+1)/2]

)
.

Lemma 2.4 (see [2], [7], [8]). There exist polynomials φi,j,r(x) independent
of n and ν such that

{x(1 + x)}r dr

dxr
[pn,ν(x)] =

∑
2i+j≤r
i,j≥0

ni[ν − nx]jφi,j,r(x)pn,ν(x).
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3. Local Approximation

In this section we establish direct local approximation theorems for operators
(1).

Theorem 3.1. Let f ∈ CB[0,∞). Then there exists an absolute constant
c > 0 such that

|Gn(f, x)− f(x)| ≤ cω2

(
f,

√
(x(1 + x)

n− 1

)
+ ω

(
f,

x

n− 1

)

for every x ∈ [0,∞) and n = 3, 4, . . . .

Proof. We define a new operator Ĝn : CB[0,∞) → CB[0,∞) as follows:

Ĝn(f, x) = Gn(f, x)− f(x) + f

(
nx

n− 1

)
. (6)

Then by Lemma 2.1 we obtain Ĝn(t − x, x) = 0. Now, let x ∈ [0,∞) and
g ∈ W 2

∞. From Taylor’s formula

g(t) = g(x) + g′(x)(t− x) +

t∫

x

(t− u)g′′(u) du, t ∈ [0,∞),

we get

Ĝn(g, x)− g(x) = Ĝn

( t∫

x

(t− u)g′′(u) du, x

)

= Gn

( t∫

x

(t− u)g′′(u) du, x

)
+

nx/(n−1)∫

x

(
n

n− 1
x− u

)
g′′(u) du. (7)

On the other hand,

∣∣∣∣
t∫

x

(t− u)g′′(u) du

∣∣∣∣ ≤ (t− x)2‖g′′‖ (8)

and

∣∣∣∣
nx/(n−1)∫

x

(
n

n− 1
x− u

)
g′′(u) du

∣∣∣∣ ≤
(

nx

n− 1
− x

)2

‖g′′‖

≤ x2

(n− 1)2
‖g′′‖ ≤ x(1 + x)

(n− 1)2
‖g′′‖. (9)

Thus by (7), (8), (9) and by the positivity of Gn, we have
∣∣∣Ĝ(g, x)− g(x)

∣∣∣ ≤ Gn((t− x)2, x) ‖g′′‖+
x(1 + x)

(n− 1)2
‖g′′‖.
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Hence in view of Lemma 2.1, we have
∣∣∣Ĝn(g, x)− g(x)

∣∣∣ ≤
(

x(1 + x)(2n− 1) + (1 + 3x)x

(n− 1)(n− 2)
+

x(1 + x)

(n− 1)2

)
‖g′′‖

≤
(

2n− 1

n− 2
+

3

n− 2
+

1

n− 1

)
x(1 + x)

n− 1
‖g′′‖

≤ 9

(n− 1)
x(1 + x) ‖g′′‖. (10)

Again applying Lemma 2.1,

|Gn(f, x)| ≤
∞∑

ν=1

pn,ν(x)

∞∫

0

bn,ν−1(t) |f(t)| dt + (1 + x)−n|f(0)| ≤ ‖f‖.

This means that Gn is a contraction, i.e. ‖Gnf‖ ≤ ‖f‖, f ∈ CB[0,∞). Thus
by (6)

‖Ĝnf‖ ≤ ‖Gnf‖+ 2‖f‖ ≤ 3‖f‖, f ∈ CB[0,∞). (11)

Using (6), (10) and (11), we obtain

|Gn(f, x)− f(x)| ≤ |Ĝn(f, x)− f(x)|+
∣∣∣∣f(x)− f

(
nx

n− 1

)∣∣∣∣

≤ |Ĝn(f − g, x)− (f − g)(x)|+ |Ĝn(g, x)− g(x)|+
∣∣∣∣f(x)− f

(
nx

n− 1

)∣∣∣∣

≤ 4‖f − g‖+
9

n− 1
x(1 + x) ‖g′′‖+

∣∣∣∣f(x)− f

(
nx

n− 1

)∣∣∣∣

≤ 9

{
‖f − g‖+

x(1 + x)

n− 1
‖g′′‖

}
+ sup

t, t−(x/(n−1))∈[0,∞)

∣∣∣∣f
(

t− x

n− 1

)
− f(t)

∣∣∣∣

≤ 9

{
‖f − g‖+

x(1 + x)

n− 1
‖g′′‖

}
+ ω

(
f,

x

n− 1

)
.

Now taking the minimum on the right-hand side over all g ∈ W 2
∞ and using (2)

we obtain the required result. ¤

Theorem 3.2. Let n > r + 2 ≥ 3 and f (i) ∈ CB[0,∞) for i ∈ {0, 1, . . . , r}.
Then

|G(r)
n (f, x)− f (r)(x)| ≤

(
(n + r − 1)!(n− r − 1)!

((n− 1)!)2
− 1

)
‖f (r)‖

+
(n + r − 1)!(n− r − 1)!

((n− 2)!)2

×
(

1+

√
2(n+1+2r2+4r)x2+2(n+2r2+3r)x+r(r+1)

n− r − 2

)
ω(f (r), (n−r−1)−1/2),

where x ∈ [0,∞).
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Proof. Since
∞∫
0

bn−r,ν+r−1(t) dt = 1 and
∞∑

ν=0

pn,ν(x) = 1, we can use Lemma

2.2 to obtain

G(r)
n (f, x)− f (r)(x) =

(n + r − 1)!(n− r − 1)!

((n− 1)!)2

∞∑
ν=0

pn+r,ν(x)

×
∞∫

0

bn−r,ν+r−1(t)[f
(r)(t)−f (r)(x)] dt+

[
(n + r − 1)!(n− r − 1)!

((n− 1)!)2
− 1

]
f (r)(x).

Taking into account the well known property ω(f (r), λδ) ≤ (1 + λ)ω(f (r), δ),
λ ≥ 0, we get

|G(r)
n (f, x)− f (r)(x)|

≤ (n + r − 1)!(n− r − 1)!

((n− 1)!)2

∞∑
ν=0

pn+r,ν(x)

∞∫

0

bn−r,ν+r−1(t)|f (r)(t)− f (r)(x)| dt

+

[
(n + r − 1)!(n− r − 1)!

((n− 1)!)2
− 1

]
‖f (r)‖

≤ (n + r − 1)!(n− r − 1)!

((n− 1)!)2

∞∑
ν=0

pn+r,ν(x)

×
∞∫

0

bn−r,ν+r−1(t)(1 + δ−1|t− x|)ω(f (r), δ) dt

+

[
(n + r − 1)!(n− r − 1)!

((n− 1)!)2
− 1

]
‖f (r)‖. (12)

Further, using Cauchy’s inequality, we have

∞∑
ν=0

pn+r,ν(x)

∞∫

0

bn−r,ν+r−1(t)|t− x| dt

≤
{ ∞∑

ν=0

pn+r,ν(x)

∞∫

0

bn−r,ν+r−1(r)(t− x)2dt

}1/2

. (13)

By direct calculations
∞∫

0

bn−r,ν+r−1(t)(t− x)2dt =
(ν + r)(ν + r + 1)

(n− r − 2)(n− r − 1)
− 2x

ν + r

n− r − 1
+ x2.

Hence we have

∞∑
ν=0

pn+r,ν(x)

∞∫

0

bn−r,ν+r−1(t)(t− x)2dt =
2(n + 1 + 2r2 + 4r)

(n− r − 2)(n− r − 1)
x2
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+
2[n + r(2r + 3)]

(n− r − 2)(n− r − 1)
x +

r(r + 1)

(n− r − 2)(n− r − 1)
.

Thus by (12) and (13), we obtain

|G(r)
n (f, x)− f (r)(x)| ≤ (n + r − 1)!(n− r − 1)!

((n− 1)!)2

×
[
1 + δ−1

(
2(n + 1 + 2r2 + 4r)

(n− r − 2)(n− r − 1)
x2

+
2(n + 2r2 + 3r)]

(n− r − 2)(n− r − 1)
x +

r(r + 1)

(n− r − 2)(n− r − 1)

)1/2 ]
ω(f (r), δ)

+

[
(n + r − 1)!(n− r − 1)!

((n− 1)!)2
− 1

]
‖f (r)‖.

Choosing δ−1 =
√

n− r − 1, we obtain the desired result. ¤

4. Linear Combinations

It turns out that the order of approximation by operators (1) is at best
O(n−1), even for smooth functions. With the aim of improving the order of
approximation, we consider linear combinations Gn(f, k, x) of the operators
Gdjn(f, x) as

Gn(f, k, x) =
k∑

j=0

C(j, k)Gdjn(f, x), (14)

where d0, d1, . . . , dk are arbitrary and fixed distinct positive integers and

C(j, k) =
∏

i=0, 0<j<k
i6=j

dj

dj − di

, k 6= 0, C(0, 0) = 1.

Such linear combinations were considered by C. P. May [7] to improve the order
of approximation of exponential type operators.

The m-th order modulus of continuity ωm(f, δ, a, b) for a continuous function
f on the interval [a, b] is defined by

ωm(f, δ, a, b) = sup {|∆m
h f(x)| : |h| ≤ δ; x, x + h ∈ [a, b]} .

For m = 1, ωm(f, δ) is written simply as an the ordinary modulus of continuity
ωf (δ) or ω(f, δ), see, e.g., [2].

Cγ[0,∞) ≡ {f ∈ C[0,∞) : |f(t)| ≤ M(1+ t)γ for some M > 0}, where γ > 0.
We define the norm ‖f‖γ on the space Cγ[0,∞) by ‖f‖γ = sup

0≤t<∞
|f(t)|(1+t)−γ.

Let us assume that 0 < a < a1 < b1 < b < ∞ for sufficiently small δ > 0, the
(2k + 2)-th order Steklov mean f2k+2,δ(t) corresponding to f ∈ Cγ[0,∞) is
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defined by

f2k+2,δ(t) = δ−(2k+2)m

δ/2∫

−δ/2

δ/2∫

−δ/2

· · ·
δ/2∫

−δ/2

[f(t)−∆2k+2
η f(t)]

2k+2∏
i=1

dti,

where η = 1
2k+2

2k+2∑
i=1

ti and t ∈ [a, b].

It is easily checked (see, e.g., [3], [6, Theorem 18.17]) that

(i) f2k+2,δ has continuous derivatives up to order (2k + 2) on [a, b];

(ii) ‖f (r)
2k+2,δ‖C[a1,b1] ≤ cδ−rωr(f, δ, a1, b1), r = 1, 2, . . . , 2k + 2;

(iii) ‖f − f2k+2,δ‖C[a2,b2] ≤ cω2k+2(f, δ, a, b);
(iv) ‖f2k+2,δ‖C[a2,b2] ≤ c‖f‖γ,

where the constants c are independent of f and δ.

Theorem 4.1 (Asymptotic formula). Let f ∈ Cγ[0,∞). If f (2k+r+2) exists
at a point x ∈ (0,∞), then

lim
n→∞

nk+1{G(r)
n (f, k, x)− f (r)(x)} =

2k+r+2∑
i=r+1

Q(i, k, r, x)f (i)(x),

where Q(i, k, r, x) are certain polynomials in x.

Proof. By using the definition of linear combinations (14), Lemma 2.2 and Tay-
lor’s expansion of f , we have

nk+1

k∑
j=0

C(j, k)
((djn− 1)!)2

(djn + r − 1)!(djn− r − 1)!
G

(r)
djn(f, x)− f (r)(x)

= nk+1

k∑
j=0

C(j, k)
((djn− 1)!)2

(djn + r − 1)!(djn− r − 1)!

× G
(r)
djn

( 2k+r+2∑
i=0

f (i)(x)

i!
(t− x)i + ε(t, x)(t− x)2k+r+2, x

)
− f (r)(x)

= nk+1

2k+r+2∑
i=0

f (i)(x)

i!

k∑
j=0

C(j, k)
∞∑

ν=0

pdjn+r,ν(x)

×
∞∫

0

bdjn−r,ν+r−1(t)
dr

dxr
(t− x)idt− f (r)(x)

+ nk+1

k∑
j=0

C(j, k)
∞∑

ν=1

p
(r)
djn,ν(x)

∞∫

0

bdjn,ν(t)ε(t, x)(t− x)2k+r+2dt

=
2k+r+2∑
i=r+1

Q(i, k, r, x)f (i)(x) + En,k,r(x) + o(1)
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by Lemma 2.1, where

En,k,r(x) = nk+1

k∑
j=0

C(j, k)
∞∑

ν=1

p
(r)
djn,ν(x)

∞∫

0

bdjn,ν(t)ε(t, x)(t− x)2k+r+2dt

which tends to zero as n →∞ (for this proof we refer the reader to [5, Theorem
5]). ¤

Theorem 4.2 (Error Estimation). Let f (r) ∈ Cγ[0,∞) and 0 < a < a1 <
b1 < b < ∞. Then for n sufficiently large, we have

‖G(r)
n (f, k, ·)− f (r)‖C[a1,b1]

= max
{
C(k, r)ω2k+2(f

(r), n−1/2, a, b), C(k, r, f)n−(k+1)‖f‖γ

}
,

where C(k, r) and C(k, r, f) are constants depending on the parameters in paren-
theses.

Proof. First by the linearity property we have

‖G(r)
n (f, k, ·)− f (r)‖C[a1,b1] ≤ ‖G(r)

n ((f − f2k+2,δ), k, ·)‖C[a1,b1]

+ ‖G(r)
n (f2k+2,δ, k, ·)− f

(r)
2k+2,δ‖C[a1,b1] + ‖f (r) − f

(r)
2k+2,δ‖C[a1,b1]

= E1 + E2 + E3, say.

By property (iii) of the Steklov mean we have

E3 ≤ cω2k+2(f
(r), δ, a, b).

Next using Theorem 4.1, we have

E2 ≤ cn−(k+1)

2k+r+2∑
j=r

‖f (j)
2k+2,δ‖C[a,b].

By applying the interpolation property due to Goldberg and Meir [4] for each
j = r, r + 1, . . . , 2k + r + 2, we have

‖f (j)
2k+2,δ‖C[a,b] ≤ c

{
‖f2k+2,δ‖C[a,b] + ‖f (2k+r+2)

2k+2,δ ‖C[a,b]

}
.

Therefore, applying properties (ii) and (iv) of Steklov mean, we obtain

E2 ≤ cn−(k+1)
{‖f‖γ + δ−(2k+2)ω2k+2(f

(r), δ)
}

.

Finally, we estimate E1, choosing a∗, b∗ satisfying the condition 0 < a < a∗ <
a1 < b1 < b∗ < b < ∞. Also let ψ(t) denote the characteristic function of the
interval [a∗, b∗], then

E1 ≤
∥∥G(r)

n (ψ(t)(f(t)− f2k+2,δ(t)), k, ·)
∥∥

C[a1,b1]

+
∥∥G(r)

n ((1− ψ(t))(f(t)− f2k+2,δ(t)), k, ·)
∥∥

C[a1,b1]
= E4 + E5, say.

We may note here that to estimate E4 and E5, it is enough to consider their
expressions without linear combinations. By Lemma 2.2 we have
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G(r)
n (ψ(t)(f(t)− f2k+2,δ(t)), x)

=
(n + r − 1)!(n− r − 1)!

((n− 1)!)2

∞∑
ν=0

pn+r,ν(x)

∞∫

0

bn−r,ν+r−1(t) |f (r)(t)−f
(r)
2k+2,δ(t)| dt.

Hence
∥∥G(r)

n (ψ(t)(f(t)− f2k+2,δ(t)), k, ·)
∥∥

C[11,b1]
≤ c

∥∥f (r) − f2k+2,δ

∥∥
C[a∗,b∗] .

Now for x ∈ [a1, b1] and t ∈ [0,∞)\ [a∗, b∗], we choose δ1 > 0 satisfying |t−x| ≥
δ1. Therefore by Lemma 2.4 and Schwarz inequality, we have

I =
∣∣G(r)

n ((1− ψ(t))(f(t)− f2k+2,δ(t)), x)
∣∣

≤
∑

2i+j≤r
i,j≥0

ni |φi,j,r(x)|
{x(1 + x)}r

∞∑
ν=1

pn,ν(x)|ν − nx|j

×
∞∫

0

bn,ν−1(t)(1− ψ(t)) |f(t)− f2k+2,δ(t)| dt

+ (1 + x)−n−rn(n + 1) · · · (n + r − 1)(1− ψ(0)) |f(0)− f2k+2,δ(0)|

≤ c‖f‖γ

{ ∑
2i+j≤r
i,j≥0

ni

∞∑
ν=1

pn,ν(x)|ν − nx|j
∫

|t−x|≥δ1

bn,ν−1(t) dt

+ (1 + x)−n−rn(n + 1) · · · (n + r − 1)

}

≤ c‖f‖γ

{
δ2s
1

∑
2i+j≤r
i,j≥0

ni

∞∑
ν=1

pn,ν(x)|ν − nx|j
( ∞∫

0

bn,ν−1(t) dt

)1/2

+

( ∞∫

0

bn,ν−1(t)(t− x)4sdt

)1/2

+(1+x)−n−rn(n + 1) · · · (n + r − 1)

}

≤ c‖f‖γδ
−2s
1

∑
2i+j≤r
i,j≥0

ni

{ ∞∑
ν=0

pn,ν(x)(ν − nx)2j − (1 + x)−n(−nx)2j

}1/2

×
{ ∞∑

ν=0

pn,ν(x)

∞∫

0

bn,ν−1(t)(t− x)4sdt− (1 + x)−n(−x)4s

}1/2

+ c‖f‖γ(1 + x)−n−rn(n + 1) · · · (n + r − 1).

Hence, by Lemma 2.1 and Lemma 2.3, we have

I ≤ c‖f‖γδ
−2m
1 O(n(i+ j

2
−s)) ≤ cn−q‖f‖γ, q = s− r/2,
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where the last term vanishes as n → ∞. Now choosing m > 0 satisfying
q ≥ k + 1, we obtain

I ≤ cn−(k+1)‖f‖γ.

Therefore by property (iii) of the Steklov mean, we get

E1 ≤ c
[‖f (r) − f

(r)
2k+2,δ‖C[a∗,b∗] + n−(k+1)‖f‖γ

]

≤ c
[
ω2k+2(f

(r), δ, a, b) + n−(k+1)‖f‖γ

]
.

Setting δ = n−1/2, the theorem follows. ¤
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