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SEMI-SLANT SUBMANIFOLDS OF A LOCALLY PRODUCT
MANIFOLD

HONGXIA LI AND XIMIN LIU

Abstract. In the present paper, we define and study the slant, bi-slant and
semi-slant submanifolds of a locally product manifold. We give some char-
acterization theorems for slant submanifolds and semi-slant submanifolds.
Moreover, we obtain integrability conditions for the distributions which are
involved in the definition of semi-slant submanifolds. We also get some re-
sults about mixed totally geodesic submanifolds.
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1. Introduction

Let (M̃, g, F ) be a C∞ differentiable almost product Riemannian manifold,
where g is a Riemannian metric and F is a non-trivial tensor field of type (1,1).
Moreover, g and F satisfy the following conditions:

F 2 = I, (F 6= ±I), g(FX,FY ) = g(X, Y ), X, Y ∈ TM̃, (1.1)

where I is the identity map and TM̃ is the Lie algebra of vector fields on M̃ .

We denote by ∇̃ the Levi–Civita connection on M̃ with respect to g and

furthermore we assume that M̃ is a locally product manifold, that is

∇̃F = 0, X ∈ TM̃. (1.2)

Locally product manifolds are a class of important manifolds introduced by
S. Tachibana [1] in the early 60s. After that, many authors discussed this class
of manifolds. Adati [2] defined and studied invariant, anti-invariant and non-
invariant submanifolds of locally product manifolds, while Bejancu [3] studied
semi-invariant submanifolds which correspond to CR-submanifolds of a Kaehle-
rian manifold [4]. Recently, Liu and Shao [5] have defined and studied skew
semi-invariant submanifolds and many related interesting results have been ob-
tained.

Since B. Y. Chen introduced the theory of slant immersions in complex ge-
ometry (see [6]), the differential geometry of slant submanifolds has shown an
increasing development. Recently, N. Papaghiuc has introduced in [7] a class of
submanifolds in an almost Hermitian manifold, called semi-slant submanifolds.

The purpose of this paper is to define and study three new classes of sub-
manifolds of a locally product manifold, i.e., slant submanifolds, bi-slant sub-
manifolds and semi-slant submanifolds. We will focus our attention mainly on
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semi-slant submanifolds which contain semi-invariant submanifolds as a special
case.

In Section 2, we review the basic formulas for locally product manifolds and
submanifolds in locally product manifolds. Slant immersions are introduced
in Section 3. In Section 4, we define slant distributions and introduce a more
general class of submanifolds, that is bi-slant submanifolds. We also give a
sufficient and necessary condition for a distribution to be slant. In Section 5,
we define semi-slant immersions and obtain a useful characterization of semi-
slant submanifolds in locally product manifolds.

2. Preliminaries

Let M be a Riemannian manifold isometrically immersed in M̃ and denote
by the same symbol g the Riemannian metric induced on M . Let TM be the
Lie algebra of vector fields in M and T⊥M the set of all vector fields normal to
M . Denote by ∇ the Levi–Civita connection of M . Then the Gauss–Weigarten
formulas are given by

∇̃XY = ∇XY + σ(X,Y ), (2.1)

∇̃XV = −AV X +∇⊥
XV (2.2)

for any X, Y ∈ TM and any V ∈ T⊥M , where ∇⊥ is the connection in
the normal bundle, σ is the second fundamental form of M , and AV is the
Weingarten endomorphism associated with V . The second fundamental form σ
and the shape operator A are related by

g(AV X, Y ) = g(σ(X,Y ), V ). (2.3)

For any X ∈ TM , we write

FX = TX + CX, (2.4)

where TX is the tangential component of FX and CX is the normal component
of FX.

Similarly, for any V ∈ T⊥M , we have

FV = tV + nV , (2.5)

where tV (resp. nV ) is the tangential component (resp. normal component) of

FV . From F (∇̃XY )=∇̃XFY and (2.1), (2.2), (2.5) we have

T∇XY + C∇XY + tσ(X, Y ) + nσ(X,Y )

= ∇XTY + σ(X, TY )− ACY X +∇⊥
XCY , (2.6)

for X,Y ∈ TM . Comparing the tangential and normal components in (2.6) we
obtain

T∇XY = ∇XTY − tσ(X, Y )− ACY X,

C∇XY = ∇⊥
XCY − nσ(X,Y ) + σ(X,TY ),

(2.7)

for X, Y ∈ TM .
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We define the covariant derivatives of T and C as follows

(∇XT )Y = ∇XTY − T∇XY, (2.8)

(∇XC)Y = ∇⊥
XCY − C∇XY, (2.9)

for all X,Y ∈ TM .
Using (2.7) we have

(∇XT )Y = tσ(X,Y ) + ACY X, (2.10)

(∇XC)Y = nσ(X,Y )− σ(X, TY ). (2.11)

Let D1 and D2 be two distributions defined on a manifold M . We say that D1

is parallel to D2, if for all X ∈ D2 and Y ∈ D1 we have ∇XY ∈ D1. D1 is called
parallel if for X ∈ TM and Y ∈ D1, we have ∇XY ∈ D1. It is easy to verify
that D1 is parallel if and only if the orthogonal complementary distribution of
D1 is also parallel.

Let M be a submanifold of M̃ . A distribution D on M is said to be totally
geodesic if for all X,Y ∈ D we have σ(X, Y ) = 0. In this case we also say that
M is D-totally geodesic. For two distributions D1 and D2 defined on M , we
say that M is D1−D2 mixed totally geodesic if for all X ∈ D1 and Y ∈ D2 we
have σ(X,Y ) = 0.

The submanifold M is said to be invariant if C is identically zero, that is,
FX ∈ TM for any X ∈ TM . On the other hand, M is said to be an anti-
invariant submanifold if T is identically zero, that is, FX ∈ T⊥M for any X ∈
TM . M is called a semi-invariant submanifold if there exists two orthogonal
distributions D1 and D2 on M , such that:

(a) TM = D1 ⊕D2,
(b) the distribution D1 is invariant, i.e., FD1 = D1,
(c) the distribution D2 is anti-invariant, i.e., FD2 = T⊥M .

3. Slant Immersions

Let M be a Riemannian manifold, isometrically immersed in a locally product

manifold (M̃, g, F ). For each nonzero vector X tangent to M at x, we denote
by θ(X) the angle between FX and TxM .

Definition 3.1. M is said to be slant if the angle θ(X) is constant, which
is independent of the choice of x ∈ M and X ∈ TM . The angle θ of a slant
immersion is called the slant angle of the immersion.

Invariant and anti-invariant immersions are slant immersions with slant an-
gles θ = 0 and θ = π/2, respectively.

The following theorems are useful characterization of slant submanifolds in a
locally product manifold.

Theorem 3.1. Let M be a submanifold of a locally product manifold M̃ .
Then M is slant if and only if there exists a constant λ ∈ [0, 1] such that T 2=λI.
Furthermore, in this case, if θ is the slant angle of M , it satisfies λ = cos2 θ.
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Proof. Suppose that M is a slant submanifold. Then for any X ∈ TM we have

g(T 2X, X) = g(TX, TX) = cos2 θ g(FX, FX) = g(cos2 θX, X),

by using |TX|
|FX| = cos θ, where θ is the slant angle. Furthermore, for any Y ∈ TM ,

we have,

g(cos2 θ(X + Y ), X + Y ) = g(T 2(X + Y ), X + Y )

= g(T 2X,X) + g(T 2Y, Y ) + 2g(T 2X,Y ). (3.1)

On the other hand,

g(cos2 θ(X + Y ), X + Y ) = g(cos2 θX, X) + g(cos2 θY, Y ) + 2g(cos2 θX, Y ),
(3.2)

By comparing (3.1) and (3.2) we have

g(T 2X, Y ) = g(cos2 θX, Y )

for any X, Y ∈ TM . Let λ = cos2 θ, then λ ∈ [0, 1] and T 2 = λI.
Conversely, suppose that there exists a constant λ ∈ [0, 1] such that T 2 = λI.

Then for any X ∈ TM , we have

cos θ(X) =
g(FX, TX)

|FX||TX| =
g(X, T 2X)

|FX||TX| = λ
g(X, F 2X)

|FX||TX| . (3.3)

On the other hand, since cos θ(X) = |TX|
|FX| and by using (3.3), we obtain

cos2 θ(X) = λ. Hence θ(X) is a constant and so M is slant. ¤
Corollary 3.1. Let M be a slant submanifold of a locally product manifold

M̃ with slant angle θ. Then for any X, Y ∈ TM we have

g(TX, TY ) = cos2 θ g(X, Y ), g(CX, CY ) = sin2 θ g(X, Y ). (3.4)

Since for any submanifold of a locally product manifold we have tC +T 2 = I,
(i.e., CT + nC = 0), by using (1.1), (2.4), (2.5), we can obtain the following
result.

Corollary 3.2. Let M be a submanifold of a locally product manifold M̃ .
Then M is slant if and only if there exists a constant λ ∈ [0, 1] such that
tC = λI. Furthermore, if θ is the slant angle of M , it satisfies λ = sin2 θ.

4. Slant Distributions and Bi-Slant Submanifolds

From now on, let M be a Riemannian manifold, isometrically immersed in

locally product manifold (M̃, g, F ).

Definition 4.1. We call a differentiable distribution ν on M a slant dis-
tribution if for each x ∈ M and each nonzero vector X ∈ νx, the angle θν

between FX and νx is a constant which is independent of the choice of x ∈ M
and X ∈ νx. In this case, the constant angle θν is called the slant angle of the
distribution ν.

Next, we will give a sufficient and necessary condition for a distribution to
be slant.
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Theorem 4.1. Let ν be a distribution on M . Then ν is slant if and only
if there exists a constant λ ∈ [0, 1] such that (P1T )2X = λX for any X ∈ ν,
where P1 denotes the orthogonal projection on ν. Furthermore in this case,
λ = cos2 θν.

Proof. Suppose that there exists a constant λ ∈ [0, 1] such that (P1T )2X = λX
for any X ∈ ν, and P2 is the orthogonal projection on ν⊥. For any X ∈ ν, we
have

FX = TX + CX = P1TX + P2TX + CX,

cos θν =
g(FX, P1TX)

|FX||P1TX| =
g(X, FP 1TX)

|FX||P1TX| =
g(X, (P1T )2X)

|FX||P1TX|
= λ

g(X, F 2X)

|FX||P1TX| = λ
|FX|
|P1TX| .

On the other hand, cos θν = |P1TX|
|FX| ; then cos2 θν = λ, θν is a constant, i.e., ν is

slant. Conversely, since |P1TX| = cos θν |FX|, we have

g(X, (P1T )2X) = cos θν |FX||P1TX| = cos2 θν |FX|2 = g(X, cos2 θνX),

which means (P1T )2X = cos2 θνX. ¤

Definition 4.2. We say M is a bi-slant submanifold of M̃ if there exist two
orthogonal distributions D1 and D2 on M such that:

(a) TM admits the orthogonal direct decomposition TM = D1 ⊕D2.
(b) For any i = 1, 2, Di is a slant distribution with slant angle θi.

Given a bi-slant submanifold M , we can write, for any X ∈ TM ,

X = P1X + P2X, (4.1)

where Pi denotes the component of X in Di for any i = 1, 2. In particular, if
X ∈ Di, then we obtain Xi = PiX. If we define Ti = Pi ◦ T , then we have

FX = T1X + T2X + CX (4.2)

for any X ∈ TM.

Proposition 4.1. Let M be a bi-slant submanifold with angles θ1 = θ2 = θ.
If g(FX, Y ) = 0, for any X ∈ D1, Y ∈ D2, then M is slant with angle θ.

Proof. For all X ∈ D1, Y ∈ D2, since g(FX, Y ) = 0, we have

g(TX, Y ) = g(FX, Y ) = 0;

then TX ∈ D1. Similarly, we can obtain TY ∈ D2. For any X ∈ TM =
D1 ⊕ D2, there must be X1 ∈ D1, X2 ∈ D2 such that X = X1 + X2, and

cos2 θ1 = |TX1|2
|FX1|2 , cos2 θ2 = |TX2|2

|FX2|2 . Since θ1 = θ2 = θ, we have

g(TX, TX)

g(FX, FX)
=

g(TX1, TX1) + g(TX2, TX2)

g(FX1, FX1) + g(FX2, FX2)
.

Hence M is slant with angle θ. ¤
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Lemma 4.1. Suppose that there exist two orthogonal distributions D1 and
D2 on M , such that TM = D1 ⊕D2. Then D1 is invariant if and only if it is
slant with angle θ1 = 0. Moreover, in this case, TX = T2X for any X ∈ D2.

Proof. It is clear that if D1 is invariant, then it is slant with zero angle. The

converse is easy to prove. Since cos θ = 1 = |T1X|
|FX| , we have

|T1X| = |FX| =
√
|T1X|2 + |T2X|2 + |CX|2,

thus |T2X| = |CX| = 0 for any X ∈ TM . Consequently, FX = T1X ∈ D1 and
we know that D1 is invariant. On the other hand, if D1 is invariant, then we
have

g(TX, Y ) = g(X,FY ) = 0

for any X ∈ D2 and Y ∈ D1. Thus T1X = 0 and the result holds. ¤

5. Semi-Slant Submanifolds

Definition 5.1. M is called a semi-slant submanifold of M̃ if there exist two
orthogonal distributions D1 and D2 on M such that:

(a) TM admits the orthogonal direct decomposition TM = D1 ⊕D2.
(b) The distribution D1 is invariant distribution, i.e., F (D1) = D1.
(c) The distribution D2 is slant with angle θ 6= 0.

In this case, we call θ the slant angle of submanifold M . By virtue of Lemma
4.1, we can see that the invariant distribution of a semi-slant submanifold is slant
with zero angle. Thus it is obvious that semi-slant submanifolds are particular
cases of bi-slant submanifolds. Furthermore, it is clear that if θ = π/2, then a
semi-slant submanifold is a semi-invariant submanifold. On the other hand, if
we denote the dimension of Di by di, for i = 1, 2, then we have the following
cases:

(a) If d2 = 0, then M is an invariant submanifold.
(b) If d1 = 0 and θ = π/2, then M is an anti-invariant submanifold.
(c) If d1 = 0 and θ 6= π/2, then M is a proper slant submanifold with slant

angle θ.
(d) If d1d2 6= 0 and θ 6= π/2, then M is a proper semi-slant submanifold.
Given a semi-slant submanifold M , we denote by Pi the projection on the

distribution Di for i = 1, 2. We also put Ti = PiT . Hence we obtain

FX = FP1X + TP2X + CP2X (5.1)

for any X ∈ TM . By a direct calculation, we can prove that for any X ∈ TM ,

FP1X = TP1X, CP1X = 0, (5.2)

TP 2X ∈ D2. (5.3)

In particular, (5.1) and (5.2) imply for any X ∈ TM ,

TX = FP1X + TP2X = TP1X + TP2X.

Then from (5.2) and (5.3) we obtain

g(TX, TP2Y ) = cos2 θg(X, P2Y ), g(CX, CP2Y ) = sin2 θg(X, P2Y )
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for any X, Y ∈ TM .
We are going to characterize semi-slant submanifolds by the following theo-

rem.

Theorem 5.1. Let M be a submanifold of a locally product manifold M̃ .
Then M is semi-slant if and only if there exists a constant λ ∈ [0, 1) such
that D={X ∈ TX|T 2X = λX} is a distribution. Furthermore, in this case,
λ = cos2 θ, where θ denotes the slant angle of M .

Proof. Let M be semi-slant and TM = D1 ⊕D2, where D1 is invariant and D2

is slant. We put λ = cos2 θ, where θ denotes the slant angle of M . For any
X ∈ D, if X ∈ D1, then X = F 2X = T 2X = λX, which means that λ = 1, but
this contradicts that λ ∈ [0, 1). So X /∈ D1 and D ⊆ D2. On the other hand,
since D2 is a slant distribution, it follows from Theorem 4.1 and Lemma 4.1
that T 2X = (P2T )2X = λX, which means that D2 ⊆ D. Thus D= D2 is a
distribution.

Conversely, we can consider the orthogonal direct decomposition TM =
D ⊕ D⊥. It is obvious that TD ⊆ D, from which we have g(FX, Y ) =
g(X,FY ) = g(X, TY ) = 0 for any X ∈ D⊥ and Y ∈ D. Hence D⊥ is an
invariant distribution. Finally, Lemma 4.1 and Theorem 4.1 imply that D is a
slant distribution, with slant angle θ satisfying λ = cos2 θ. ¤

Remark. The result above is also valid for almost product Riemannian mani-
folds, since they do not deal with the Levi–Civita connection and from now on,
we are going to deal with semi-slant submanifolds of a locally product manifold.
Our goal is to study the integrability.

At first, we will prove the following lemma.

Lemma 5.1. Let M be a semi-slant submanifold of a locally product manifold

M̃ . Then for any X, Y ∈ TM , we have:

P1(∇XFP 1Y ) + P1(∇XTP 2Y ) = FP 1(∇XY ) + P1ACP2Y X, (5.4)

P2(∇XFP 1Y ) + P2(∇XTP 2Y ) = FP 2(∇XY ) + P2ACP2Y X + tσ(X, Y ), (5.5)

σ(FP 1Y, X) + σ(TP 2Y,X) +∇⊥
XCP 2Y = CP 2∇XY + nσ(X,Y ). (5.6)

Proof. Since ∇XFY = F∇XY for any X, Y ∈ TM , by using Gauss–Weigarten
formulas we obtain:

∇XFP 1Y + σ(FP 1Y, X) +∇XTP 2Y + σ(TP 2Y,X)− ACP2Y X +∇⊥
XCP 2Y

=P1(∇XFP 1Y )+P2(∇XFP 1Y )+P1(∇XTP 2Y )+P2(∇XTP 2Y )−P1ACP2Y X

− P2ACP2Y X + σ(FP 1Y,X) + σ(TP 2Y, X) +∇⊥
XCP 2Y

=FP 1∇XY + TP 2∇XY + CP 2∇XY + tσ(X, Y ) + nσ(X, Y ).

By comparing the components of D1, D2 and T⊥M , respectively, we can
obtain the above results. ¤

Proposition 5.1. Let M be a semi-slant submanifold of a locally product

manifold M̃ . Then we have:
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(a) The distribution D1 is integrable if and only if

σ(X, FY ) = σ(FX, Y ) (5.7)

for any X, Y ∈ D1.
(b) The distribution D2 is integrable if and only if

P1(∇XTY −∇Y TX) = P1(ACY X − ACXY ) (5.8)

for any X, Y ∈ D2.

Proof. Let D1 be integrable; by using (5.6) we see that

σ(X,FY )− σ(FX, Y ) = CP2[X,Y ] (5.9)

for any X, Y ∈ D1. Hence if D1 is integrable, then (5.7) holds directly from (5.9).
Conversely, let X,Y ∈ D1, by using (5.7) and (5.9) it follows that CP2[X,Y ] =
0. So we can easily deduce that P2[X, Y ] must vanish, since D2 is a slant
distribution with nonzero slant angle. Therefore, [X, Y ] ∈ D1 and statement
(a) holds. As to statement (b), we first compute

FP1[X, Y ] = P1(∇XTY −∇Y TX)− P1(ACY X − ACXY )

for any X, Y ∈ D2, by virtue of (5.4). Hence (5.8) holds if and only if
FP1[X, Y ] = 0, i.e., P1[X, Y ] = 0, i.e., D2 is integrable. ¤

We can also obtain from the above that when M is a semi-invariant submani-
fold, (b) becomes P1(AFY X-AFXY ) = 0 for any X, Y ∈ D2, which is consistent
to the results in [5].

Lemma 5.2. A semi-slant submanifold M of a locally product manifold M̃ is
Di−Dj, i 6= j, mixed totally geodesic if and only if ANX ∈ Di for any X ∈ Di,
N ∈ T⊥M , i = 1, 2.

Proof. If M is D1 −D2 mixed totally geodesic, then for any X ∈ D1, Y ∈ D2,
N ∈ T⊥M ,

g(ANX,Y ) = g(σ(X, Y ), N) = 0,

which implies that ANX ∈ D1. Conversely, suppose ANX ∈ D1 for any X ∈ D1,
N ∈ T⊥M and let {N1, · · · , Nm−n} be a local orthogonal basis of T⊥M , where

n = dim M , m = dim M̃ ; we have

0 = g(ANαX,Y ) = g(σ(X,Y ), Nα),

α = 1, . . . , m− n, for any X ∈ D1, Y ∈ D2. So σ(X, Y ) = 0 and M is D1 −D2

mixed totally geodesic.
In the same way we can also prove that M is D2−D1 mixed totally geodesic

if and only if ANX ∈ D2 for any X ∈ D2, N ∈ T⊥M . ¤

Proposition 5.2. Any invariant submanifold M of a locally product manifold

M̃ is a locally product manifold.
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Proof. Suppose M is an invariant submanifold of a locally product manifold M̃ ;
then C ≡ 0 and we can obtain (∇XF )Y = tσ(X,Y ), by using (2.7), for any
X, Y ∈ TM . On the other hand,

g(Z, tσ(X,Y )) = g(Z, Fσ(X, Y )) = g(FZ, σ(X, Y )) = 0.

So we have tσ(X, Y )=0, which implies (∇XF )Y =0 for any X,Y ∈ TM . This
is equivalent to saying that M is a locally product manifold. ¤

Proposition 5.3. Let M be a semi-slant submanifold of a locally product

manifold M̃ . If ∇C ≡ 0, then M is D1 −D2 mixed totally geodesic. Further-
more, if X,Y ∈ D2, then either σ(X, Y ) = 0 or σ(X, Y ) is an eigenvector of
n2 with eigenvalue cos2 θ. If X, Y ∈ D1, then either σ(X,Y ) = 0 or σ(X,Y ) is
an eigenvector of n2 with eigenvalue 1.

Proof. If (∇XC)Y ≡ 0 for any X, Y ∈ TM , then from (2.11) we have
fσ(X, Y ) = σ(X, TY ). In particular, if Y ∈ D2, then by Lemma 4.1

f 2σ(X,Y ) = fσ(X, TY ) = fσ(X, T2Y ) = σ(X, TT 2Y )

= σ(X,T 2
2 Y ) = cos2 θσ(X, Y ),

where θ is the slant angle of D2. Furthermore, if X ∈ D1, then by Lemma 4.1

f 2σ(X, Y ) = f 2σ(Y, X) = fσ(Y, TX) = σ(Y, T 2X) = σ(Y, F 2X)

= σ(Y,X) = σ(X, Y ).

Since θ 6= 0, we have σ(X, Y )=0 by virtue of (5.13). Hence M is D1−D2 mixed
totally geodesic. If X, Y ∈ Di, i = 1, 2, then from (5.13) we can obtain the
result easily. ¤

Proposition 5.4. Let M be a mixed totally geodesic semi-slant submani-

fold of a locally product manifold M̃ . If the distribution D1 is integrable, then
FANX=ANFX for any X ∈ D1, N ∈ T⊥M .

Proof. From (2.3) and (5.7) we have

g(FANX, Y ) = g(ANX, FY ) = g(σ(X, FY ), N) = g(σ(FX, Y ), N)

for any X,Y ∈ D1 and N ∈ T⊥M , thus we get FANX=ANFX by virtue of
Lemma 5.2. ¤
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