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BOUNDARY REGULARITY FOR CAPILLARY SURFACES

FEI-TSEN LIANG

Abstract. For solutions of capillarity problems with the boundary contact
angle being bounded away from 0 and π and the mean curvature being
bounded from above and below, we show the Lipschitz continuity of a solu-
tion up to the boundary locally in any neighborhood in which the solution is
bounded and ∂Ω is C2; the Lipschitz norm is determined completely by the
upper bound of | cos θ|, together with the lower and upper bounds of H, the
upper bound of the absolute value of the principal curvatures of ∂Ω and the
dimension n.
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0. Introduction

Given a domain Ω ⊂ Rn, n ≥ 2, let H(x, u(x)) be a given Lipschitz continuous
function in Ω× R. A solution of the capillarity problem can be regarded at as
a solution of the equation of surfaces of the prescribed mean curvature

div Tu = H(x, u) in Ω, (0.1)

subject to the “contact angle” boundary condition

Tu · ν = cos θ, (0.2)

where

Tu =
Du√

1 + |Du|2 , (0.3)

Du = (∂u/∂x1, ∂u/∂x2, . . . , ∂u/∂xn) and ν is the outward pointing unit normal
to ∂Ω. Thus, geometrically, we are looking for a function u over Ω whose graph
has the prescribed mean curvature H and which meets the boundary cylinder in
the prescribed angle θ. H = H(x, t) is assumed to be a given locally Lipschitz
function on Ω× R satisfying the structural condition

∂H

∂t
(x, t) ≥ 0, for x ∈ Ω, t ∈ R. (0.4)

As (0.1) is the Euler equation of the functional

I(v) =

∫

Ω

√
1 + |Dv|2 dx +

∫

Ω

v∫

0

H(x, t) dtdx,
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it corresponds to the following variational problem for the capillarity problem:

I(v) +

∫

∂Ω

cos θv dHn−1 → min, for all v ∈ BV (Ω), (0.5)

with Hn−1 being the (n− 1)-dimensional Hausdorff measure.
We are interested in regularity near the boundary ∂Ω for solutions u ∈ C2(Ω).

In this work our main interest is in the case where | cos θ| is bounded away from
0 and 1 and the mean curvature H is bounded from above and below. We
shall show that in such a case the solution is Lipschitz continuous up to the
boundary locally in any neighborhood in which u is bounded and ∂Ω is C2;
the Lipschitz norm is determined completely by the upper and lower bounds of
| cos θ|, together with the lower and upper bounds of H, the upper bound of the
absolute value of the principal curvatures of ∂Ω and n.

Spruck and Simon treat in [12] the case where Ω is C4, θ in (0.2) is C1,α on
∂Ω for some 0 < α < 1, and H(x, t) is strictly monotone in t:

inf
x∈Ω̄;t∈R

∂H

∂t
(x, t) > 0. (0.6)

In case 0 < θ < π, the existence of a C2(Ω̄) solution of (0.1) and (0.2) is
established in [12]. In case θ is allowed to take 0 and/or π, setting

S+
1 ={x : x ∈ ∂Ω, θ ≡ 0 in some neighborhood of x}

S−1 ={x : x ∈ ∂Ω, θ ≡ π in some neighborhood of x}
S2 ={x : x ∈ ∂Ω, 0 < θ < π}

a function u ∈ C2(Ω ∪ S2) is shown to exist in [12], which satisfies (0.1) in Ω
and satisfies (0.2) on S2; furthermore, u is Hölder continuous at each point of
S+

1 ∪ S−1 , has a restriction to ∂Ω which is Lipschitz continuous at each point of
S+

1 ∪ S−1 in the sense that

lim
ε+→0

∫

U∩Ωε

|Tu · ν ± 1| dx = 0 for each U ⊂ Ω with U ∩ ∂Ω ⊂ S∓1 ,

assuming that Tu is extended to some boundary strip Ωε with width ε so that it
is constant along the normals to ∂Ω. This result is obtained first by establishing
estimates of tangential derivatives under the condition that | cos θ| ≤ γ < 1 for
some positive constant γ; in case θ is constant in a neighborhood of the point
under consideration, the estimates of tangential derivatives are independent of
γ. This proves the Lipschitz continuity of the trace of u on ∂Ω, which and
the result in [10] yield the Hölder continuity of u. Estimates for the tangential
derivatives are obtained by performing the transformation of the coordinates
near the boundary analogously to that in [11], with a subsequent differentiation
of (0.1), (0.2) and substituting (0.6) into the resultant identities. The disadvan-
tage of their proofs is that H has to be assumed to satisfy the strict inequality
(0.6) rather than the less restrictive condition (0.4).
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In contrast, the following estimates for the boundary oscillation of u are
established in [8, Main Theorem III].

Theorem 1. Let u ∈ C(Ω) be a bounded solution of (0.1) and (0.2) in Ω in
the sense that

∫

Ω

Du√
1 + |Du|2 ·Dη dx +

∫

Ω

H · η dx

−
∫

∂Ω

β · η dHn−1 = 0 for all η ∈ H1,1(Ω), (0.7)

and with β = cos θ. Suppose that for two positive constant ˜̃β, β̃ ≤ 1 and a
ball BR(x0) intersecting the interior of Ω, the function cos θ is continuous on
∂Ω ∩BR(x0) and there holds

0 < ˜̃β ≤ | cos θ| ≤ β̃ < 1, (0.8)

for all x ∈ ∂Ω ∩BR(x0), and such that

Ĥ±(x) = H(x,± inf
∂Ω

u) ∈ Lp(Ω),
ˆ̂
H±(x) = H(x,± sup

∂Ω
u) ∈ Lp(Ω) (0.9)

and

H(x, 0) ∈ L1(Ω). (0.10)

Suppose ∂Ω is piecewise Lipschitz continuous with possible outward and/or
inward cusps. Then the trace of u on ∂Ω is Lipschitz continuous locally in
∂Ω∩BR(x0) if ∂Ω∩BR(x0) is either C2 or is the graph of a Lipschitz continu-

ous function with Lipschitz constant L such that β̃
√

1 + L2 < 1. The Lipschitz

constant L0(β̃, ˜̃β) of the trace of u on ∂Ω ∩ BR(x0) depends only on H, n,

together with the constants β̃, ˜̃β and K̃∂Ω∩BR(x0), where for a set A, we set
˜K∂Ω∩A = K∂Ω∩A in case ∂Ω ∩A is C2 and ˜K∂Ω∩A =

√
1 + L2 in case ∂Ω ∩A is

Lipschitz continuous with Lipschitz constant L; here K∂Ω∩A is an upper bound
for the absolute value of the principal curvatures of ∂Ω ∩ A in case ∂Ω ∩ A is
C2.

We notice that (0.9) and (0.10) hold in particular if |H(x, t)| is bounded in
Ω̄× R.

The following global estimates for u are also established in [8, Main Theorem
IV].

Theorem 2. Suppose that ∂Ω is Lipschitz continuous without outward cusps.
Suppose that (0.10) holds and

Ht0 ∈ Lp(Ω), for some p > n and t0 ∈ R.

If u ∈ C(Ω) is a solution to (0.1) and (0.2) in Ω such that (0.2) is fulfilled in the
sense of (0.7) and if cos θ(x) = β(x) satisfies the condition (0.8) for all x ∈ ∂Ω
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and is piecewise continuous on ∂Ω, then

sup
Ω

u− inf
Ω

u

can be estimated in terms of t0, n, ‖Ht0‖Lp(Ω),
∫
Ω

H(x, 0)dx, the constant β̃

and the constant K̃∂Ω which depends only on the geometry of Ω; here K̃∂Ω =
maxi∈I ˜K∂Ω∩Ai

, in which {Ω∩Ai}i∈I is a covering of ∂Ω such that ∂Ω∩Ai, i ∈ I,
is either C2 or is a Lipschitz function with Lipschitz constant L, β̃ ·√1 + L2 < 1.

The results in the previous two theorems are established by modifying the
approach taken in [2], [3] and [4], which is based on the minimizing property
(0.5) u satisfies and the iteration technique used in [13].

Below we give the result, in which we let the set Ar(x̂), for some small positive
number r, be chosen as follows. Namely, setting

∂∗Ωt = {x : x ∈ Ω, dist(x, ∂Ω) = t} for t > 0,

we let the boundary ∂(Ω ∩ Ar(x̂)) be made up of three parts, namely

∂(Ω ∩ Ar(x̂)) =
(
∂Ω ∩ Ar(x̂)

) ∪ (
∂∗Ar(x̂)

) ∪ (
∂∗∗Ar(x̂)

)
,

such that

∂∗Ar(x̂) = ∂Ar(x̂) ∩ ∂∗Ωr,

∂∗∗Ar(x̂) = (∂Ar(x̂) ∩ Ω) \ ∂∗Ωr,

and

Dd · νΩ∩Ar(x̂)

∣∣∣
∂∗∗Ar(x̂)

= 0,

where we let νΩ∩Ar(x̂) be the unit outward normal to ∂(Ω∩Ar(x̂)); furthermore,

diam(∂Ω ∩ Ar(x̂)) ≤ r and diam(∂∗Ar(x̂)) ≤ r,

|∂Ω ∩ Ar(x̂)| ≥
(

r

2

)n−1

and |∂∗Ar(x̂)| ≥
(

r

2

)n−1

.

Proposition 1. Let u ∈ C(Ω) be a solution to (0.1) and (0.2) in Ω such that
(0.2) be fulfilled in the sense of (0.7). Suppose that for a constant H∗,

|H(x, t)| ≤ H∗ for (x, t) ∈ Ω× R. (0.11)

Suppose that for a positive constant β̃ < 1 and a point x0 ∈ ∂Ω, the function
cos θ is continuous in ∂Ω ∩ Aδ0(x0) and there holds

0 < ˜̃β < cos θ ≤ β̃ or 0 > − ˜̃β > cos θ > −β̃ for x ∈ ∂Ω ∩ Aδ0(x0). (0.12)

Suppose that ∂Ω ∩ Aδ0(x0) is of the class C2 and

lim
xk→x0

|Du| ≥ 2

β̃
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for each subsequence of points xk approaching x0. Then, setting R = (δ0/4)1+ε0,
ε0 being a positive number which can be arbitrarily small, there hold, for δ0

sufficiently small, respectively,

u(x)− inf
Ω∩AR(x0)

u ≤ C · Ĉ · (δ0)
1−nε0 + 2(δ0)

1+ε0

+ C · Ĉ · (δ0)
1−nε0 · ( sup

Ω∩Aδ0
(x0)

u− inf
Ω∩Aδ0

(x0)
u
)

(0.13)

if the first case in (0.12) holds, and

sup
Ω∩AR(x0)

u− u(x) ≤ C · Ĉ · (δ0)
1−nε0 + 2(δ0)

1+ε0

+ C · Ĉ · (δ0)
1−nε0 · ( sup

Ω∩Aδ0
(x0)

u− inf
Ω∩Aδ0

(x0)
u
)
, (0.14)

C = 2n+7 · (n + 1) · k(n+1) · [1 + (3/β̂)], (0.15)

if the second case in (0.12) holds, where k(n+1) is the isoperimetric constant in

Rn+1 and Ĉ is a constant determined by β̃, ˜̃β, H∗, K∂Ω∩Aδ0
(x0) and n.

From the interior regularity of u and (0.12), we obtain in Appendix 3

˜̃β/2 < cos θ ≤ (1 + β̃)/2 or − ˜̃β/2 > cos θ > −(1 + β̃)/2

for x ∈ ∂∗Aδ0(x0). (0.16)

Using this and the interior regularity of u, we obtain

Theorem 3. Let u ∈ C(Ω) be a solution to (0.1) and (0.2) in Ω such that (0.2)
be fulfilled in the sense of (0.7) and such that H and cos θ satisfy respectively

(0.11) and (0.12). Suppose that ∂Ω ∩ Aδ0(x0) is of the class C2. If

|Du(x)| ≥ 5

β̃
, for a point x ∈ ∂∗Aδ0(x0)

then, for x ∈ ∂∗A, there holds

u(x)− inf
Ω∩AR(x0)

u ≤ C · Ĉ∗ · (δ0)
1−nε0 + 2(δ0)

1+ε0

+ C · Ĉ∗ · (δ0)
1−nε0 · ( sup

Ω∩Aδ0
(x0)

u− inf
Ω∩Aδ0

(x0)
u
)

(0.17)

if the first case in (0.12) holds, and

sup
Ω∩AR(x0)

u− u(x) ≤ C · Ĉ∗ · (δ0)
1−nε0 + 2(δ0)

1+ε0

+ C · Ĉ∗ · (δ0)
1−nε0 · ( sup

Ω∩Aδ0
(x0)

u− inf
Ω∩Aδ0

(x0)
u
)

(0.18)

if the second case in (0.12) holds, where Ĉ∗ is a constant determined by β̃, ˜̃β,
H∗, K∂Ω∩Aδ0

(x0) and n.

Letting ε0 → 0 in Theorem 3 and combining the latter theorem with Theorem
2, we obtain
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Main Theorem. Let u ∈ C(Ω) be a solution to (0.1) and (0.2) in Ω such that
(0.2) is fulfilled in the sense of (0.7). Let |H(x, t)| be bounded by the constant

H∗ in Ω×R. Suppose that for a positive constant β̃ < 1, the inequalities (0.12)
hold for x0 and Aδ0(x0), δ0 being sufficiently small and x0 ∈ ∂Ω. Suppose that

δ0 is so small that ∂Ω ∩ Aδ0(x0) is of class C2. Then u is Lipschitz continuous

in Ω ∩ Aδ0(x0) up to the boundary; the Lipschitz norm of u in Ω ∩ Aδ0(x0) is

either less than 5
β̃

or is determined by H∗, n, β̃, ˜̃β, K∂Ω∩Ar(x̂), and |Ω|.

Here and in the following, we denote by | · | either an n-dimensional or an
(n + 1)-dimensional Hausdorff measure.

Proposition 1 is based on the reasoning in Giusti [6, pp. 312–313] which
leads to estimates for the oscillation of u in terms of the L1-norm of u, under
the conditions (1.1) or (1.3) indicated below, which says that the subgraph of u
or the complement of the subgraph of u includes a large portion of a sufficiently
small cylinder-type region around u(x0), x0 ∈ ∂Ω. This reasoning is given
in Subsection 1. In Subsection 2, we formulate a result which is essentially
Theorem 3.2 in Giusti [6] and which assures us of the fulfillment of (1.1) or
(1.3) for capillarity surfaces. This suggests us that we should estimate the L1-
norm of u by writing (0.1) and (0.2) in weak a form in which the assumed
boundedness of |u| allows us to take the test function to be

(
u(x) − inf

Ω
u
)

or(
sup

Ω
u− u(x)

)
. The resultant inequalities (1.7) and (1.8) suggest us to restrict

our consideration to a small region Ω∩A of the type indicated in the beginning
of Subsection 4 which is analogous to that of AR(x0), for which the resultant
boundary integrals are treated in Subsection 3.2. To proceed with obtaining L1-
estimates of

(
u(x)− inf

Ω∩A
u
)

and
(
sup
Ω∩A

u− u(x)
)

in Ω∩A, we shall appeal to the

modified Sobolev inequality given in Proposition A.1 in Appendix I, for which
we have to estimate

∫
∂∗∗A

(
sup
Ω∩A

u−u(x)
)
dHn−1 and

∫
∂∗∗A

(
u(x)− inf

Ω∩A
u
)
dHn−1 with

an application of the condition (0.11).

1. Proof of Proposition 1

1. Oscillation of u in terms of the L1-norm of u. We modify the approach
taken by Giusti [6, pp. 312–313].

Let u be a function with the subgraph

U = {(x, t) ∈ Ω× R, t < u(x)},
and set for points ẑ = (x̂, t̂) ∈ Ω× R and for r > 0,

Ur(ẑ) = Cr(ẑ) ∩ U and U ′
r(ẑ) = Cr(ẑ) \ U,

where

Cr(ẑ) = {(x, t) : x ∈ Ar(x̂), |t− t̂| < r},
with Ar(x̂) being chosen as indicated before Theorem 3.
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We make the assumption that there exist positive constants R− and α∗ such
that

|Ur(ẑ)| > α∗rn+1 for every r ≤ R−,

whenever |Ur(ẑ)| > 0 for every r > 0. (1.1)

Suppose x0 ∈ Rn such that AR(x0) ∩ Ω is nonempty. Let us set

MR = sup
Ω∩AR(x0)

u, and mR = inf
Ω∩AR(x0)

u.

We shall establish below the fulfilment of the following inequality under the
assumption that (1.1) holds; namely, for R ≤ R−:

u(x0)−mR ≤ 2n+2

α∗Rn

∫

Ω∩AR(x0)

(u(x)−mR) dx + 2R. (1.2)

Indeed, let

zj = (x0,mR + 2jR), for j ∈ N.

Then

zj ∈ U, for j ≤ j∗ =

[
u(x0)−mR

2R

]
,

where [s] denotes the largest integer less than s for s > 0. Under the assumption
(1.1), we have

|UR/2(zj)| ≥ α∗

(
R

2

)n+1

, for 1 ≤ j ≤ j∗,

and therefore

∫

Ω∩AR(x0)

(u(x)−mR) dx ≥
j∗∑

j=1

|UR/2(zj)| ≥ j∗ · α∗ ·
(

R

2

)n+1

.

Hence

MR =u(x0) + (MR − u(x0)) ≤ 2(j∗ + 1)R + mR + (MR − u(x0))

≤ 2n+2

α∗Rn

∫

Ω∩AR(x0)

(u(x)−mR) dx + 2R + mR + (MR − u(x0)),

which is (1.2).
Assume now, instead of (1.1), that there exist positive constants R+ and α∗

such that

|U ′
r(ẑ)| > α∗rn+1 for every r ≤ R+,

whenever |U ′
r(ẑ)| > 0 for every r > 0. (1.3)
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Under the assumption (1.3), we shall analogously obtain, for R ≤ R+, the
inequality

MR − u(x0) ≤ 2n+2

α∗Rn

∫

Ω∩AR(x0)

(MR − u(x)) dx + 2R. (1.4)

Indeed, let

z+
j = (x0,MR − 2jR), for j ∈ N.

Then

z+
j ∈ U ′ = (Ω× R) \ U, for j ≤ j+

∗ =

[
MR − u(x0)

2R

]
.

By assumption, we have

|UR/2(z
+
j )| ≥ α∗

(
R

2

)n+1

, for 1 ≤ j ≤ j+
∗ ,

and therefore
∫

Ω∩AR(x0)

(MR − u(x0)) dx ≥
j∗∑

j=1

|U ′
R/2(z

+
j )| ≥ j+

∗ · α∗ ·
(

R

2

)n+1

,

which yields

−mR =u(x0) + (u(x0)−mR) ≤ 2(j+
∗ + 1)R−MR + (u(x0)−mR)

≤ 2n+2

α∗Rn

∫

Ω∩AR(x0)

(MR − u(x)) dx + 2R−MR + (u(x0)−mR);

this is (1.4).

2. (1.1) or (1.3) for capillary surfaces. The above consideration suggests
that we should apply the estimates in Giusti [6, Theorem 3.2]. Indeed, below we
appeal to estimates in Proposition 1, which are essentially obtained in Giusti [6,
Theorem 3.2] and which can be proved by the argument given in [7, Appendix]
without any essential modification.

Proposition 2. Let u be a solution to (0.5) with subgraph U . Suppose that

∂Ω ∩ AR0(x0) is of the class C2 whose principal curvatures are bounded in the
absolute value by K∂Ω∩AR0

(x0). If there exists a constant γ̂, 0 ≤ γ̂ < 1, such that

β(x) ≥ −γ̂, for all x ∈ ∂Ω ∩ AR0(x0),

and if

|Ur(ẑ)| > 0, for all r > 0,

then there exist positive constants R− and α∗ determined completely by n,
inf
Ω×R

H, γ̂, K∂Ω∩AR0
(x0), R0 and the largest possible radius RΩ of the inscribed

disks in Ω such that

|Ur(ẑ)| > α∗rn+1, for every r ≤ R−.
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In particular, we can take

α∗ =
1− γ̂

16(n + 1)k(n+1)

, (1.5)

with k(n+1) being the isoperimetric constant in Rn+1, and

R− =





min

(
Cγ̂

Cε,Ωk(n+1)

, R0

)
, if inf

Ω×R
H ≥ 0,

min

(
C−

γ̂

21/(n+1) · Cε,Ω · k(n+1)

, R̃−

)
, R0, if inf

Ω×R
H < 0,

in which we set

Cγ̂ = min

(
1

2
,

1− γ̂

3γ̂ + 1

)
,

Cε,Ω =
2

ε
+ 2(n− 1)K∂Ω, with ε ≤ min

(
1

2K∂Ω

, RΩ

)
,

R̃− =

(
1− γ̂

4nk(n+1) · | infΩ×RH|
)n+1

,

and

C−
γ̂ = min

(
1

2
,
1− γ̂ − 2nk(n+1) · | infΩ×RH| · (R̃−)n

3γ̂ + 1

)
.

If there exists a constant γ̂, 0 ≤ γ̂ < 1, such that

β(x) ≤ γ̂, for all x ∈ ∂Ω ∩ AR0(x0),

and if

|U ′
r(ẑ)| > 0, for all r > 0,

then there exists a positive constant R+ determined completely by n, sup
Ω×R

H, γ̂,

K∂Ω∩AR0
(x0), R0 and RΩ such that

|U ′
r(ẑ)| > α∗rn+1, for every r ≤ R+,

for the same constant α∗ as above. In particular, we can take

R+ =





min

(
Cγ̂

Cε,Ωk(n+1)

, R0

)
, if sup

Ω×R
H ≤ 0,

min

(
C+

γ̂

21/(n+1) · Cε,Ω · k(n+1)

, R̃+, R0

)
, if sup

Ω×R
H > 0,

with

R̃+ =

(
1− γ̂

4nk(n+1) · | supΩ×RH|
)n+1

,

and

C+
γ̂ = min

(
1

2
,
1− γ̂ − 2nk(n+1) · | supΩ×RH| · (R̃+)n

3γ̂ + 1

)
.
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3. L1-norm of |Du| in terms of the L1-norm of
(
u− inf

Ω
u
)

or
(
sup

Ω
u−u

)
.

An initial stage. Assume that there exists a nonnegative constant H∗ such
that

|H(x, t)| ≤ H∗ for x ∈ Ω and t ∈ R.

Consider the identity (0.7). Assuming |u| is bounded up to the boundary, [8,
Theorem 1] assures us of that u ∈ H1,1(Ω) and thus we are allowed to set in
(0.7)

η(x) = u(x)− inf
Ω

u ≥ 0,

and obtain∫

Ω

|Du|2
1 + |Du|2 dx−H∗ ·

∫

Ω

(
u(x)− inf

Ω
u
)
dx ≤

∫

∂Ω

β · (u(x)− inf
Ω

u
)
dHn−1. (1.6)

Since
|Du|2√

1 + |Du|2 =
√

1 + |Du|2 − 1√
1 + |Du|2 ,

the last inequality yields
∫

Ω

√
1 + |Du|2 dx ≤ |Ω|+ H∗ ·

∫

Ω

(
u(x)− inf

Ω
u
)
dx

+

∫

∂Ω∩{x:β(x)>0}

β(x) · (u(x)− inf
Ω

u
)
dHn−1. (1.7)

Analogously, we are allowed to set in (0.7)

η(x) = u(x)− sup
Ω

u ≤ 0,

and obtain
∫

Ω

√
1 + |Du|2 dx ≤ |Ω|+ H∗ ·

∫

Ω

(
sup

Ω
u− u(x)

)
dx

−
∫

∂Ω∩{x:β(x)<0}

β(x) · (sup
Ω

u− u(x)
)
dHn−1. (1.8)

3.1. Restricting to small domains. This consideration suggests that we
should restrict our consideration to a small region Ω∩A0 of the type indicated
below. Namely, setting

∂∗Ωt = {x : x ∈ Ω, dist(x, ∂Ω) = t} for t > 0,

we first let the boundary ∂(Ω ∩ A0) be made up of three parts, namely

∂(Ω ∩ A0) =
(
∂Ω ∩ A0

) ∪ (
∂∗A0

) ∪ (
∂∗∗A0

)
,

such that

∂∗A0 = ∂A0 ∩ ∂∗Ωδ0 , (1.9)
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for some small positive number δ0,

∂∗∗A0 = (∂A0 ∩ Ω) \ ∂∗Ωδ0 ,

and

Dd · νΩ∩A0

∣∣∣
∂∗∗A0

= 0, (1.10)

where we let νΩ∩A0 be the unit outward normal to ∂(Ω ∩ A0); furthermore,

diam(∂Ω ∩ A0) ≤ (δ0)
1+ε0 and diam(∂∗A0) ≤ (δ0)

1+ε0 , (1.11)

|∂Ω ∩ A0| ≥
(

δ0

2

)(1+ε0)(n−1)

and |∂∗A0| ≥
(

δ0

2

)(1+ε0)(n−1)

, (1.12)

for some small positive constant ε0 < 1. We choose δ0 sufficiently small so that
each component of ∂∗∗A0 is entirely included in either ∂∗∗+ (Ω∩A0) or ∂∗∗− (Ω∩A0),
where

∂∗∗− (Ω ∩ A0) =
(
∂∗∗A0

) ∩ {x : βΩ∩A0 < 0}
∂∗∗+ (Ω ∩ A0) =

(
∂∗∗A0

) ∩ {x : βΩ∩A0 > 0}.
Next, we let the region Ω ∩ A be as follows. Namely,

Case 1. If

βΩ∩A0

∣∣∣
∂∗∗A0

≤ −β̂ or βΩ∩A0

∣∣∣
∂∗∗A0

≥ β̂ (1.13)

for some positive constant β̂, then we let A = A0.
Case 2. Suppose both sets ∂∗∗− (Ω∩A0) and ∂∗∗− (Ω∩A0) are nonempty and

there hold

βΩ∩A0

∣∣∣
∂∗∗− (Ω∩A0)

≤ −β̂ and βΩ∩A0

∣∣∣
∂∗∗+ (Ω∩A0)

≥ β̂. (1.14)

For

β(x) > ˜̃β > 0 for all x ∈ ∂Ω ∩ A0 (1.15)

we set

E+− = {x : x ∈ Ωδ0 , u(x) = inf
∂Ω∩A0

u},

E−+ = {x : x ∈ Ωδ0 , u(x) = sup
∂∗A0

u},

and let A11 be the region enclosed by ∂∗Ωδ0 and E+−, together with the com-
ponents of ∂∗∗A0 passing through E+− ∩ ∂Ω; let A12 be the region enclosed
by ∂∗Ωδ0 and E−+, together with the components of ∂∗∗A0 passing through
E−+ ∩ ∂Ω; for

β(x) < − ˜̃β < 0 for all x ∈ ∂Ω ∩ A0 (1.16)

we set

E++ = {x : x ∈ Ωδ0 , u(x) = sup
∂Ω∩A0

u},

E−− = {x : x ∈ Ωδ0 , u(x) = inf
∂∗A0

u},
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and let A11 be the region enclosed by ∂∗Ωδ0 and E++, together with components
of ∂∗∗A0 passing through E++∩∂Ω, and let A12 be the region enclosed by ∂∗Ωδ0

and E−−, together with components of ∂∗∗A0 passing through E−− ∩ ∂Ω. We
then denote

A = A0 ∪ A11 ∪ A12.

Furthermore, we let δ0 be so small that in the case of (1.15) or (1.16), there
hold respectively

−(1 + β̃)/2 < βΩ∩A

∣∣∣
∂∗A

< − ˜̃β/2, or (1 + β̃)/2 > βΩ∩A

∣∣∣
∂∗A

> ˜̃β/2, (1.17)

where we set

∂∗A = A ∩ ∂∗Ωδ0 .

We shall prove in Appendix 5 the following.

Proposition 3. Suppose that

lim
xk→x0

|Du| ≥ 2

β̃
, (1.18)

for each sequence of points xk approaching x0. Then we have

|E±±| ≤ 2|∂∗∗A| ·
(√

1− {(1 + β̃)/2
/√

1 + [(1 + β̃)/2]2}
)−1

, (1.19)

and

|A1| ≤ 2|∂∗∗A|2 ·
(1 + β̃)/2

/√
1 + [(1 + β̃)/2]2

√
1− {(1 + β̃)/2/

√
1 + [(1 + β̃)/2]2}

. (1.20)

For a domain Ω ∩ A, we may, without loss of generality, assume that∫

∂(Ω∩A)

βΩ∩A(x)u(x) dHn−1 = 0, (1.21)

where

βΩ∩A =
Du√

1 + |Du|2 · νΩ∩A.

Applying to Ω ∩ A the reasoning leading to (1.7) and (1.8), we obtain from
(1.21)

∫

Ω∩A

|Du| dx ≤ |Ω ∩ A|+ H∗ ·
∫

Ω∩A

(
u(x)− inf

Ω∩A
u
)
dx

+

∫

∂(Ω∩A)

βΩ∩A ·
(
u(x)− inf

Ω∩A
u
)
dHn−1 (1.22)

and
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∫

Ω∩A

|Du| dx ≤ |Ω ∩ A|+ H∗ ·
∫

Ω∩A

(
sup
Ω∩A

u− u(x)
)
dx

+

∫

∂(Ω∩A)

βΩ∩A ·
(
sup
Ω∩A

u− u(x)
)
dHn−1. (1.23)

Adding (1.22) and (1.23), we obtain

2

∫

Ω∩A

|Du| dx ≤ |Ω ∩ A|+H∗ ·
∫

Ω∩A

(
u(x)− inf

Ω∩A
u
)
dx + H∗ ·

∫

Ω∩A

(
sup
Ω∩A

u− u(x)
)
dx

+ 2

∫

∂(Ω∩A)

β(x)u(x) dHn−1−
(
sup
Ω∩A

u− inf
Ω∩A

u
) ·

∫

∂(Ω∩A)

β(x) dHn−1.

This and (1.21) yield

2

∫

Ω∩A

|Du| dx ≤ |Ω ∩ A|+ H∗ ·
∫

Ω∩A

(
u(x)− inf

Ω∩A
u
)
dx + H∗ ·

∫

Ω∩A

(
sup
Ω∩A

u− u(x)
)
dx

− (
sup
Ω∩A

u− inf
Ω∩A

u
) ·

∫

∂(Ω∩A)

β(x) dHn−1. (1.24)

3.2. Boundary integral in (1.24). Taking η = 1 in the identity (0.7) with
the domain of integration Ω replaced by Ω ∩ A, we obtain∫

Ω∩A

H dx =

∫

Ω∩A

div
Du√

1 + |Du|2 dx =

∫

∂(Ω∩A)

βΩ∩A(x) dHn−1.

Hence

|
∫

∂(Ω∩A)

βΩ∩A(x) dHn−1| ≤ H∗ · |Ω ∩ A|. (1.25)

3.3. Inserting (1.25) into (1.24), we obtain

2

∫

Ω∩A

|Du| dx ≤|Ω ∩ A|+H∗ ·
∫

Ω∩A

(
u(x)− inf

Ω∩A
u
)
dx + H∗ ·

∫

Ω∩A

(
sup
Ω∩A

u− u(x)
)
dx

+
(
sup
Ω∩A

u− inf
Ω∩A

u
) ·H∗ · |Ω ∩ A|. (1.26)

4. Estimating the L1-norm of
(
u(x)− inf

Ω∩A
u
)

and
(
sup
Ω∩A

u−u(x)
)

in Ω∩A.

4.1. L1-norm of
(
sup
Ω∩A

u − u(x)
)

and
(
u(x) − inf

Ω∩A
u
)

in Ω ∩ A. The case

where β(x) > 0 for all x ∈ ∂Ω∩ Ā. By the modified Sobolev inequality (A.8),
we have

‖ sup
Ω∩A

u−u(x)‖Ln∗ (Ω∩A)≤ ωn

n
·
[ ∫

Ω∩A

|Du| dx+

∫

∂(Ω∩A)

(
sup
Ω∩A

u−u(x)
)
dHn−1

]
. (1.27)
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Assume that (1.15) and (1.17) hold. By (A.2) and (A.7), we have
∫

∂∗A

(
sup
Ω∩A

u− u(x)
)
dHn−1 ≤

∫

Ω∩A

|Du| dx

+
[
2(n− 1)K∂Ω + 2(δ0)

−1
] ·

∫

Ω∩A

(
sup
Ω∩A

u− u(x)
)
dx, (1.28)

and∫

∂Ω∩A

(
sup
Ω∩A

u− u(x)
)
dHn−1 ≤

∫

Ω∩A

|Du| dx

+
[
2(n− 1)K∂Ω + 2(δ0)

−1
] ·

∫

Ω∩A

(
sup
Ω∩A

u− u(x)
)
dx. (1.29)

Consider, rather than (1.6), the identity∫

Ω∩A

Du√
1 + |Du|2 ·Dη dx +

∫

Ω∩A

H · η dx−
∫

∂(Ω∩A)

βΩ∩A · η dHn−1 = 0, (1.30)

for all η ∈ H1,1(Ω ∩A). By setting η(x) =
(
u(x)− sup

Ω∩A
u
)

and η(x) =
(
sup
Ω∩A

u−
u(x)

)
in (1.30) we have

∫

Ω∩A

|Du|2√
1 + |Du|2dx−

∫

Ω∩A

H · (sup
Ω∩A

u− u(x)
)
dx

+

∫

∂(Ω∩A)

βΩ∩A ·
(
sup
Ω∩A

u− u(x)
)
dHn−1 = 0,

and ∫

Ω∩A

|Du|2√
1 + |Du|2dx +

∫

Ω∩A

H · (sup
Ω∩A

u− u(x)
)
dx

−
∫

∂(Ω∩A)

βΩ∩A ·
(
sup
Ω∩A

u− u(x)
)
dHn−1 = 0.

These yield

−
∫

∂∗∗− (Ω∩A)

βΩ∩A ·
(
sup
Ω∩A

u− u(x)
)
dHn−1 −

∫

∂∗A

βΩ∩A ·
(
sup
Ω∩A

u− u(x)
)
dHn−1

≤
∫

Ω∩A

|Du|2√
1 + |Du|2 dx−

∫

Ω∩A

H · (sup
Ω∩A

u− u(x)
)
dx

+

∫

∂Ω∩A

βΩ∩A ·
(
sup
Ω∩A

u− u(x)
)
dHn−1
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+

∫

∂∗∗+ (Ω∩A)

βΩ∩A ·
(
sup
Ω∩A

u− u(x)
)
dHn−1, (1.31)

and ∫

∂∗∗+ (Ω∩A)

βΩ∩A ·
(
sup
Ω∩A

u− u(x)
)
dHn−1 +

∫

∂Ω∩A

βΩ∩A ·
(
sup
Ω∩A

u− u(x)
)
dHn−1

≤
∫

Ω∩A

|Du|2√
1 + |Du|2 dx +

∫

Ω∩A

H · (sup
Ω∩A

u− u(x)
)
dx

−
∫

∂∗A

βΩ∩A ·
(
sup
Ω∩A

u− u(x)
)
dHn−1

−
∫

∂∗∗− Ω∩A

β(Ω∩A) ·
(
sup
Ω∩A

u− u(x)
)
dHn−1, (1.32)

where we set

∂∗∗− (Ω ∩ A) =
(
∂∗∗A

) ∩ {x : βΩ∩A < 0}
∂∗∗+ (Ω ∩ A) =

(
∂∗∗A

) ∩ {x : βΩ∩A > 0}.

4.1.1. If (1.13) holds for some positive constant β̂, then we have A = A0 and
we obtain from (1.31) or (1.32)
∫

∂∗∗A

(
sup
Ω∩A

u− u(x)
)
dHn−1 ≤ (β̂)−1 ·

[ ∫

Ω∩A

|Du| dx + H∗

∫

Ω∩A

·(sup
Ω∩A

u− u(x)
)
dx

]

+ (β̂)−1 ·
∫

∂Ω∩A

(
sup
Ω∩A

u− u(x)
)
dHn−1.

Inserting (1.29) into this, we obtain
∫

∂∗∗A

(
sup
Ω∩A

u− u(x)
)
dHn−1 ≤ 2(β̂)−1 ·

∫

Ω∩A

|Du| dx

+ (β̂)−1
[
H∗ + 2(n− 1)K∂Ω + 2(δ0)

−1
] ·

∫

Ω∩A

(
sup
Ω∩A

u− u(x)
)
dx

]
. (1.33)

Inserting (1.33), (1.28) and (1.29) into (1.27), we obtain

‖ sup
Ω∩A

u− u(x)‖Ln∗ (Ω∩A) ≤ ωn

n
· [1 + 2(β̂)−1

] ·
∫

Ω∩A

|Du| dx

+ Ĉ1 ·
∫

Ω∩A

(
sup
Ω∩A

u− u(x)
)
dx,
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where

Ĉ1 = 2(β̂)−1 ·H∗ +
[
1 + 2(β̂)−1

] · [2(n− 1)K∂Ω + 2(δ0)
−1

]
. (1.34)

Hence, by Hölder’s inequality and the fact that A = A0, we obtain∫

Ω∩A

|Du| dx ≥ [1 + 2(β̂)−1]−1 · [n/ωn − Ĉ1 · |Ω ∩ A0|1/n]

× ‖ sup
Ω∩A

u− u(x)‖Ln∗ (Ω∩A). (1.35.1)

Analogously, we can establish in the case of (1.13) that∫

Ω∩A

|Du| dx ≥ [1 + 2(β̂)−1]−1 · [n/ωn − Ĉ1 · |Ω ∩ A0|1/n]

× ‖u(x)− inf
Ω∩A

u‖Ln∗ (Ω∩A. (1.35.2)

4.1.2. Suppose both sets ∂∗∗− (Ω∩A0) and ∂∗∗− (Ω∩A0) are nonempty and (1.14)
holds. We notice that by our choice of A0 and A indicated above in (1.14) and
(1.15), we have

sup
Ω∩A

u = sup
∂Ω∩A0

u and inf
Ω∩A

u = inf
∂∗A0

u.

Thus∫

∂(Ω∩A)

(
sup
Ω∩A

u− u(x)
)
dHn−1

=

∫

∂(Ω∩A)

( inf
∂Ω∩A0

u− u(x)) dHn−1 +

∫

∂(Ω∩A)

( sup
∂Ω∩A0

u− inf
∂Ω∩A0

u) dHn−1.

By Theorem 1, we obtain
∣∣∣

∫

∂(Ω∩A)

βΩ∩A · ( sup
∂Ω∩A0

u− inf
∂Ω∩A0

u) dHn−1

∣∣∣

≤L0(β̃, ˜̃β) · diam (∂Ω ∩ A0) · |∂(Ω ∩ A)|, (1.36)

where L0(β̃, ˜̃β) is the Lipschitz norm of the trace of u on the boundary, which

depends only on β̃, ˜̃β, H, n and K∂Ω∩A.
To treat the first integral on the right-hand side of (1.32), we set

(Ω ∩ A)+− = {x : x ∈ Ω ∩ A, u(x) ≤ inf
∂Ω∩A0

u},

and
∂∗∗+−(Ω ∩ A) = ∂((Ω ∩ A)+−) ∩ ∂∗∗A

to obtain∫

(∂Ω∩A0)∪∂∗∗+ (Ω∩A)

( inf
∂Ω∩A

u− u(x)) dHn−1 ≤
∫

∂∗∗+−(Ω∩A)

( inf
∂Ω∩A

u− u(x)) dHn−1 = 0, (1.37)
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since ∂∗∗+−(Ω ∩ A) ⊂ E+−. Furthermore, we have

∫

∂Ω∩(A\A0)

( inf
∂Ω∩A0

u− u(x)) dHn−1

≤ L0(β̃, ˜̃β) · diam (∂Ω ∩ A \ A0)) · |∂Ω ∩ (A \ A0)|, (1.38)

and ∫

∂∗A∪∂∗∗− A

( inf
∂Ω∩A0

u− u(x)) dHn−1 ≤
∫

∂(∩(Ω∩A)+−)

( inf
∂Ω∩A0

u− u(x)) dHn−1, (1.39)

and

−
∫

∂(∩(Ω∩A)+−)

βΩ∩A(x) · ( inf
∂Ω∩A0

u− u(x)) dHn−1

≤
∫

(Ω∩A)+−

|Du|2√
1 + |Du|2 dx + H∗

∫

(Ω∩A)+−

( inf
∂Ω∩A

u− u(x)) dx

≤
∫

(Ω∩A)+−

|Du|2√
1 + |Du|2 dx + H∗

∫

(Ω∩A)+−

(sup
Ω∩A

u− u(x)) dx. (1.40)

From (1.39) and (1.40), we obtain
∫

∂∗A∪∂∗∗− A

( inf
∂Ω∩A0

u− u(x)) dHn−1

≤ (
ˆ̂
β)−1 ·

∫

(Ω∩A)+−

|Du| dx + (
ˆ̂
β)−1 ·H∗ ·

∫

(Ω∩A)+−

( inf
∂Ω∩A0

u− u(x) dx, (1.41)

if we have

|βΩ∩A|
∣∣∣
∂∗∗− A

≥ ˆ̂
β∗, (1.42.1)

and we set
ˆ̂
β = min(

ˆ̂
β∗,

˜̃β/2). (1.42.2)

Inserting (1.36), (1.37), (1.38) and (1.41) into (1.27) and using Hölder’s in-
equality, we obtain the inequality

(1 + (
ˆ̂
β)−1) ·

∫

Ω∩A

|Du| dx + 2L0(β̃, ˜̃β) · diam (∂Ω ∩ A) · |∂(Ω ∩ A)|

≥ n

ωn

(
1− (

ˆ̂
β)−1 · ωn

n
·H∗ · |Ω ∩ A|1/n

)
· ‖ sup

Ω∩A
u− u(x)‖Ln∗ (Ω∩A) (1.43)

if (1.42.1) holds and
ˆ̂
β is given by (1.42.2).
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4.1.3. Analogously, we can use (1.17) and Theorem 1 to establish

(1 + (
ˆ̂
β)−1) ·

∫

Ω∩A

|Du| dx + 2L0((1 + β̃)/2, ˜̃β/2) · diam (∂∗A) · |∂(Ω ∩ A)|

≥ n

ωn

·
(

1− (
ˆ̂
β)−1 · ωn

n
·H∗ · |Ω ∩ A|1/n

)
· ‖u(x)− inf

Ω∩A
u‖Ln∗ (Ω∩A, (1.44)

where the constant L0((1 + β̃)/2, ˜̃β/2) is given in Theorem 1.

4.1.4. Inserting (1.35.1), (1.35.2), (1.43) and (1.44) into (1.26) and applying
Hölder’s inequality, we obtain∫

Ω∩A

(
sup
Ω∩A

u− u(x)
)
dx +

∫

Ω∩A

(
u(x)− inf

Ω∩A
u
)
dx

≤[
Ĉ2 + (1 + (

ˆ̂
β)−1) · Ĉ3

]·|Ω ∩ A|1+1/n+
[
Ĉ2 + (

ˆ̂
β)−1 · Ĉ3

]

× |Ω ∩ A|1/n ·
∫

Ω∩A

(
u(x)− inf

Ω∩A
u
)
dx

+
[
Ĉ2 + (

ˆ̂
β)−1 · Ĉ3

] · |Ω ∩ A|1/n ·
∫

Ω∩A

(
sup
Ω∩A

u− u(x)
)
dx

+ Ĉ3 · L0(β̃, ˜̃β) · diam (∂Ω ∩ A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n,

+ Ĉ3 · L0((1 + β̃)/2, ˜̃β/2) · diam (∂∗A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n,

where

Ĉ2 =
2ωn

n
[1 + 3(β̂)−1 + (

ˆ̂
β)−1] · [n/ωn − Ĉ1 · |Ω ∩ A0|1/n]−1

+
ωn

n

(
sup
Ω∩A

u− inf
Ω∩A

u
) ·H∗, (1.45)

Ĉ3 =
ωn

n
·
(

1− (
ˆ̂
β)−1 · (ωn/n) ·H∗ · |Ω ∩ A|1/n

)−1

. (1.46)

Hence ∫

Ω∩A

(
sup
Ω∩A

u− u(x)
)
dx +

∫

Ω∩A

(
u(x)− inf

Ω∩A
u
)
dx

≤[
Ĉ2 + (

ˆ̂
β)−1 · Ĉ3

] · Ĉ4 · |Ω ∩ A|1+1/n

+ Ĉ3 · Ĉ4 · L0(β̃, ˜̃β) · diam (∂Ω ∩ A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n

+ Ĉ3 · Ĉ4 · L0((1 + β̃)/2, ˜̃β/2) · diam (∂∗A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n,

where

Ĉ4 =

(
1− [

Ĉ2 + (
ˆ̂
β)−1 · Ĉ3

] ·H∗ · |Ω ∩ A|1/n

)−1

, (1.47)
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This yields∫

Ω∩A

(
sup
Ω∩A

u− u(x)
)
dx ≤ [Ĉ2 + (

ˆ̂
β)−1 · Ĉ3] · Ĉ4 · |Ω ∩ A|1+1/n

+ Ĉ3 · Ĉ4 · L0(β̃, ˜̃β) · diam (∂Ω ∩ A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n

+ Ĉ3 · Ĉ4 · L0((1 + β̃)/2, ˜̃β/2) · diam (∂∗A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n, (1.48)

and∫

Ω∩A

(
u(x)− inf

Ω∩A
u
)
dx ≤ [

Ĉ2 + (
ˆ̂
β)−1 · Ĉ3

] · Ĉ4 · |Ω ∩ A|1+1/n

+ Ĉ3 · Ĉ4 · L0(β̃, ˜̃β) · diam (∂Ω ∩ A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n

+ Ĉ3 · Ĉ4 · L0((1 + β̃)/2, ˜̃β/2) · diam (∂∗A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n, (1.49)

By (1.9), (1.11) and (1.12), we have

|Ω ∩ A0| ≤ (δ0)
(n−1)·(1+ε0)+1 (1.50)

which yields

|Ω ∩ A0| 1n ≤ (δ0)
(1− 1

n
)·(1+ε0)+ 1

n = (δ0)
1+ε0(1− 1

n
). (1.51)

In view of (1.34), (1.45) and (1.47), we see that

Ĉ1 · |Ω ∩ A0|1/n ≤ C1 · (δ0)
ε0(1− 1

n
) ≤ 1

2
for δ0 sufficiently small, (1.52)

where C1 is a constant depending only on H∗, β̂ and K∂Ω.
If (1.18) holds for each sequence of points xk approaching x0, then we obtain

from (1.19) and (1.50)

|Ω ∩ A| ≤ C̃0(δ0)
n, (1.53)

where C̃0 is determined by β̃ and n. Hence, in view of (1.45),

Ĉ2 · |Ω ∩ A| 1n ≤ C2 · (δ0) ≤ 1/[2H∗(sup
Ω∩A

u− inf
Ω∩A

u)] (1.54)

for δ0 sufficiently small, and, by (1.47),

Ĉ3 ≤ 2, Ĉ4 ≤ 2, for δ0 sufficiently small, (1.55)

where C2 is a constant depending only on H∗, β̃, β̂ and n.
We remark here that (1.49) will not be used in the next sections.

4.2. L1-norm of
(
sup
Ω∩A

u − u(x)
)

and
(
u(x) − inf

Ω∩A
u
)

in Ω ∩ A. The Case

where β(x) < 0 for all x ∈ ∂Ω ∩ A. Assume (1.16) holds. The case where
β(x) < 0 can be treated in a similar way as the case β(x) ≥ 0: repeating the
corresponding reasoning, in case (1.13) holds, we obtain (1.35.1) and (1.35.2),
in case (1.14) holds, we obtain (1.43) and (1.44). Inserting (1.35.1), (1.35.2),
(1.44) and (1.45) into (1.26), we obtain (1.48) and (1.49).
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We also remark here that in this setting, (1.48) will not used in the nect
sections.

5. Oscillation of u near the boundary.

5.1. The case where 1 > β(x0) > 0. Consider a point x0 ∈ ∂Ω such that for
δ0 sufficiently small such there holds

1 > β̃ > β(x) > ˜̃β > 0, for x ∈ ∂Ω ∩Bδ0(x0). (1.56)

We assume, without loss of generality, δ0 to be sufficiently small that δ0 ≤ R−,
R− being given in Proposition 1.

Choose a boundary strip A adjacent to ∂Ω ∩ Bδ̃0
(x0), δ̃0 = (δ0)

1+ε0 , to be
with of width δ0 and of the type indicated in the beginning of Subsection 3.1
such that (1.17) hold. We obtain from (1.56) that (1.13) or (1.14) hold with

β̂ =
τ√

1 + τ 2
·
√

1− [(1 + β̃)/2)]2, (1.57)

where

τ =

√
( ˜̃β/2)2

/
(1− ( ˜̃β/2)2) (1.58)

and (1.42.1) holds with
ˆ̂
β∗ = ˜̃β/2, (1.59)

for δ0 sufficiently small. We shall establish this for sufficiently small δ0 in Ap-
pendix 4.

Let us set

R = (δ0/4)1+ε0 , (1.60)

and choose a boundary strip AR(x0) adjacent to ∂Ω∩BR(x0) to be of width R
and of the type indicated above in Theorem 2. From inserting (1.46) into (1.2)

with the value β̂ given in (1.57) and setting γ̂ = 0 in (1.5), we obtain

u(x0)− inf
AR(x0)

u ≤ 2n+2

α∗Rn
·
{[

Ĉ2 + (
ˆ̂
β)−1 · Ĉ3

]·Ĉ4 · |Ω ∩ A|1+ 1
n

+ Ĉ3 · Ĉ4 · L0(β̃, ˜̃β) · diam (∂Ω ∩ A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n

+ Ĉ3 · Ĉ4 · L0((1 + β̃)/2, ˜̃β/2) · diam (∂∗A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n

}
+ 2R

≤2n+6 · (n + 1) · k(n+1) ·
{[

Ĉ2 + (
ˆ̂
β)−1 · Ĉ3

] · Ĉ3 · |Ω ∩ A|1+ 1
n

Rn

+ Ĉ3 · Ĉ4 · L0(β̃, ˜̃β) · diam (∂Ω ∩ A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n
/

Rn

+ Ĉ3 · Ĉ4 · L0((1 + β̃)/2, ˜̃β/2) · diam (∂∗A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n
/

Rn

}

+ 2R. (1.61)
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If (1.18) holds for each sequence of points xk approaching x0, then we obtain
from (1.20)

diam (∂Ω ∩ A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n ≤ C̃∗0 · (δ0)
1+ 1

n ,

diam (∂∗A) · |∂(Ω ∩ A)| · |Ω ∩ A|1/n ≤ C̃∗0 · (δ0)
1+ 1

n ,

where C̃∗0 is determined by β̃ and n. Inserting these, together with (1.17),
(1.42.1), (1.53) into (1.61) and then using (1.45), (1.54), (1.55), (1.17), (1.42.1),

(1.42.2), (1.57), (1.58), (1.59), we arrive at (0.13) with Ĉ determined by β̃, ˜̃β,
H∗ and K∂Ω∩Aδ0

(x0).

5.2. The case where −1 < β(x0) < 0. Consider a point x0 ∈ ∂Ω such that
for δ0 sufficiently small there holds

−1 < −β̃ < β(x) < − ˜̃β < 0, for x ∈ ∂Ω ∩Bδ0(x0). (1.62)

Choose δ0 to be sufficiently small such that δ0 ≤ R+, R+ being given in Propo-
sition 1. Choose a boundary strip A0 adjacent to ∂Ω∩Bδ̃0

(x0), δ̃0 = (δ0)
1+ε0 , to

be of width δ0 and of the type as before. For τ given in (1.58), we obtain from

(1.62) that (1.13) or (1.14) holds with
ˆ̂
β given in (1.57), and (1.42.1) holds with

ˆ̂
β given in (1.59), which will be established for sufficiently small δ0 in Appendix
4.

From inserting (1.49) into (1.4) with the value of
ˆ̂
β given in (1.57) and setting

γ̂ = 0 in (1.5), we obtain, analogously to 5.1, the estimate (0.14) with the same

Ĉ as in (0.13).

Appendix 1. Boundary Integrals along a Piecewise C2 Boundary

The proof of the following can be modified from that of [6, Lemma 1.1] in an
obvious way.

Lemma A.1. Let E be a Caccioppoli set in Rn and Γ be a subset of ∂E
which is a C2 manifold and d(x) = dist(x, ∂E) for x ∈ E. Let

EΓ,t = {x : x ∈ E : dist(x, Γ) ≤ t}, for t > 0. (A.1)

Let εΓ be so small that the function d(x) be of the class C2 in EΓ,εΓ
, and consider,

for 0 < ε′ < εΓ, a domain E∗
Γ,εΓ

,

EΓ,ε′ ⊆ E∗
Γ,εΓ

⊆ EΓ,εΓ
,

such that a portion of its boundary ∂∗E∗
Γ,εΓ

⊂ EΓ,t \EΓ,ε′, and on the remaining
portion of its boundary in Ω, we have

Dd · ν
∣∣∣
(∂E∗Γ,εΓ

∩Ω)\∂∗E∗Γ,εΓ

= 0,
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ν being the unit outward normal to ∂E∗
Γ,εΓ

. Then, there exists a constant CΓ,ε′

depending only on Γ and ε′ such that the inequality
∫

Γ

w dHn−1 ≤
∫

E∗Γ,εΓ

|Dw| dx + CΓ,ε′ ·
∫

E∗Γ,εΓ

|w| dx, (A.2)

holds for all w ∈ BV (EΓ,εΓ
). In fact, let ηε′ be a C∞ function with





o ≤ ηε′ ≤ 1,

ηε′ = 1 on Γ,

ηε′ = 0 in E \ EΓ,ε′ ,

(A.3)

then we can take

CΓ,ε′ = sup
E∗Γ,εΓ

|div(ηε′Dd)|. (A.4)

In order to apply Lemma A.1, we have to estimate the value of CΓ,ε′ in (A.4).
For this, we formulate the following result which is well known and can be
found, e.g., in [5, pp. 420–422].

Lemma A.2. Let Γ ⊆ ∂E be of the class C2 whose principal curvatures are
bounded in the absolute value by KΓ. Then d(x) = dist(x, Γ) is of the class C2

in EΓ,εΓ
, for εΓ ≤ 1

KΓ
, where EΓ,εΓ

is given in (A.1).

Furthermore, for points x̄ in EΓ,εΓ
, εΓ ≤ 1

KΓ
, define ȳ = ȳ(x̄) to be the

(unique) point of Γ nearest to x̄. Consider the special coordinate frame in which
the xn-axis is oriented along the inward normal to Γ at ȳ and the coordinates
x1, · · · , xn−1 lie along the principal directions of Γ at the point ȳ. In this special
coordinates, we have at x̄,

Dd = (0, · · · , 0, 1) (A.5)

and

D2d = diagonal

[ −k1

1− k1d
, · · · ,

−kn−1

1− kn−1d
, 0

]
(A.6)

where k1, · · · , kn−1 are the principal curvatures of Γ at ȳ.

Inserting (A.5) and (A.6) into (A.3) and (A.4), we obtain the following.

Lemma A.3. Let Γ ⊆ ∂E be of the class C2 whose principal curvatures
are bounded in the absolute value by KΓ. Then, for εΓ ≤ 1

KΓ
and for each δ,

0 < δ ≤ 1, we can take in (A.4)

CΓ,ε′ ≤ |Dηε′|+ 2(n− 1)KΓ ≤
(

1 + δ

ε′

)
+ 2(n− 1)KΓ. (A.7)
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Appendix 2. Modified Sobolev Inequality

The following result is a special case of the so-called Friedrichs inequality and
can be found, e.g., in [9, Theorem 6.5.7].

Proposition A.1. Suppose E is a Caccioppoli set with piecewise Lipschitz
continuous boundary. Then, for any f ∈ BV (Ω), the inequality

‖f‖Ln∗ (E) ≤ n

ωn

( ∫

E

|Df | dx +

∫

∂E

|f | dHn−1

)
(A.8)

is valid, where ωn is the Lebesgue measure of the n-dimensional unit ball.

Appendix 3. A Proof of (0.16)

Since u is assumed to be bounded up to the boundary, [8, Theorem 1] implies

u ∈ H1,1(Ω). By this and the fact that the restriction u
∣∣∣
Ω\Ωε

is a minimizing

function of the functional

J(v) =

∫

Ω

√
1 + |Du|2 dx +

∫

∂Ωε∩Ω

(Tu · νΩε)u dHn−1,

with νΩε being the unit outward normal to Ωε, we are allowed to set η = 1 in
the identities∫

Ω

Du√
1 + |Du|2 ·Dη dx +

∫

Ω

H · η dx =

∫

∂Ω

β · η dHn−1 (A.9)

and∫

Ω\Ωε

Du√
1 + |Du|2 ·Dη dx +

∫

Ω\Ωε

H · η dx =

∫

∂Ωε∩Ω

(Tu · νΩε) · η dHn−1; (A.10)

(see [5, (7.6)]); here Ωε = {x : x ∈ Ω, dist(x, ∂Ω) ≤ ε} and ε is sufficiently

small. Subtracting (A.10) (with η = u
∣∣∣
Ω\Ωε

) from (A.9) (with η = u), we

obtain ∫

Ωε

H dx =

∫

∂Ω

β · u dHn−1 −
∫

∂Ωε

(Tu · νΩ\Ωε) dHn−1.

The left-hand side of the last identity approaches zero as ε → 0, hence the same
is true for the right-hand side of the last identity. Hence, a subsequence can
be extracted from the sequence {Tu · νΩ\Ωε}(x + Dd), with d(x) = dist(x, ∂Ω),
which approaches β(x) for almost every x ∈ ∂Ω as ε → 0. This, together
with the interior regularity of u, yields under the assumption (0.12) that if δ0

is sufficiently small, then

1 + β̃

2
≥ |Tu · νΩδ0

(x)| ≥
˜̃β

2
, (A.11)

for x ∈ ∂∗Ωε, ε ≤ δ0, which is sufficiently close to Aδ0(x0). In particular, (0.16)
is proved.
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Appendix 4. Proof of (1.13), (1.14) with the Value of β̂ Given
by (1.57). A Proof of (1.59).

We shall prove in Appendix 5 that points of ∂∗A are close to ∂∗Aδ0(x0) for
small δ0. The second inequality in (A.11) thus yields

|Du|√
1 + |Du|2

∣∣∣
∂∗A

≥
˜̃β

2
,

from which we obtain
|Du|

∣∣∣
∂∗A

≥ τ,

with τ given in (1.58). This and the first inequality in (A.11) yield (1.57).
Since E±± are level sets of u, the normal of E±± lies toward or opposite to

the direction of that of Du
‖Du‖ , and thus

|βΩ∩A|
∣∣∣
E±±

=
Du√

1 + |Du|2 ·
Du

|Du| =
|Du|√

1 + |Du|2 ,

from which by (1.61) it follows the second inequality in (A.11).

Appendix 5. Proof of Proposition 2

To prove Proposition 2, we assume without loss of generality that (1.15)
holds. To show the inequality (1.19) for E+−, we observe that the unit normal
of E+− is ± Du

|Du| and thus it suffices to show that for points x in a sufficiently

small neighborhood of x0

∣∣∣ Du

|Du|(x) · νΩ(x0)
∣∣∣ ≤ (1 + β̃)/2√

1 + [(1 + β̃)/2]2
,

if (1.18) holds for each sequence of points xk approaching x0. This follows from
the second inequality in (A.11) and the inequality

√
1 + |Du|2
|Du| (x) =

√
1 +

1

|Du|2 ≤
√

1 + [(1 + β̃)/2]2

for points x in a sufficiently small neighborhood of x0, which is obtained from
the assumption that (1.18) holds for each sequence of points xk approaching x0.
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