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ARCWISE CONNECTED CONTINUA AND WHITNEY MAPS

IVAN LONČAR

Abstract. Let X be a non-metric continuum, and C(X) be the hyperspace
of subcontinua of X. It is known that there is no Whitney map on the
hyperspace 2X for non-metric Hausdorff compact spaces X. On the other
hand, there exist non-metric continua which admit and ones which do not
admit a Whitney map for C(X). In particular, a locally connected or a rim-
metrizable continuum X admits a Whitney map for C(X) if and only if it is
metrizable. In this paper we investigate the properties of continua X which
admit a Whitney map for C(X) or for C2(X).
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1. Introduction

Introduction contains some basic definitions, results and notation.
All spaces in this paper are compact Hausdorff and all mappings are conti-

nuous. The weight of a space X is denoted by w(X).
A generalized arc is a Hausdorff continuum with exactly two non-separating

points. Each separable arc is homeomorphic to the closed interval I = [0, 1].
We say that a space X is arcwise connected provided that for every two

distinct points x, y ∈ X there exists a generalized arc xy with end points x and
y.

For a compact space X we denote by 2X the hyperspace of all nonempty
closed subsets of X equipped with the Vietoris topology. C(X) and X(n),
where n is a positive integer, stand for the sets of all connected members of 2X

and of all nonempty subsets consisting of at most n points, respectively, both
considered as subspaces of 2X . The hyperspace C(C(X)) is denoted by C2(X).

For a mapping f : X → Y define 2f : 2X → 2Y by 2f (K) = f(K) for K ∈
2X . By [17, 5.10] 2f is continuous, 2f (C(X)) ⊂ C(Y ) and 2f (X(n)) ⊂ Y (n).
The restriction 2f |C(X) is denoted by C(f).

We will use the notion of inverse system as in [7, pp. 135-142]. An inverse
system is denoted by X = {Xa, pab, A}. If X = {Xa, pab, A} is an inverse
system, then an element {xa} of the Cartesian product

∏{Xa : a ∈ A} is called
a thread of X if pab(xb) = xa for any a, b ∈ A satisfying a ≤ b. The subspace of∏{Xa : a ∈ A} consisting of all threads of X is called the limit of an inverse
system X = {Xa, pab, A} and is denoted by limX or by lim{Xa, pab, A} [7,
p. 135].
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Let X = {Xa, pab, A} be an inverse system of compact spaces with the natural
projections pa : limX → Xa for a ∈ A. Then 2X = {2Xa , 2pab , A}, C(X) =
{C(Xa), C(pab), A}, C2(X) = {C2(Xa), C2(pab), A} and X(n) = {Xa(n), 2pab |
Xb(n), A} form inverse systems.

Lemma 1.1 ([10, Lemma 2]). Let X = limX. Then 2X = lim 2X, C(X) =
lim C(X), C2(X) = lim C2(X) and X(n) = limX(n).

We say that an inverse system X = {Xa, pab, A} is σ-directed if for each
sequence a1, a2, . . . , ak, . . . of the members of A there is a ∈ A such that a ≥ ak

for each k ∈ N.
In the next we will use the following expanding theorem of non-metric com-

pact spaces into a σ-directed inverse system of compact metric spaces.

Theorem 1.2. Let X be a compact Hausdorff space such that w(X) ≥ ℵ1.
Then there exists a σ-directed inverse system X = {Xa, pab, A} of compact met-
ric spaces Xa and surjective bonding mappings pab such that X is homeomorphic
to limX. Moreover, if X is a Hausdorff continuum, then each coordinate space
Xa can be chosen as a metric continuum.

Proof. In [13, Theorem 1.8] it is proved that for a compact Hausdorff space
with w(X) ≥ ℵ1 there exists a σ-directed inverse system X = {Xa, pab, A} of
compact metric spaces Xa such that X is homeomorphic to limX. From the
proof of [13, p. 397, Theorem 1.8] it follows that the bonding mappings pab

are surjective. Now, if X is a Hausdorff continuum, then it is clear that each
Xa = pa(X) is a metric continuum. ¤

The following result [23, p. 173, Problem 23C] will be used.

Theorem 1.3. The following are all equivalent, for a locally compact metric
space X :

a) X is separable,
b) X =

⋃∞
n=1 Kn, where Kn is compact and Kn ⊂ IntKn+1 for each n ∈ N,

c) The one point compactification X∗ [23, p. 136] of X is metrizable.

A function F : X → 2Y is upper semi-continuous at a point p ∈ X provided
that for every open set V ⊂ Y such that F (p) ⊂ V there is an open set U ⊂ X
such that p ∈ U and satisfying F (x) ⊂ V for all x ∈ U. The function F is said
to be upper semi-continuous if it is upper semi-continuous at each of its points.

We say that a function F : X → 2Y is lower semi-continuous at a point p ∈ X
provided that for every open set G ⊂ Y such that F (p) ∩ G 6= ∅ there exists
an open set U ⊂ X such that p ∈ U and F (x) ∩ G 6= ∅ for every x ∈ U . The
function F is said to be lower semi-continuous if it is lower semi-continuous at
each of its points.

2. A Whitney Map and Hereditarily Irreducible Mappings

The notion of an irreducible mapping was introduced by Whyburn [22, p. 162].
If X is a continuum, a surjection f : X → Y is irreducible provided that no
proper subcontinuum of X maps onto all of Y under f .
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A mapping f : X → Y is said to be hereditarily irreducible [18, p. 204,
(1.212.3)] provided that for any given subcontinuum Z of X, no proper subcon-
tinuum of Z maps onto f(Z).

A mapping f : X → Y is light (zero-dimensional) if all fibers f−1(y)
are hereditarily disconnected (zero-dimensional or empty) [7, p. 450], i.e.,
if f−1(y) does not contain any connected subset of cardinality larger that one
(dim f−1(y) ≤ 0). Every zero-dimensional mapping is light, and in the realm
of mappings with compact fibers the two classes of mappings coincide.

Every hereditarily irreducible mapping is light. If f : X → Y is monotone
and hereditarily irreducible, then f is one-to-one.

Let Λ be a subspace of 2X . By a Whitney map for Λ [18, p. 24, (0.50)] we
will mean any mapping g : Λ → [0, +∞) satisfying

a) if A,B ∈ Λ such that A ⊂ B and A 6= B, then g(A) < g(B), and
b) g({x}) = 0 for each x ∈ X such that {x} ∈ Λ.
If X is a metric continuum, then there exists a Whitney map for 2X and

C(X) [18, pp. 24-26], [9, p. 106]. If X is a metric continuum, then so is C(X).
Hence, there exists a Whitney map for C2(X) = C(C(X)). On the other hand,
if X is non-metric, then it admits no Whitney map for 2X [2, p. 305]. It is
known that there exist non-metric continua which admit and ones which do not
admit a Whitney map for C(X) [2, p. 307]. Moreover, if X is a non-metric
locally connected or a rim-metrizable continuum, then X admits no Whitney
map for C(X) [12, Theorem 8 and 11].

The following external characterization of non-metric continua which admit a
Whitney map is proved in [13, p. 399, Theorem 2.3] for continua, but the proof
given in [13, p. 399, Theorem 2.3] can be applied without essential changes to
compact spaces.

Theorem 2.1. Let X be a compact space. Then X admits a Whitney map
for C(X) if and only if for each σ-directed inverse system X = {Xa, pab, A} of
compact spaces Xa which admit Whitney maps for C(Xa) and X = limX, there
exists a subset B of A cofinal in A and such that, for each b ∈ B, the projection
pb : X → Xb is hereditarily irreducible. Moreover, for the necessity the condition
that each space Xa admits a Whitney map for C(Xa) is not required.

We say that a continuum X admits a Whitney map for C2(X) if there is a
mapping h : C2(X) → [0, +∞) such that

c) if A,B ∈ C2(X) are such that A ⊂ B and A 6= B, then h(A) < h(B)
and

d) h(D) = 0 for each D ∈ (X(1))(1).

Theorem 2.2. If a continuum X admits a Whitney map for C2(X), then X
admits a Whitney map for C(X).

Proof. Since X admits a Whitney map for C2(X) there is a mapping h :
C2(X) → [0, +∞) such that: c) if A,B ∈ C2(X) are such that A ⊂ B and
A 6= B, then h(A) < h(B) and d) h({{x}}) = 0 for each x ∈ X. Given
A ∈ C(X) it follows that A(1) ∈ C2(X). Thus we can consider the function
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µ : C(X) → [0, +∞) defined by µ(A) = h(A(1)), for any A ∈ C(X). Let
A,B ∈ C(X) be such that A ⊂ B and A 6= B. Then A(1), B(1) ∈ C2(X) are
such that A(1) ⊂ B(1) and A(1) 6= B(1), By c) we have h(A(1)) < h(B(1)).
This implies that µ(A) < µ(B). Now, let x ∈ X. By d) µ({x}) = h({x}(1)) =
h({{x}}) = 0. Using the Vietoris topology on both C(X) and C2(X) it can be
shown that µ is continuous. Thus, X admits a Whitney map for C(X). ¤

We say that a continuum C(X) admits a Whitney map for C2(X) if there is
a mapping f : C2(X) → [0, +∞) such that

e) if A,B ∈ C2(X) are such that A ⊂ B and A 6= B, then f(A) < f(B)
and

d) f(D) = 0 for each D ∈ C(X)(1).

Theorem 2.3. Let X be a continuum. If C(X) admits a Whitney map for
C2(X), then X admits a Whitney for C(X).

Proof. Let X = {Xa, pab, A} be a σ-directed inverse system such that each co-
ordinate space Xa is a continuum which admits a Whitney map for C(Xa) and
X = limX. Then C(X)={C(Xa), C(pab), A} is a σ-directed inverse system
such that C(X) is homeomorphic to lim C(X) (Lemma 1.1). Since C(X) ad-
mits a Whitney map for C2(X), we can apply the necessity of Theorem 2.1
to C(X) in place of X to conclude that there is a subset B of A cofinal in A
such that the projections C(pb) : C(X) → C(Xb) are hereditarily irreducible.
Now, the restriction C(pb)|X(1) is again hereditarily irreducible since X(1) is a
subcontinuum of C(X). Let us observe that (C(pb)|X(1))(X(1)) ⊂ Xb(1) and
that both X(1) and Xb(1) are homeomorphic to X and Xb, respectively. Thus
C(pb)|X(1) = pb, which means that the projections pb : X → Xb are heredi-
tarily irreducible, for each b ∈ B. Finally, from Theorem 2.1 it follows that X
admits a Whitney map for C(X). ¤

3. The Metrizability of C(X) \X(1) if X is Arcwise Connected

Now we will prove the metrizability of C(X) \X(1) if X is an arcwise con-
nected continuum which admits a Whitney map for C(X).

Theorem 3.1. If an arcwise connected continuum X admits a Whitney map
for C(X), then C(X) \X(1) is metrizable and w(C(X) \X(1)) ≤ ℵ0.

Proof. Assume that a non-metric arcwise connected continuum X admits a
Whitney map for C(X). From Theorem 1.2 it follows that there exists a σ-
directed inverse system X = {Xa, pab, A} of metric continua and surjective
bonding mappings such that X is homeomorphic to limX. Consider the inverse
system C(X) = {C(Xa), C(pab), A} whose limit is C(X) (Lemma 1.1). From
Theorem 2.1 it follows that there exists a subset B cofinal in A such that
the projections pb are hereditarily irreducible. By [18, p. 204, (1.212.3)] the
hereditarily irreducibility of pb implies that C(pb) is light for every b ∈ B.
Since limX is homeomorphic to lim{Xb, pbc, B}, we may assume that B = A.
Let Ya = C(pa)(C(X)). Furthermore, C(pa)

−1(Xa(1)) = X(1) since from the
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hereditary irreducibility of pa it follows that no non-degenerate subcontinuum of
X maps under pa onto a point. We infer that C(pa)

−1[Ya\Xa(1)] = C(X)\X(1).
Let us prove that the restriction C(pa)|[C(X) \ X(1)] is one-to-one. Suppose
that C(pa)|[C(X) \ X (1)] is not one-to-one. Then there exists a continuum
Ca in Xa and two non-degenerate and distinct continua C,D in X such that
pa(C) = pa(D) = Ca. It is impossible that C ⊂ D or D ⊂ C since pa is
hereditarily irreducible. Otherwise, if C ∩ D 6= ∅, then for the continuum
Y = C ∪ D we have that C and D are proper subcontinua of Y and pa(Y ) =
pa(C) = pa(D) = Ca, which is impossible since pa is hereditarily irreducible.
We infer that C ∩D = ∅. There exists a generalized arc E with end points in
C and D, respectively. Moreover, since C and D are non-degenerate, we may
assume that E ∩ C 6= C and E ∩ D 6= D. Now pa(E ∪ D) = pa(E), which
is impossible since pa is hereditarily irreducible. It follows that the restriction
Pa = C(pa)|[C(X) \X(1)] is one-to-one and closed [7, p. 95, Proposition 2.1.4].
Hence, Pa is a homeomorphism and C(X) \ X(1) is metrizable. Moreover,
w(C(X) \X(1)) ≤ ℵ0 since Ya as a compact metrizable space is separable and,
consequently, second-countable [7, p. 320]. ¤

It is known that if X is a continuum, then C(X) is arcwise connected [16, p.
1209, Theorem]. Hence, we have the following corollary.

Corollary 3.2. If X is a continuum which admits a Whitney map for the
hyperspace C2(X), then C2(X)\C(X)(1) is metrizable and w(C2(X)\C(X)(1))
≤ ℵ0.

We close this section with the following result.

Theorem 3.3. If an arcwise connected continuum X admits a Whitney map
for the hyperspace C(X), then C(X) \ X(1) admits a Whitney map for both
C(C(X) \X(1)) and (C(X) \X(1))(1).

Proof. By Theorem 3.1 the space C(X)\X(1) is metrizable and w(C(X)\X(1))
≤ ℵ0. This means that C(X) \X(1) is separable. Now we will use the theorem
due to T. Watanabe [21, Theorem 1] which states that if Z is a separable metric
space, then Z admits a Whitney map µ : 2Z → R. This means that there exists
a Whitney map υ for 2C(X)\X(1). The restrictions of υ to C(C(X) \X(1)) and
(C(X) \X(1))(1) are Whitney maps as well. ¤

4. Smoothness and Whitney Maps

There are many definitions of smoothness in the literature. The following
concept of smoothness is due to Maćkowiak [15] for metric continua and to
Rakowski [19] for Hausdorff continua. We call this concept the MR-smoothness.

4.1. MR-smoothness. We say that a pointed continuum (X, p) is MR-smooth
provided that X is smoth at p, i.e., for each subcontinuum L of X which contains
p and for each open set V which contains L there exists an open connected set
U such that L ⊂ U ⊂ V [3, p. 103].
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For a given pointed continuum (X, p) consider a function δ(X,p) : X → C2(X)
defined by

δ(X,p)(x) = {K ∈ C(X) : p, x ∈ K}.
The following two theorems have been proved in the metric case [5, Proposi-

tions 1 and 2] respectively, but they remain valid for Hausdorff continua [3, p.
103].

Theorem 4.1. The function δ(X,p) is upper semi-continuous.

Theorem 4.2 ([3, Theorem 8.1]). The function δ(X,p) is continuous if and
only if the pointed continuum (X, p) is MR-smooth.

Lemma 4.3. If (X, p) is a pointed arcwise connected MR-smooth continuum,
then δ(X,p) : X → C2(X) is an embedding and δ(X,p)(X) ⊂ C2(X) \ C(X)(1).

Proof. According to Theorem 4.2 the function δ(X,p) : X → C2(X) is continuous
since (X, p) is MR-smooth. Moreover, if x 6= y, then the generalized arcs px
and py are distinct, whence {K ∈ C(X) : p, x ∈ K} 6= {K ∈ C(X) : p, y ∈ K}.
This means then δ(X,p) is one-to-one. Thus it is an embedding. Let us prove
that δ(X,p)(X) ⊂ C2(X)\C(X)(1). If X is not a generalized arc, then δ(X,p)(x) =
{K ∈ C(X) : p, x ∈ K} is a non-degenerate continuum in C(X) which contains
a generalized arc px and X. Hence, δ(X,p)(x) ∈ C2(X) \ C(X)(1). If X is a
generalized arc, then X is MR-smooth at each of its points. We may assume
that p is not an end point. This implies that δ(X,p)(x) is a non-degenerate
continuum in C(X) which contains a generalized arc px and X. ¤

Theorem 4.4. If (X, p) is a pointed arcwise connected MR-smooth continuum
which admits a Whitney map for C2(X), then X is metrizable.

Proof. From Corollary 3.2 it follows that C2(X) \ C(X)(1) is metrizable and
w(C2(X) \ C(X)(1)) ≤ ℵ0 since C(X) is arcwise connected. Using Lemma
4.3 we infer that δ(X,p)(X) ⊂ C2(X) \ C(X)(1). Hence X is metrizable and
separable. ¤

Corollary 4.5. An MR-smooth arcwise connected pointed continuum (X, p)
admits a Whitney map for C2(X) if and only if it is metrizable.

An arboroid is a hereditarily unicoherent continuum which is arcwise con-
nected. A metrizable arboroid is a dendroid. If X is an arboroid and x, y ∈ X,
then there exists a unique generalized arc xy in X with end points x and y.

Corollary 4.6. An MR-smooth pointed arboroid (X, p) admits a Whitney
map for C2(X) if and only if it is metrizable.

Proof. Apply Theorem 4.4. ¤
4.2. Arc-smoothness. The notion of arc-smoothness was introduced by Fu-
gate, Gordh and Lum in [8]. We will use the generalization of this notion from
[11].

An arc-structure on a continuum X [11, p. 172] is a function A : X ×X →
C(X) such that for x 6= y in X, the set A(x, y) is a generalized arc from x to y
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and such that the following metric-like conditions are satisfied for all x, y and
z in X :

(a) A(x, x) = {x},
(b) A(x, y) = A(y, x), and
(c) A(x, z) ⊆ A(x, y) ∪ A(y, z) with equality prevailing whenever y belongs

to A(x, z).
The pair (X, A) is arc-smooth at point p in X if the induced function Ap :

X → C(X) defined by Ap(x) = A(p, x) is continuous. The pair (X, A) is
arc-smooth if there exists a point in X at which (X,A) is arc-smooth.

Remark. In [14] the set Ap(X) is denoted by D(X, p) and it is proved that if X
is smooth at p, then D(X, p) is arcwise connected [14, Theorem 4.8]. Moreover,
if the continuum X is arcwise connected and smooth at a point p, then there
exists a homeomorphism h : X → D(X, p) [14, Theorem 8.2]. Namely, h is
defined by h(x) = A(p, x).

If a continuum X is arc-smooth at the point p, then Ap : X → C(X) is
one-to-one. Thus, we have the following lemma.

Lemma 4.7. Let X be a continuum with an arc-structure A. If (X, A) is
arc-smooth at a point p ∈ X, then Ap(X) ⊂ C(X) is homeomorphic to X.

Now we are ready to prove the following theorem.

Theorem 4.8. If X is an arc-smooth continuum, then X admits a Whitney
map for C(X) if and only if X is metrizable.

Proof. It is known that if X is metrizable, then X admits a Whitney map for
C(X). Suppose that X is non-metrizable and there exists a Whitney map for
C(X). Let X be arc-smooth at a point p. By Lemma 4.7 X is homeomorphic
to Ap(X) ⊂ C(X). It is clear that Ap(X) \ {{p}} ⊂ C(X) \ X(1). We infer
that Ap(X)\{{p}} is metrizable since C(X)\X(1) is metrizable (Theorem 3.1).
Hence X\{p} is metrizable since it is homeomorphic to Ap(X)\{{p}} under the
homeomorphism h(x) = A(p, x). Moreover, from Theorem 3.1 it follows that
X is separable since w(C(X) \X(1)) ≤ ℵ0 and Ap(X) \ {{p}} ⊂ C(X) \X(1).
Furthermore, X is the one point compactification of X \ {p}. Finally, from
Theorem 1.3 it follows that X is metrizable, a contradiction. ¤

Formerly the smoothness was defined for fans [1, p. 7] and for metric ar-
boroids, i.e., for dendroids [4, p. 298, Definition].

An arboroid X is said to be smooth if there exists a point p ∈ X, called an
initial point of X, such that for every convergent net {ad : d ∈ D} of points ad of
X the condition lim{ad : d ∈ D} = a implies that the net of arcs {pad : d ∈ D}
is convergent and Lim{pad : d ∈ D} = pa.

Lemma 4.9 ([8, p. 647]). An arboroid is smooth if and only if it is arc-
smooth.

Theorem 4.10. If a smooth arboroid X admits a Whitney map for C(X),
then X is metrizable.
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5. The Property of Kelley

We say that a continuum X has the property of Kelley at a point p ∈ X if for
every subcontinuum K ⊂ X containing p and for every open neighborhood U of
K in the hyperspace C(X), there exists a neighborhood U of p in X such that
if q ∈ U then there is a continuum L ∈ C(X) with q ∈ L ∈ U . A continuum X
has the property of Kelley if it has the property of Kelley at each of its points.

For a given continuum X we define the function αX : X → C2(X) by

αX(x) = {A ∈ C(X) : x ∈ A}
for each point x ∈ X [3, p. 91].

Lemma 5.1. The function αX is upper semi-continuous.

Proof. See [20, p. 292, (2.1) Theorem]. ¤
Theorem 5.2 ([3, Theorem 3.1]). The function αX is continuous if and only

if X has the property of Kelley.

Hence we have the following lemma.

Lemma 5.3. If a continuum X has the property of Kelley, then the function
αX : X → C2(X) \ C(X)(1) is an embedding.

Proof. Let us note that

αX(X) ⊂ C2(X) \ C(X)(1).

The rest follows from Theorem 5.2. ¤
Now we are ready to prove the following theorem.

Theorem 5.4. If a continuum X with the property of Kelley admits a
Whitney map for C2(X), then it is metrizable.

Proof. By Corollary 3.2 the set C2(X) \ C(X )(1) is metrizable and

w(C2(X) \ C(X)(1)) ≤ ℵ0.

Using Lemma 5.3 we see that αX(X) ⊂ C2(X) \ C(X)(1) is metrizable. More-
over, X is homeomorphic to αX(X). Hence X is metrizable. ¤

Problem 1. Is it true that a continuum X with the property of Kelley is
metrizable if it admits a Whitney map for C(X)?

We say that a continuum X is hereditarily indecomposable if no subcontinuum
of X can be written as the union of two proper subcontinua [9, p. 61].

Lemma 5.5 ([6, p. 211, Proposition 2.7]). Hereditarily indecomposable
continua have the property of Kelley.

From Theorem 5.4 we obtain the following result.

Theorem 5.6. If a hereditarily indecomposable continuum X admits a Whit-
ney map for C2(X), then X is metrizable.
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6. Concluding Remarks

It is known [7, p. 171, Corollary 3.1.20] that if a compact space X is a
countable union of its subspaces Xn, n ∈ N, such that w(Xn) ≤ ℵ0, then
w(X) ≤ ℵ0. Using this fact and the theorems proved in the previous sections
we obtain the following results.

Theorem 6.1. If a continuum X is the countable union of its arcwise
connected MR-smooth continua and if X admits a Whitney map for C2(X),
then X is metrizable.

Proof. Apply Theorem 4.4. ¤
Theorem 6.2. If a continuum X is the countable union of its arc-smooth

continua and if X admits a Whitney map for C(X), then X is metrizable.

Proof. Apply Theorem 4.8. ¤
Finally, applying Theorem 5.4 we obtain the following theorem.

Theorem 6.3. If a continuum X is the countable union of its subcontinua
with the property of Kelley and if X admits a Whitney map for C2(X), then X
is metrizable.
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13. I. Lončar, A fan X admits a Whitney map for C(X) iff it is metrizable. Glas. Mat. Ser.

III 38(58)(2003), 395–411.
14. L. Lum, Weakly smooth continua. Trans. Amer. Math. Soc. 214(1975), 153–167.
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