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SOME REMARKS CONCERNING JONES
EIGENFREQUENCIES AND JONES MODES

DAVID NATROSHVILI, GURAM SADUNISHVILI, AND IRINE SIGUA

Abstract. Three-dimensional fluid-solid interaction problems with regard
for thermal stresses are considered. An elastic structure is assumed to be a
bounded homogeneous isotropic body occupying a domain Ω+ ⊂ R3, where
the thermoelastic four dimensional field is defined, while in the unbounded
exterior domain Ω− = R3 \Ω+ there is defined the scalar (acoustic pressure)
field. These two fields satisfy the differential equations of steady state oscil-
lations in the corresponding domains along with the transmission conditions
of special type on the interface ∂Ω±. We show that uniqueness of solutions
strongly depends on the geometry of the boundary ∂Ω±. In particular, we
prove that for the corresponding homogeneous transmission problem for a
ball there exist infinitely many exceptional values of the oscillation parame-
ter (Jones eigenfrequencies). The corresponding eigenvectors (Jones modes)
are written explicitly. On the other hand, we show that if the boundary
surface ∂Ω+ contains two flat, non-parallel sub-manifolds then there are no
Jones eigenfrequencies for such domains.
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1. Introduction

Problems connected with the interaction between vector fields of different
dimension have received much attention in the mathematical and engineering
scientific literature and have been intensively investigated for the past years.
They arise in many physical and mechanical models describing the interaction
of two different media where the whole process is characterized by a vector-
function of dimension k in one medium and by a vector-function of dimension n
in another one (for example, the fluid-structure interaction when a streamlined
body is an elastic obstacle, the scattering of acoustic and electromagnetic waves
by an elastic obstacle, the interaction between an elastic body and seismic waves,
etc.).

Quite many authors have considered in detail time-harmonic dependent fluid-
solid interaction problems involving the so-called frequency parameter ω. Ex-
haustive information in this direction can be found in [1], [3], [4], [5], [6], [9],
[10], [12], [14], [17] (see also the references therein).

Here we consider three-dimensional fluid-solid interaction problems with re-
gard for thermal stresses. An elastic structure is assumed to be a bounded
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homogeneous isotropic body occupying a domain Ω+ ⊂ R3, where the thermoe-
lastic four-dimensional field is defined, while in the unbounded exterior domain
Ω− = R3 \ Ω+ the scalar (acoustic pressure) field is defined. These two fields
satisfy the differential equations of steady state oscillations in the corresponding
domains along with transmission conditions of a special type on the interface
∂Ω±.

In general, the corresponding transmission problem is not uniquely solvable
for all values of the oscillation parameter ω. We remark that the uniqueness of
solutions plays a crucial role in many applications (e.g., in inverse fluid solid-
interaction problems related to shape identification problems). Till now, almost
nothing has been known of exceptional values (the so-called Jones eigenfrequen-
cies) of the oscillation parameter ω for which the homogeneous transmission
problem has nontrivial solutions (Jones modes).

In this paper we show that the uniqueness of solutions strongly depends
on the geometry of the boundary ∂Ω±. We prove that for the corresponding
homogeneous transmission problem for a ball there exist infinitely many Jones
eigenfrequencies and Jones modes. We have obtained an explicit equation (in
terms of Bessel functions) for Jones eigenfrequencies. The corresponding Jones
modes are written explicitly. On the other hand, we have established that if the
boundary surface ∂Ω+ contains two flat, non-parallel sub-manifolds then there
exist no Jones eigenfrequencies for such domains.

2. Formulation of the Problem. General Uniqueness Results

Let Ω+ ⊂ R3 be a bounded domain with the boundary ∂Ω+ = S, Ω+ =
Ω+ ∪ S, and let Ω− = R3 \ Ω+. We assume that the domain Ω+ is filled up by
a homogeneous isotropic material. The thermoelastic oscillation field is defined
in Ω+ and is described by the displacement vector u = (u1, u2, u3)

> and the
temperature distribution function u4 (here and in what follows the symbol >

denotes transposition). In the domain Ω− the oscillation field is described by
the wave (metaharmonic) function w.

The interaction of these two fields is mathematically described by the follow-
ing transmission problem (see, e.g., [5] and the references therein).

Problem A. Find the displacement vector u and the temperature distribu-
tion function u4 in Ω+, and the metaharmonic function w in Ω− which satisfy

i) the differential equations of coupled thermoelasticity in Ω+





µ ∆u + (λ + µ) grad div u + %ω2 u− γ grad u4 = 0,

∆u4 +
i ω

κ
u4 + i ω η div u = 0,

(1)

and the Helmholtz equation in Ω−

(∆ + %1 ω2) w = 0, (2)
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ii) the boundary transmission conditions on S

{PU}+ = d2{w}−n + f,

{n · u}+ = d1{∂nw}− + f4,

{α ∂nu4 + βu4}+ = f5,

(3)

where n is the outward unit normal vector to S, the symbols { · }± denote the
limits on S from Ω±, ∂n is the usual directional differentiation along the normal
vector n, ω > 0 is a frequency, U = (u1, u2, u3, u4)

>, PU is the thermo-stress
vector [11]

PU = P (∂x, n(x))U(x) := 2µ∂nu + λn div u + µ[n× rot u]− γu4n; (4)

∂x = (∂1, ∂2, ∂3), ∂j = ∂/∂xj, j = 1, 2, 3; for the vectors a = (a1, a2, a3) and
b = (b1, b2, b3) the symbols a ·b and a×b denote the usual inner product and the
cross product, respectively; d1, d2, α, and β are some complex constants, while
f = (f1, f2, f3)

>, f4 and f5 are given functions on S; λ and µ are the Lamé
constants, %1, %, γ,κ, and η are positive constants characterizing the thermo-
mechanical properties of materials (see, e.g., [16], [11], [5]-[8], [2], [4]).

Moreover, we provide uj ∈ C1(Ω+)
⋂

C2(Ω+), w ∈ C1(Ω−)
⋂

C2(Ω−), and,
in addition, w satisfies the Sommerfeld radiation condition at infinity

∂w(x)

∂r
− i

√
%1 ωw(x) = O(r−2) as r → +∞, r = |x|. (5)

In what follows we will study the uniqueness question for the homogeneous
Problem A. To this end, let us introduce the following notation.

Denote by J(Ω+) the set of all values of the oscillation parameter ω for which
the BVP

∆u + ω2
3 u = 0 in Ω+, u = (u1, u2, u3)

>, ω2
3 =

%ω2

µ
, (6)

div u = 0 in Ω+, (7)
{
T (∂x, n(x))u(x)

}+
:=

{
2µ ∂n u(x)+µ [n(x)×u(x)]

}+
=0 on ∂Ω+, (8)

{n(x) · u(x)}+ = 0 on ∂Ω+. (9)

possesses a nontrivial solution. Such values of the parameter ω are called Jones
eigenfrequencies. To each ω ∈ J(Ω+) there correspond only finitely many lin-
early independent solutions which are called Jones modes. The space of all
Jones modes corresponding to ω is denoted by Xω(Ω+).

Theorem 1. Let d1d2 be a negative real number and either < (
β/α

)
> 0

or α β = 0. Further, let U and w solve the homogeneous transmission problem
(1)–(5) (i.e., fj = 0, j = 1, 5). Then w = 0 in Ω−, u4 = 0 in Ω+, and u = 0 in
Ω+ if ω 6∈ J(Ω+), and u ∈ Xω(Ω+) if ω ∈ J(Ω+).

Proof. Let a pair (U,w) be a solution of the homogeneous Problem A. First
we consider the case < (

β/α
)

> 0. Green’s formula for the domain Ω+ then
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implies [11]

2γ

i ω η

∫

Ω+

|∇u4|2 dx=

∫

S

(
{u}+ {PU}+ +

γ

i ω γ
{u4}+ {∂n u4}+−{u}+{PU}+

+
γ

i ω η
{u4}+ {∂n u4}+

)
dS, (10)

where ∇ =
(
∂x1 , ∂x2 , ∂x3

)
. From (10) and (3) it follows that

γ

ω η

∫

Ω+

|∇u4|2 dx =−=
(
d1d2

∫

S

{∂nw}− {w}− dS
)

+
γ

ω η
<

∫

S

{u4}+ {∂u4}+ dS. (11)

Further, let B(0; R) = {x ∈ R3 : |x| < R} be a ball with center at the origin
and radius R. For sufficiently large R we have Ω+ ⊂ B(0; R). Applying Green’s
formula for the operator ∆ + ρ1 ω2 and the domain B(0; R) \ Ω+, we get

0 =

∫

B(0;R)

[
w(∆ + ρ1ω

2)w − w(∆ + ρ1ω
2)w

]
dx

= −
∫

S

(
{w}−{∂nw}− − {w}−{∂nw}−

)

+

∫

ΣR

(
w∂nw − w∂nw

)
dΣR, (12)

where (4+ρ1ω
2)w = 0 and ΣR = ∂B(0; R); the bar denotes complex conjugate.

Equation (12) yields

−=
[ ∫

S

{w}− {∂nw}− dS −
∫

ΣR

w ∂nw dΣR

]
= 0. (13)

Multiplying (13) by d1d2 < 0, adding termwise to (11), and passing to the
limit as R → +∞ and taking (5) into consideration, we arrive at the equality

γ

ω η

[ ∫

Ω+

|∇u4|2 dx + <
(β

α

) ∫

S

|u4|2 dS

]

−ω d1 d2
√

%1 lim
R→+∞

∫

ΣR

|w|2 dΣR = 0. (14)
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Since all the constant multipliers involved in (14) are positive, from (14) we
conclude that

∫

Ω+

|∇u4|2 dx + <
(β

α

) ∫

S

|u4|2 dS = 0, (15)

lim
R→+∞

∫

ΣR

|w|2 dΣR = 0. (16)

Consequently, u4(x) = 0 in Ω+, and by Rellich’s lemma (see, e.g, [2])
w(x) = 0 in Ω−.

Now, let α = 0 and β 6= 0. By the same arguments as above we derive
u4(x) = 0 in Ω+ and w(x) = 0 in Ω−.

If α 6= 0 and β = 0, then (14) yields w(x) = 0 in Ω−, and u4(x) =const in
Ω+, which in turn implies u4(x) = 0 in Ω+.

It is easy to see that, if w = 0 in Ω− and u4(x) = 0 in Ω+, then u solves the
BVP (6)–(9), whence the proof of the theorem follows. ¤

In accordance with Theorem 1 the uniqueness result for the Problem A is
equivalent to the uniqueness result for the over-determined BVP (6)–(9). In
what follows we shall show that the uniqueness result is essentially related to
the geometrical shape of the interface surface S.

3. Spherical Interfaces

In this subsection we assume Ω+ = B(0, R), ∂Ω+ = S = ΣR, Ω+ = Ω+
⋃

S,
Ω− = R3 \ Ω+, and consider the homogeneous transmission Problem A.

In this case a general solution of system (1) can be represented in the form
(for details see [13])

u = a grad ϕ1 + b grad ϕ2 + c rot {[x×∇] ϕ3 + rot [x×∇] ϕ4}, (17)

u4 = ϕ1 + ϕ2, (18)

where ϕj are metaharmonic functions in Ω+,

( ∆ + ω2
j ) ϕj = 0, j = 1, 2, 3, 4, (19)

and where

a =
i (λ + 2µ)(κ ω2

1 − i ω)

%ω3 κ
+

γ

%ω2
,

b =
i (λ + 2µ)(κ ω2

2 − i ω)

%ω3 η κ
+

γ

%ω2
, c =

µ

%ω2
,

ω2
1 ω2

2 =
i % ω3

κ (λ + 2µ)
, ω2

1 + ω2
2 =

i ω

κ
+

i ω γ η

λ + 2µ
+

%ω2

λ + 2µ
,

ω2
3 = ω2

4 =
% ω2

µ
.

(20)
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Clearly, [x×∇]k ≡ ∂
∂Sk(x)

(k = 1, 2, 3) represents a tangential derivative on the

spherical surface of radius |x|:
∂

∂S1(x)
= x2

∂

∂x3

− x3
∂

∂x2

= − cos ϕ cot θ
∂

∂ϕ
− sin ϕ

∂

∂θ
,

∂

∂S2(x)
= x3

∂

∂x1

− x1
∂

∂x3

= − sin ϕ cot θ
∂

∂ϕ
+ cos ϕ

∂

∂θ
,

∂

∂S3(x)
= x1

∂

∂x2

− x2
∂

∂x1

=
∂

∂ϕ
.

Here r, θ, ϕ are the spherical co-ordinates of the point x ∈ R3.
Throughout this subsection we assume that∫

ΣR

ϕ3 dΣ =

∫

ΣR

ϕ4 dΣ = 0, (21)

which guarantees the one-to-one correspondence between two sets of functions
u1, . . . , u4 and ϕ1, . . . , ϕ4 (for details see [13]).

Lemma 2. If ϕ1, . . . , ϕ4 are metaharmonic functions satisfying the Helmholtz
equations (19), then u = (u1, u2, u3)

> and u4 defined by (17) and (18) solve the
system of differential equations (1).

Vice versa, if a couple (u, u4)
> is an arbitrary solution of the simultaneous

equations (1), then there are uniquely defined metaharmonic functions ϕ1, . . . , ϕ4

satisfying conditions (19) and (21) such that the representation formulas (17)
and (18) hold true.

We look for functions ϕj (j = 1, 4) and w in the form (cf. [13])

ϕj(x) =
∞∑

m=0

Ψm(ωj r) Yjm(θ, ϕ), j = 1, 4, x ∈ Ω+, (22)

w(x) =
∞∑

m=0

Φm(ω5 r) Y5m(θ, ϕ), x ∈ Ω−, (23)

where Ylm(θ, ϕ) are spherical functions of order m,

Ψm(ωjr) =

√
R

r
Im+ 1

2
(ωj r),

Φm(ω5 r) =

√
R

r
H

(1)

m+ 1
2

(ω5 r), ω5 =
√

ρ1 ω,

(24)

Im+ 1
2

and H
(1)

m+ 1
2

are Bessel function and Hankel function of first kind, respec-

tively.
Moreover, we assume that Y30 = Y40 = 0 by virtue of equations (21). In [13]

it is shown that

(x · u) = ar
∂ϕ1

∂r
+ br

∂ϕ2

∂r
+ c

3∑

k=1

∂2ϕ3

∂S2
k(x)

,
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(x · PU)=
{

2ar
∂2

∂r2
−(aλω2

1+γ)r
}

ϕ1+
{

2bµ r
∂2

∂r2
−(bλω2+γ)r

}
ϕ2

+
2cµ

r

(
r

∂

∂r
− 1

) 3∑

k=1

∂2ϕ3

∂S2
k(x)

,

3∑

k=1

∂

∂Sk(x)
[x× PU ]k = 2µ

( ∂

∂r
− 1

r

) 3∑

k=1

∂2

∂S2
k

(aϕ1 + bϕ2)

− (2cµr
∂2

∂r2
+ 2cµ

∂

∂r
− 2cµ

r
+ µr)

3∑

k=1

∂2ϕ3

∂S2
k(x)

,

3∑

k=1

∂

∂Sk(x)
[PU ]k = µ

( ∂

∂r
− 1

∂r

) 3∑

k=1

∂2ϕ4

∂S2
k(x)

. (25)

Notice that (see [13])

3∑

k=1

∂2Zm(θ, ϕ)

∂S2
k(x)

= −m (m + 1) Zm(θ, ϕ), (26)

for an arbitrary spherical function Zm(θ, ϕ) (m = 0,∞).
Substituting (22) into (25) and taking into account the homogeneous inter-

face conditions (3) (i.e., fj = 0, j = 1, 5) along with equation (26) and the
orthogonality property of spherical functions, we obtain the system of linear
algebraic equations for the above-introduced unknown spherical functions Yjm

(m = 0,∞, j = 1, 5):

a
[ ∂

∂r
Ψm(ω1 r)

]
r=R

Y1m + b
[ ∂

∂r
Ψm(ω2r)

]
r=R

Y2m

− cm(m + 1)
[ 1

R
Ψm(ω3R)

]
Y3m − d1

[ ∂

∂r
Φm(ω5r)

]
r=R

Y5m = 0,

{[
2aµ

∂2

∂r2
− (amλω2

1 + γ)
]
Ψm(ω1r)

}
r=R

Y1m

+
{[

2bµ
∂2

∂r2
− (bλω2

2 + γ)
]
Ψm(ω2r)

}
r=R

Y2m

−
[2cµ

r2

(
r

∂

∂r
−1

)
Ψm(ω3r)

]
r=R

m(m+1)Y3m−d2Φm(ω5R)Y5m =0, (27)

−2µa
[1

r

( ∂

∂r
− 1

r

)
Ψm(ω1r)

]
r=R

m(m + 1)Y1m

− 2µb
[1

r

( ∂

∂r
− 1

r

)
Ψm(ω2r)

]
r=R

m(m + 1)Y2m

+ m(m + 1)
[(

2cµ
∂2

∂r2
+2cµ

1

r

∂

∂r
− 2cµ

r2
+ µ

)
Ψm(ω3r)

]
r=R

Y3m =0,

− µm(m + 1)
[( ∂

∂r
− 1

r

)
Ψm(ω3r)

]
r=R

Y4m = 0,
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[(
α

∂

∂r
+ β

)
Ψm(ω1r)

]
r=R

Y1m +
[(

α
∂

∂r
+ β

)
Ψm(ω2r)

]
r=R

Y2m = 0.

Due to the uniqueness theorem we have u4 = ϕ1+ϕ2 = 0 in Ω+ and w = 0 in Ω−.
Since ω2

1 6= ω2
2 for ω 6= 0, it follows that ϕ1 = ϕ2 = 0 in Ω+. Representations

(22) and (23) then imply

Yjm(θ, ϕ) = 0, j = 1, 2, 5, m = 0, 1, 2, . . . (28)

The first three equations in (27) now yield

Y3m(θ, ϕ) = 0, m = 1, 2, . . . (29)

Thus the first, second, third and fifth equations in (27) are equivalent to the
relations (28) and (29).

The fourth equation (for m ≥ 1) can be rewritten in the form (see (24))
[( ∂

∂r
− 1

r

)
Ψm(ω3r)

]
r=R

Y4m

=
[
2R ω3 I ′m+ 1

2
(ω3 R)− 3Im+ 1

2
(ω3 R)

]
Y4m = 0, m = 1,∞. (30)

The equation
2tI ′

m+ 1
2
(t)− 3 Im+ 1

2
(t) = 0 with m ≥ 1 (31)

has infinitely many roots with respect to t (see, e.g., [15]). Denote these roots

by {t(m)
q }∞q=1 and let Q :=

∞⋃
m=1

{t(m)
q }∞q=1.

Further, let ω3R = ω R
√

%
µ
∈ Q, i.e., ωR

√
%
µ

= t
(m0)
q0 for some m0 ≥ 1 and

q0 ≥ 1. Then
2R ω3 I ′m0+ 1

2
(ω3 R)− 3 Im0+ 1

2
(ω3 R) = 0

and, consequently, equations (30) hold with arbitrary non-zero spherical func-
tions Y4m0 and Y4k =0 for k 6=m0. It is evident that ϕ4(x) := Ψm0(ωr) Y4m0(θ, ϕ)
is nontrivial and the vector

u = rot rot[x×∇] ϕ4(x) = ω2
3 [x×∇] ϕ4(x) (32)

represents a nontrivial solution of problem (6)–(9). Therefore ω =
√

µ
%

t
(m0)
q0

R
is a

Jones frequency and (32) is the corresponding Jones mode. The above results
lead to the following assertion.

Theorem 3. Let Ω+ = B(0, R) and

(∆ + ω2
3) ϕ4(x) = 0 in Ω+ with ω3 R = t(m0)

q0
∈ Q ,

[( ∂

∂r
− 1

r

)
ϕ4(x)

]
r=R

= 0 for |x| = R , (33)

[x×∇] ϕ4(x) 6≡ 0 .

Then ω is a Jones frequency and the vector

u(x) = ω2
3 [x×∇] ϕ4(x), x ∈ B(0, R) (34)

is a Jones mode.
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Vice versa, if ω is a Jones frequency and u is a Jones mode, then there exists
ϕ4 such that (34) holds and ϕ4 solves the BVP (33) with some ω3 such that
ω3 R ∈ Q.

From Theorem 3 it follows immediately that the set of Jones eigenfrequencies
is given by the relation

J(Ω+) =
{

ω : ω =

√
µ

%

t
(m)
q

R
with t(m)

q ∈ Q
}

.

Applying the properties of spherical functions it is easy to show that to each

eigenfrequency ω =
√

µ
%

t
(m)
q

R
there correspond 2m+1 linearly independent Jones

modes.

4. Interfaces with Flat Sub-Manifolds

Here we describe a class of domains with a special geometry for which there
exist no Jones modes.

Let Ω+ be a bounded domain with a piecewise C2-smooth, simply connected
Lipschitz boundary S = ∂Ω+ and consider the homogeneous transmission prob-
lem (1)–(5).

Since, in view of Theorem 1, w = 0 in Ω− and u4 = 0 in Ω+, we easily derive
that u = (u1, u2, u3)

> is a solution to the over-determined BVP (6)–(9).
In what follows we assume that the displacement vector u = (u1, u2, u3)

> be-
longs to the Sobolev space W 1

2 (Ω+). Therefore, due to the well-known regularity
theorems for weak solutions, we have

u ∈ W 1
2 (Ω+) ∩ C∞(Ω+) ∩ C2(Ω+ ∪ S0),

where S0 is the union of C2-smooth open sub-manifolds of S. We note that if
some open sub-manifold S∗ ⊂ S is C∞-smooth, then u ∈ C∞(Ω+ ∪ S∗).

Further, we recall that for the components uj (j = 1, 2, 3) of the displacement
vector u, which are solutions of the Helmholtz equation (6) in the domain Ω+,
there hold the following integral representation formulae (see, e.g., [2])

∫

S

{
[ ∂n(y)γ(x− y, ω) ] [uj(y)]+ − γ(x− y, ω) [∂nuj(y)]+

}
dSy

=

{
uj(x) for x ∈ Ω+,

0 for x ∈ Ω−,
(35)

where γ(x, ω) = −(4π|x|)−1 exp {i ω3 |x|} is a fundamental function of the

Helmholtz operator ∆ + ω2
3 with ω3 = ω

√
%
µ
.

Theorem 4. Let the boundary surface S = ∂Ω+ be a Lipschitz piecewise
smooth manifold which contains two flat, open sub-manifolds S1 and S2 with
non-parallel normal vectors.

Then the homogeneous BVP (6)–(9) possesses only a trivial solution.
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Proof. Denote by a(1) = (a11, a12, a13) and a(2) = (a21, a22, a23) the outward unit
normal vectors to S1 and S2, respectively. Clearly, apj (p = 1, 2, j = 1, 2, 3) are
real constants and due to the assumptions of the theorem

a := a(1) × a(2) = (a1, a2, a3) 6= 0. (36)

Further, we introduce the metaharmonic functions in Ω+, related to the dis-
placement vector u as follows:

vp(x) = u(x) · a(p) = ap1u1(x) + ap2u2(x) + ap3u3(x), p = 1, 2. (37)

Obviously,

vp ∈ W 1
2 (Ω+) ∩ C∞(Ω+ ∪ S1 ∪ S2) ∩ C2(Ω+ ∪ S0),

where S0 is the same as above. It is also evident that the representation formula
(35) remains valid for vp (p = 1, 2).

Let us show that the function vp (p = 1, 2) vanishes in Ω+. To this end, for
definiteness, we put p = 1 and rewrite the boundary conditions (8) as

{2 ∂nu+[n×curl u]}+
q =

{
∂nuq+

3∑
j=1

nj ∂quj

}+

= 0 on S, q = 1, 2, 3. (38)

These equations imply
{

∂nuq + ∂q

( 3∑
j=1

a1j uj

)}+

= 0 on S1, q = 1, 2, 3,

since nj = a1j on S1.
By multiplying the q-th equation by nq = a1q and summing, we get

{
∂n

( 3∑
q=1

a1q uq

)
+ ∂n

( 3∑
j=1

a1j uj

)}+

= 0 on S1,

i.e.,
{∂nv1(x)}+ = 0 on S1.

Moreover, by the boundary condition (9) we have

{v1(x)}+ = 0 on S1.

Therefore, due to the integral representation formula (35), we arrive at the
equation ∫

S\S1

{
[∂n(y)γ(x− y, ω)][v1(y)]+ − γ(x− y, ω)[∂nv1(y)]+

}
dSy

=

{
v1(x) for x ∈ Ω+,

0 for x ∈ Ω−.
(39)

Taking into account that the left-hand side integral in (39) defines an analytic
function of the real variable x in the connected domain R3 \ S1 which vanishes
in Ω− ⊂ R3 \ S1, we conclude that this integral is zero in the whole domain of
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analyticity R3 \ S1. Hence v1(x) = 0 in Ω+. By the same arguments we can
show that v2(x) = 0 in Ω+.

Now from (37) we see that the displacement vector u(x) for arbitrary x ∈ Ω+

is parallel to the constant vector a given by (36). Therefore there exists a scalar
function v(x) such that

u(x) = a v(x), i.e., uj(x) = aj v(x) for x ∈ Ω+, j = 1, 2, 3. (40)

It is easy to check that the function v satisfies the conditions (cf. (6), (8), (9),
(38)):

( ∆ + ω2
3 ) v(x) = 0 in Ω+,

( a · n(x) ) {v(x)}+ = 0 on S,

{
aq ∂nv(x) +

3∑
j=1

nj aj ∂qv(x)
}+

= 0 on S, q = 1, 2, 3.

The last two equations yield

b(x) {v(x)}+ = 0 and b(x) {∂nv(x)}+ = 0 on S, (41)

where

b(x) = a · n(x) = a1n1(x) + a2n2(x) + a3n3(x), x ∈ S, (42)

with n(x) being the outward unit normal to S and with a given by (36).
Since the vector a is constant and S is a piecewise C2-smooth closed surface

it follows that there exists an open C2-smooth sub-manifold S∗ ⊂ S such that

b(x) 6= 0 for x ∈ S∗.

Therefore (41) implies

{v(x)}+ = 0 and {∂nv(x)}+ = 0 on S∗,

whence, by the same arguments as above, we deduce that v(x) = 0 in Ω+.
Finally, equations (40) show that the displacement vector u(x) vanishes in Ω+.

¤
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