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ON THE STRONG DIFFERENTIATION OF MULTIPLE
INTEGRALS ALONG DIFFERENT FRAMES

GIORGI ONIANI

Abstract. Let E be a set consisting of rectangular frames in Rn. The fol-
lowing question connected with one problem of A. Zygmund is studied in
the paper: Does there exists a function the integral of which is: 1) non-
differentiable almost everywhere in a strong sense along every frame from E,
and 2) strongly differentiable along every frame not belonging to E? In par-
ticular, the question is solved on the existence of a non-empty set E different
from the set of all rectangular frames for which there is a function with the
properties 1) and 2).
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1. Definitions and the Notation

A mapping B defined on Rn is said to be a differentiation basis in Rn if for
every x ∈ Rn, B(x) is a family of open bounded sets containing the point x
such that there exists a sequence {Rk} ⊂ B(x) with diam Rk → 0 (k →∞).

Let B be a differentiation basis in Rn. For f ∈ Lloc(Rn) and x ∈ Rn, the
upper and lower limits of the integral mean 1

|R|
∫

R
f , where R is an arbitrary set

from B(x) and diam R → 0, are called the upper and the lower derivatives with
respect to B of the integral of f at the point x, and are denoted by DB(

∫
f, x)

and DB(
∫

f, x), respectively. When they are equal, their common value is called
a derivative with respect to B of

∫
f at the point x and is denoted by DB(

∫
f, x).

The basis B is said to differentiate the integral of f if DB(
∫

f, x) = f(x) for
almost all x. Under MB we mean the maximal operator corresponding to B, i.e.,

MB(f)(x) = sup
R∈B(x)

1
|R|

∫
R

|f | (f ∈ Lloc(Rn), x ∈ Rn). Also let M
(r)
B (f)(x) =

sup
R∈B(x), diam R<r

1
|R|

∫
R

|f | for any r > 0.

In what follows the dimension of the considered space Rn is assumed to be
greater than or equal to 2.

By I(Rn) (n ∈ N) we denote the differentiation basis in Rn for which I(Rn)(x)
(x ∈ Rn) consists of all n-dimensional intervals containing x. When the value
of the considered dimension is known, we simply write I.

A set whose elements are n mutually orthogonal straight lines passing through
the origin 0 is called a frame in the space Rn . Denote such a frame by θ
(θ = {θ1, . . . , θn}). Under θ0 we understand the frame {0x1, . . . , 0xn}, where
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0x1, . . . , 0xn are the coordinate axes of Rn. Denote the set of all frames by
θ(Rn).

We call θ = {θ1, . . . , θn} the frame of a rectangular parallelepiped I in Rn

and denote it by θ(I) if the edges of I are parallel to the corresponding lines θi

(i ∈ 1, n).
For any given nonempty set E ⊂ θ(Rn) we denote by I(E) the differentiation

basis for which I(E)(x) (x ∈ Rn) consists of all rectangular parallelepipeds I
with the properties: x ∈ I, θ(I) ∈ E. If E = {θ}, instead of I({θ}) we simply
write I(θ). It is clear that I(θ0) = I.

Differentiability of an integral with respect to I(θ) is sometimes called strong
differentiability along the frame θ. In the case θ = θ0 it is called strong differ-
entiability.

Let 1 ≤ k ≤ n−1. We call a set E ⊂ θ(Rn) an orbit of kth order if there exist
a set ∆ = ∆E consisting of n− k mutually orthogonal and passing through the
origin lines such that E = {θ ∈ θ(Rn) : ∆ ⊂ θ}. It is natural to consider ∅ and
θ(Rn) as orbits of 0th and nth order, respectively.

We call a set E ⊂ θ(Rn) an orbit if E is an orbit of kth order for some
k ∈ 0, n. By kE we denote the order of an orbit E. We call an orbit E
nontrivial if 0 < kE < n.

Let Gn = (0, 1)n. Let us agree to denote by Φ(L)(Gn) the class of all mea-
surable functions f : Rn → R having the following properties: supp f ⊂ Gn,∫
Gn

Φ(|f |) < ∞.

2. Statement of the Problem and the Result

According to the classical theorem of Jessen, Marcinkiewicz and Zygmund
[1], if f ∈ L(ln+ L)n−1(Gn), then

∫
f is strongly differentiable. This result does

not extend to arbitrary integrable functions; moreover, in any class Φ(L)(Gn)
wider than L(ln+ L)n−1(Gn), Saks [2] constructed the function whose integral is
nondifferentiable a.e. in a strong sense on Gn. Since Saks’ construction was tied
to the particular orientation of the axes, Zygmund [3, p. 99] posed the following
problem:

Given f ∈ L(R2), is it possible to choose a pair of rectangular directions so
that if B is the basis of all open rectangles with sides in those directions, then
B differentiates

∫
f? If the answer is affirmative, what is the set of all eligible

directions with this property?
Marstrand [4] showed that the choice of a “good” pair of rectangular di-

rections (i.e., a frame) cannot be made for an arbitrary function, namely,
he constructed the function whose integral, for any frame θ, is strongly non-
differentiable along θ a.e. on G2. In connection with the problem of Zygmund
and its negative solution there naturally arises question: Does there exists a
function the integral of which is not strongly differentiable, but there is a frame
θ along which

∫
f is strongly differentiable? In general, of what kind can be

sets of “differentiability frames” and “non-differentiability frames” for a given
function?
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Let us set E ⊂ θ(Rn) call an R-set if there exists a function f ∈ L(Gn) such
that for every θ ∈ E we have DI(θ)(

∫
f, x) = ∞ a.e. on Gn and for every θ /∈ E

the integral
∫

f is strongly differentiable along θ.
Now the problem can be formulated as follows: what kind of sets E ⊂ θ(Rn)

are R-sets?
Obviously, ∅ is an R-set. On the other hand, due to the results of Marstrand

[4] and Lopez-Melero [5] θ(Rn) is an R-set too.
In studying the above problem, a question arises whether there in general

exists an R-set different from ∅ and θ(Rn)?
A positive answer to this question for the two-dimensional case follows from

the results of Lepsveridze [6], Oniani [7] and Stokolos [8], while for the general
case it is given here in the form of the following theorem.

Theorem. Every union of a finite number of orbits is an R-set.Moreover,
if E ⊂ θ(Rn) is a union of a finite number of orbits, then for every function
f ∈ L \L(ln+ L)n−1(Gn), f ≥ 0, there exists an equimeasurable with f function
g : Rn → R, supp g ⊂ Gn, such that:

1) for every θ ∈ E DI(θ)(
∫

g, x) = ∞ a.e. on Gn;
2) for every θ /∈ E

∫
g is strongly differentiable along θ.

Remark 1. This theorem was announced in [9] for a finite union of orbits
of (n − 1)th order, and in [10] for the general case. In [11] that was published
between [9] and [10] it was announced that for any n ≥ 2 every finite set is an
R-set.

Remark 2. Note that our theorem generalizes the corresponding results of
Saks [2], Marstrand [4] and Stokolos [12].

Remark 3. In the two-dimensional case, a more complete result than the
above theorem is valid. In particular, in [7] (see also [13]) we prove: no more
than a countable set E ⊂ θ(R2) is an R-set if and only if E is of type Gδ with
respect to the natural metric in θ(R2). Mention should be made of [14], where
some generalizations of the results from [7] are given.

3. Some Hints for the Proof of the Theorem

For E = θ(Rn), all main ideas of the proof are available from [4, 5]. The proof
is almost trivial for E = ∅. Hence we will dwell on the case where E is the
union of a finite number of nontrivial orbits. In this case, the proof is based on
the following assertion: for a given nontrivial orbit E and any numbers ε > 0,
h > 1 there exists a rectangular parallelepiped I for which a measure of the set
{MI(θ)(hχ

I
) > 1} is “large” (of order h(ln h)n−1|I|) when θ ∈ E, and is “small”

(of order not larger than h(ln h)n−2|I|) when θ ∈ Eε, where, as ε decreases,
Eε exhausts the set θ(Rn) \ E. Such a contrast between θ ∈ E and θ ∈ Eε

takes place on a rectangular parallelepiped I with the edges δ1, . . . , δn such that
δ1 < · · · < δn−kE−1 = · · · = δn and δi+1

δi
is “large enough” for every i ∈ 1, n− kE.

We also establish that the the sets {MI(θ)(hχ
I
) > 1} can be approximated (from

below when θ ∈ E, and from above when θ ∈ Eε) by sets which can in turn be
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“uniformly approximated” by finite unions of diadic cubes of fixed order. This
fact allows us to apply Marstrand’s method of accumulation of singularities.
Both above assertions are contained in the assertion which we call the Lemma
on Contrast.

Note that to have the convergence effect we make an essential use of the
assertion which we call the Lemma on Separation.

4. Basic Lemmas

Let E be a nontrivial orbit. By σ(E) denote the collection of all bijections
from 0, n− kE into ∆E, and for σ ∈ σ(E), 0 < ε < π/4, introduce the notation:

I. Let 2 ≤ j ≤ n. By E1,j(σ, ε) denote the set of all frames θ ∈ θ(Rn) for
which, among straight lines from θ, j form, with σ(1), angles less than π/2− ε,
while the remaining lines from θ are orthogonal to σ(1).

II. Let 2 ≤ i ≤ n− kE and 2 ≤ j ≤ n− i + 1. By Ei,j(σ, ε) denote the set of
all frames θ ∈ θ(Rn) for which:

1) σ(1), . . . , σ(i− 1) ∈ θ,
2) among lines from θ \ {σ(1), . . . , σ(i − 1)}, j ones form, with σ(i), angles

less than π/2 − ε, while the remaining lines from θ \ {σ(1), . . . , σ(i − 1)} are
orthogonal to σ(i).

III. E(σ, ε) =
⋃n−kE

i=1

⋃n−j+1
j=1 Ei,j(σ, ε).

Note that for any orbit E and σ ∈ σ(E)

E(σ, ε) ⊂ E(σ, δ) if δ < ε, and
⋃

0<ε<π/4

E(σ, ε) = θ(Rn) \ E.

Recall that a rectangular parallelepiped in Rn is a set of the form
{
x ∈ Rn : |(e1, x− x0)| < δ1, . . . , |(en, x− x0)| < δn

}
,

where {e1, . . . , en} is an orthonormal basis in Rn, x0 ∈ Rn, and δ1, . . . , δn > 0,
and its edges are segments of the form

{
x ∈ Rn : |(ei, x− x0)| < δi, (ej, x− x0) = εjδj (j ∈ 1, n, j 6= i)

}
,

where i ∈ 1, n and |εj| = 1 (j ∈ 1, n, j 6= i). As is easily seen, the edges
corresponding to fixed i ∈ 1, n are parallel to the vector ei and have a length
equal to 2δi.

In what follows, for simplicity, we write “rectangle” instead of “rectangular
parallelepiped” and “interval” instead of “n-dimensional interval”.

Let E be a nontrivial orbit. For σ ∈ σ(E), denote by I(E, σ) the collection
of all rectangles I such that

I = {x ∈ Rn : |(e1, x− x0)| < δ1, . . . , |(en, x− x0)| < δn},
where δ1 < · · · < δn−kE+1 = · · · = δn and e1, . . . , en−kE

are parallel to the lines
σ(1), . . . , σ(n− kE), respectively. Denote also I(E) =

⋃
σ∈σ(E)

I(E, σ).

For E = θ(Rn), by I(E) denote the collection of all cubes in Rn.



ON THE STRONG DIFFERENTIATION OF MULTIPLE INTEGRALS 353

Let E be a nontrivial orbit. For I ∈ I(E) having pairwise orthogonal edges
of length δ1, . . . , δn, where δ1 < · · · < δn−kE+1 = · · · = δn, denote

r(I) = min
{δi+1

δi

: i ∈ 1, n− kE

}
.

In what follows χ
A

always stands for the characteristic function of a set
A ⊂ Rn.

For a set E ⊂ Rn having the center of symmetry and for h > 0, by hE denote
the image of E under the homothety with the coefficient h and center coinciding
with the center of E.

In the inequalities given below, by c1(n), c2(n), . . . we denote the positive
constants depending only on the parameter n.

Lemma on Contrast. The following two assertions are valid:
I. Let E be a nonempty orbit and h > 1. If a rectangle I belongs to I(E),

then there exists a collection {T (θ) : θ ∈ E} such that:
1) for every θ ∈ E, T (θ) is a union of a finite number of balls of fixed radius;

moreover, the radius and the number of balls are the same for every θ ∈ E;
2) for every θ ∈ E,

{MI(θ)(hχ
I
) > 1} ⊃ T (θ),

T (θ) ⊂ 22nhI,

|T (θ)| ≥ c1(n)h(ln h)n−1|I|;
II. Let E be a nontrivial orbit, h > 1, σ ∈ σ(E) and 0 < ε < π/4. If I belongs

to I(E, σ) and r(I) > 4n
√

nh
sin ε

, then there exists a collection {T (θ) : θ ∈ E(σ, ε)}
such that

1) for every θ ∈ E(σ, ε), T (θ) is a union of a finite number of balls of fixed
radius; moreover, the radius and the number of balls are the same for every
θ ∈ E(σ, ε);

2) for every θ ∈ E(σ, ε)

{MI(θ)(hχ
I
) > 1} ⊂ T (θ),

T (θ) ⊂ 24n+3hI,

|T (θ)| ≤ c2(n)h(ln h)n−2|I|.
It is obvious that in the case of a nontrivial orbit E assertions I and II for

I ∈ I(E, σ) give the above-mentioned contrast.
Denote by L(Rn) the class of all functions f ∈ L(Rn) for everyone of which

there exists, for any ε > 0, a continuous function g ∈ L(Rn) on Rn such that
|g(x)| ≤ |f(x)| a. e. on Rn, and

∫
Rn

|f − g| < ε.

In [15] the following lemma is proved (see also [13, p. 52]).

Lemma on Separation. Let fk ∈ L(Rn), fk ≥ 0 (k ∈ N), E ⊂ θ(Rn),
E 6= ∅, λ > 0, and for every k, m ∈ N, k 6= m, let the following conditions be
fulfilled:

supp fk ∩ supp fm = ∅,
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supp fk ∩ {MI(E)(fm) > λ} = ∅,

{MI(E)(fk) > λ} ∩ {MI(E)(fm) > λ} = ∅.

Then {
MI(E)

( ∞∑

k=1

fk

)
> λ

}
=

∞⋃

k=1

{
MI(E)(fk) > λ

}
.

The function F : R → [0, 1] is called a distribution if F is decreasing,
lim

λ→−∞
F (λ) = 1, lim

λ→∞
F (λ) = 0 and F is right-continuous.

By Ff we denote the distribution function of a measurable function f : Rn →
R, i.e., Ff (λ) = |{f > λ}| (λ ∈ R).

It is obvious that for any measurable f : Rn → R, Ff is a distribution.

Lemma on Distribution. Suppose that the distribution F is such that
F (λ) = 1 for λ < 0. Let E ⊂ Gn and |E| ≥ F (0). Then there exists a
function f ∈ L(Gn) with the properties: Ff = F , supp f ⊂ E,

∫
f is strongly

differentiable along every frame.

5. Some Auxiliary Propositions

In this section we give some simple propositions that we need for proving of
the Lemma on Contrast.

Taking into account that rotation is a measure preserving mapping, one can
easily verify

Proposition 1. Let f : Rn → R be a measurable function. Then for every
θ ∈ θ(Rn)

MI(θ)(f)(x) = MI(f ◦ γθ)(γ
−1
θ (x)) (x ∈ Rn),∣∣{MI(θ)(f) > λ

}∣∣ =
∣∣{MI(f ◦ γθ) > λ

}∣∣ (λ > 0),

where γθ denotes rotation such that {γθ(0x1), . . . , γθ(0xn)} = θ.

By virtue of the obvious equality {MI(f) > λ} = {MI(fχ{|f |>λ/2}) > λ/2},
the well-known strong maximal inequality (see e.g. [3, p. 51]) and Proposition
1 give rise to

Proposition 2. Let λ > 0 and∫

{|f |>λ/2}

|f |
λ

(
1 + ln+ 2|f |

λ

)n−1

< ∞.

Then for every θ ∈ θ(Rn)

∣∣{MI(θ)(f) > λ
}∣∣ ≤ c3(n)

∫

{|f |>λ/2}

|f |
λ

(
1 + ln+ 2|f |

λ

)n−1

.

An open set bounded by two different parallel hyperplanes, i.e., a set of the
form

{
x ∈ Rn : |(e, x− x0)| < δ

}
, where e ∈ Rn is the unit vector, x0 ∈ Rn and

δ > 0, is called a strip in Rn. The number δ is called the width of a strip.
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The basis B in Rn is said to be convex if every R ∈ B(x) is a convex set for
every x ∈ Rn.

In [15] the following assertion is proved (see also [13, p. 44]): Let B be a convex
basis in Rn, S be a strip in Rn of width δ. Then MB(χ

S
)(x) < 2nδ/dist(x, S)

when dist(x, S) ≥ δ (note that for n = 2 and B = I(R2) the assertion was
proved earlier in [7] and [8], a sharper estimate being obtained in [8]).

Majorizing the rectangle by strips generated by its parallel faces and using
the above assertion in each case, one can easily prove

Proposition 3. Let B be a convex basis in Rn, I be a rectangle in Rn and
h > 1. Then

{MB(hχ
I
) > 1} ⊂ (2nh + 1)I.

Therefore, if f : Rn → R is a measurable bounded function with bounded support,
then for every λ > 0 the set {MB(f) > λ} is bounded.

Let B1 and B2 be bases in Rn1 and Rn2 , respectively. The product of B1 and
B2 is denoted by B1 ×B2 and defined as follows:

B1 ×B2(x1, x2) =
{
R1 ×R2 : R1 ∈ B1(x1), R2 ∈ B2(x2)

}
.

The basis B in Rn is said to be translation invariant if for every x ∈ Rn

B(x) = {x + R, R ∈ B(0)}, where 0 is the origin.
Based on Propositions 2 and 3, by a standard technique it is easy to prove

Proposition 4. Let B1 and B2 be translation invariant convex bases in
Rn1 and Rn2, respectively. For every continuous function f : Rn1+n2 → R and
x1 ∈ Rn1, x2 ∈ Rn2 assume that

M1(f)(x1, x2) = MB1 [f(·, x2)](x1) = sup
R∈B(x1)

1

|R|n1

∫

R

|f(t, x2)| dt,

M2(f)(x1, x2) = MB2 [f(x1, ·)](x2) = sup
R∈B(x2)

1

|R|n2

∫

R

|f(x1, τ)| dτ.

Then:
1) if f : Rn1+n2 → R is uniformly continuous, then M1(f) and M2(f) are

uniformly continuous too;
2) for every uniformly continuous f : Rn1+n2 → R

MB1×B2(f) ≤ M1[M2(f)];

3) if B1 = I(Rn1), f : Rn1+n2 → R is a uniformly continuous function and
for given λ > 0 ∫

{|f |>λ/2}

|f |
λ

(
1 + ln+ 2|f |

λ

)n1−1

< ∞,

then

|{M1(f) > λ}| ≤ c3(n1)

∫

{|f |>λ/2}

|f |
λ

(
1 + ln+ 2|f |

λ

)n1−1

;
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4) if f : Rn1+n2 → R is a continuous bounded function with bounded support,
then for every λ > 0 the sets {M1(f) > λ} and {M2(f) > λ} are bounded.

The following assertion is easy to verify.

Proposition 5. Let B be a translation invariant basis in Rn and let f : Rn →
R be a uniformly continuous function. Then MB(f) is uniformly continuous.

Proposition 6. Let Φ : [0,∞) → [0,∞) be an absolutely continuous strictly
increasing function such that Φ(0) = 0 and lim

t→∞
Φ(t) = ∞, and let f : Rn → R

be a measurable function such that
∫
Rn

Φ(|f |) < ∞. Then

∫

Rn

Φ(|f |) =

∞∫

0

F|f |(λ)Φ′(λ) dλ.

Proof. It is easy to verify that lim
λ→0+

Φ(λ)F|f |(λ) = 0 and lim
λ→∞

Φ(λ)F|f |(λ) = 0.

Now taking into account the equalities

∫

Rn

Φ(|f |) = −
∞∫

0

Φ(λ) dF|f |(λ) = − lim
k→∞

k∫

1/k

Φ(λ) dF|f |(λ)

and performing integration by parts in the last integral, we conclude that the
proposition is valid. ¤

6. Proofs of the Basic Lemmas

In [15] the following assertion is proved (see also [13, p. 77]).

Lemma 1. Let h > 1, 0 < ε < π/4, I be a rectangle in Rn having pairwise
orthogonal edges of length δ1, . . . , δn, where δi > nh

sin ε
δ1 (i ∈ 2, n), and ` be a

straight line passing through the origin and parallel to the edges of length δ1.
Then for every frame θ ∈ θ(Rn) whose every line forms with ` angles less than
π/2− ε we have ∣∣{MI(θ)(hχ

I
) > 1

}∣∣ ≤ 9nh|I|.
Lemma 2. Let n ≥ 3, h > 1, 0 < ε < π/4, and let A = E × (−δ, δ), where

E ⊂ Rn−1 is an open bounded convex set containing a ball in Rn−1 of radius not
less than nh

sin ε
δ. Then for every frame θ ∈ θ(Rn) whose every line forms with

0xn an angle less than π/2− ε we have
∣∣{MI(θ)(hχ

A
) > 1

}∣∣ ≤ n2n9nh|A|.
Proof. According to John’s lemma (see [3, p. 139]), there is an open ellipsoid
T such that 1

n−1
T ⊂ E ⊂ T . Let R be a minimal rectangle containing T

and having edges parallel to the principal axes of T . It is easy to see that
1

n−1
R ⊂ T ⊂ R. Therefore 1

(n−1)2
R ⊂ E ⊂ R.
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Since E contains a ball of radius not less than nh
sin ε

δ, every edge of R is of

length not less than 2nh
sin ε

δ. If we set I = R × (−δ, δ), then from Lemma 1 we
conclude: for θ = {θ1, . . . , θn} with ∠(θi, Oxn) < π/2− ε (1 ≤ i ≤ n)

∣∣{MI(θ)(hχ
A
) > 1

}∣∣ ≤
∣∣{MI(θ)(hχ

I
) > 1

}∣∣
≤ 9nh|I| ≤ (n− 1)2(n−1)9nh|A| < n2n9nh|A|.

The lemma is proved. ¤

Lemma 3. Let E be a nontrivial orbit, 0 < ε < π/4, σ ∈ σ(E), h > 1. If a

rectangle I belongs to I(E, σ) and r(I) > 2n
√

n h
sin ε

, then for every θ ∈ E(σ, ε)

|{MI(θ)(hχ
I
) > 1}| ≤ c4(n)h(ln h)n−2|I|.

Proof. For n = 2 the assertion follows from Lemma 1. Below we assume that
n ≥ 3.

First assume that 2 ≤ i ≤ n − kE, 2 ≤ j ≤ n − i + 1, and θ ∈ Ei,j(σ, ε).
Due to Proposition 1 it can be assumed without loss of generality that θ =
θ0 = {0x1, . . . , 0xn} and 0x1 = σ(1), . . . , 0xi−1 = σ(i − 1); 0xi, . . . , 0xn−j are
orthogonal to σ(i), and 0xn−j+1, . . . , 0xn form, with σ(i), angles less than π/2−
ε. It can also be assumed without loss of generality that the origin is the center
of I. Hence I has the form

I =
{
x ∈ Rn : |(e1, x)| < δ1, . . . , |(en, x)| < δn

}
,

where the unit vectors e1, . . . , en−kE
are parallel to σ(1), . . . , σ(n− kE), respec-

tively, and δ1 < · · · < δn−kE+1 = · · · = δn.
Let f : Rn → R be a continuous function such that f(x) = h (x ∈ I),

f(x) = 0 (x /∈ 2I) and 0 ≤ f(x) ≤ h (x ∈ Rn).Obviously, f is uniformly
continuous too. Since I(Rn) = I(Rq)× I(Rn−q), by virtue of Proposition 4

MI(hχ
I
) ≤ MI(f) ≤ M1[M2(f)], (1)

where the operators M1 and M2 are defined by Proposition 4.
For t ∈ Rn−j denote Γ(t) = {y ∈ Rj : (t, y) ∈ 2I}.
By the condition of the lemma the rectangle 2I is defined by a system of the

following type:




|x1| < 2δ1

. . .
|xi−1| < 2δi−1

|a(n−j+1)
i xn−j+1+· · ·+ a

(n)
i xn| < 2δi

|a(i)
i+1xi + · · ·+a

(n−j+1)
i+1 xn−j+1 + · · ·+ a

(n)
i+1xn| < 2δi+1

...

|a(i)
n xi + · · ·+a

(n−j+1)
n xn−j+1+· · ·+a

(n)
n xn| < 2δn,
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where a
(p)
q are the corresponding coordinates of the vectors ei, . . . , en. Therefore

for fixed t = (t1, . . . , tn−j), Γ(t) is defined by a system of the following type:





|a(n−j+1)
i y1 + · · ·+ a

(n)
i yj| < 2δi

|a(i)
i+1ti + · · ·+ a

(n−j)
i+1 tn−j + a

(n−j+1)
i+1 y1 + · · ·+ a

(n)
i+1yj| < 2δi+1

...

|a(i)
n ti + · · ·+ a

(n−j)
n tn−j + a

(n−j+1)
n y1 + · · ·+ a

(n)
n yj| < 2δn.

Obviously, Γ(t) is a bounded subset of Rj for every t ∈ Rn−j.
Denote by N the set of all vectors ξ = (ξ1, . . . , ξj) ∈ Rj with the properties: 1)

a
(n−j+1)
i ξ1+· · ·+a

(n)
i ξj = 0, i.e., ξ is orthogonal to the vector (a

(n−j+1)
i , . . . , a

(n)
i ),

and 2) ‖ξ‖ < 4nhδi

sin ε
.

For t ∈ Rn−j with Γ(t) 6= ∅ denote Γ∗(t) = Γ(t) + N .
Let t ∈ Rn−j, Γ(t) 6= ∅. Consider the rotation γ in Rj which maps the vector

(a
(n−j+1)
i , . . . , a

(n)
i ) into the direction vector of the axis 0yj – (0, . . . , 0, 1). Hence

it is easy to see that:

1) γ(N) =
{

ξ : ‖ξ‖ <
4nhδi

sin ε
, ξj = 0

}
;

2) γ(Γ(t)) is defined by a system of the following type:




|yj| < 2δi

α1 < b
(1)
1 y1 + · · ·+ b

(j−1)
1 yj−1 < α1 + 4δi+1

...

αn−i < b
(1)
n−iy1 + · · ·+ b

(j−1)
n−i yj−1 < αn−i + 4δn.

Hence, taking into account the equality γ(Γ∗(t)) = γ(Γ(t)) + γ(N), it is easy
to see that γ(Γ∗(t)) is a set of the form E × (−2δi, 2δi), where E is an open
bounded convex set in Rj containing a ball of radius equal to 4nhδi/ sin ε. By
the condition of the lemma the axes of Rj 0y1, . . . , 0yj form with the vector

(a
(n−j+1)
i , . . . , a

(n)
i ) angles less than π/2 − ε. Therefore γ(0y1), . . . , γ(0yj) form

with (0, . . . , 0, 1) ∈ Rj angles less than π/2−ε. Now using Lemma 2, Proposition
1 and the relations

M2(f)(t, y) = MI(Rj)(f(t, ·))(y) ≤ MI(Rj)(hχΓ(t))(y),

for 1/2 ≤ λ < h we get

∣∣{y ∈ Rj : M2(f)(t, y) > λ
}∣∣

j
≤

∣∣{MI(Rj)(hχΓ(t)) > λ
}∣∣

j

≤
∣∣{MI(Rj)(hχΓ∗(t)) > λ

}∣∣
j
=

∣∣{Mγ(I(Rj))(hχγ(Γ∗(t))) > λ
}∣∣

j

=
∣∣∣
{

Mγ(I(Rj))

(h

λ
χγ(Γ∗(t))

)
> 1

}∣∣∣
j
≤ d(n)

h

λ
|Γ∗(t)|j, (2)

where γ(I(Rj)) denotes the basis for which γ(I(Rj))(y) = {γ(R) : R is an j-
dimensional interval, x ∈ γ(R)} (y ∈ Rj) and d(n) = n2n9n.
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Since
n∑

p=i

(a
(p)
q )2 = 1 (i + 1 ≤ q ≤ n) and δq ≥ 2n

√
nhδi

sin ε
(i + 1 ≤ q ≤ n), we can

easily conclude: for t ∈ Rn−j with Γ(t) 6= ∅
{
(t, y) : y ∈ Γ∗(t)

} ⊂ I ′, (3)

where I ′ is a rectangle defined as

I ′ =
{
x ∈ Rn : |(e1, x)| < 2δ1, . . . , |(ei, x)| < 2δi,

|(ei+1, x)| < 4δi+1, . . . , |(en, x)| < 4δn

}
.

Denote Γ′(t) =
{
y ∈ Rj : (t, y) ∈ I ′

}
(t ∈ Rn−j). Using (3), we write

Γ∗(t) ⊂ Γ′(t) for t ∈ Rn−j with Γ(t) 6= ∅. (4)

By virtue of Fubini’s theorem, (2) and (3), for 1
2
≤ λ < h we have

|{M2(f) > λ}| =
∫

{t∈Rn−j :Γ(t)6=?}

|{y ∈ Rj : M2(f)(t, y) > λ}|jdt

≤
∫

{t∈Rn−j :Γ(t) 6=?}

d(n)h

λ
|Γ∗(t)|jdt

≤ d(n)h

λ

∫

{t∈Rn−j :Γ′(t) 6=?}

|Γ′(t)|jdt = d(n)
h

λ
|I ′|

= 22n−id(n)
h

λ
|I| < d1(n)

h

λ
|I|. (5)

By virtue of Proposition 3 {M2(f) > 1/2} is bounded. It is also clear that
M2(f)(x) ≤ h (x ∈ Rn). Therefore

∫

{M2(f)>1/2}

M2(f)
(
1 + ln+ 2M2(f)

)n−j−1
= α < ∞. (6)

By (1), (6) and Proposition 4 we have

|{MI(hχ
I
) > 1}| ≤ |{MI(f) > 1}| ≤ |{M1[M2(f)] > 1}| ≤ c3(n− j)α. (7)

Let F be a distribution function of M2(f)χ{M2(f)>1/2} and Φ(λ) = λ(1 +
ln+ 2λ)n−j−1. By (6), Proposition 6 and the obvious equalities F (λ) = F (1/2)
(0 ≤ λ ≤ 1/2), F (λ) = 0 (λ > h), we can write

α =

∞∫

0

F (λ)Φ′(λ) dλ =

1∫

0

+

h∫

1

+

∞∫

h

≤ F (1/2) + (n− j)

h∫

1

F (λ)(1 + ln 2λ)n−j−1 dλ + 0
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≤ 2d1(n)h|I|+ (n− j)d1(n)h|I|
h∫

1

(1 + ln 2λ)n−j−1

λ
dλ

≤ 4(n− j)d1(n)h(1 + ln 2h)n−j|I|. (8)

By (7) and (8) we conclude that the lemma is valid in the considered case.
If θ ∈ E1,j(σ, ε) where 1 ≤ j ≤ n − 1, then the proof is analogous to the

above-considered case, and if θ ∈ E1,n(σ, ε) the assertion follows from Lemma
1. The proof of the lemma is completed. ¤

Lemma 4. Let I be a rectangle in Rn and h > 1. Then for every θ ∈ θ(Rn)
there is a compact set S(θ) such that

{MI(θ)(hχ
I
) ≥ 1} ⊂ S(θ), |S(θ)| ≤ 2n|{MI(θ)(hχ

I
) ≥ 1}|, S(θ) ⊂ 24nhI.

Proof. Let f : Rn → R be a continuous function such that f(x) = h (x ∈ I),
f(x) = 0 (x /∈ 2I) and 0 ≤ f(x) ≤ h (x ∈ Rn). Obviously, f is uniformly
continuous too.

Assume that S(θ) = {MI(θ)(fχ
I
) ≥ 1}. By virtue of Proposition 5 MI(θ)(f)

is continuous. Hence taking into account that S(θ) = {h ≥ MI(θ)(f) ≥ 1} =
MI(θ)(f)−1([1, h]), we conclude that S(θ) is closed. According to Proposition 3,
S(θ) is bounded. Hence S(θ) is compact.

Since hχ
I
≤ f ≤ hχ

2I
, we have

{MI(θ)(hχ
I
) ≥ 1} ⊂ S(θ) ⊂ {MI(θ)(hχ

2I
) ≥ 1}. (1)

By (1) and Proposition 3 we get

S(θ) ⊂ {MI(θ)(hχ
2I

) ≥ 1} ⊂ {MI(θ)(hχ
2I

) > 1/2}
= {MI(θ)(2hχ

2I
) > 1} ⊂ (2n+1h + 1)2I ⊂ 24nhI.

It is easy to verify that {MI(θ)(hχ
2I

) ≥ 1} = H
[{MI(θ)(hχ

I
) ≥ 1}], where H is

homothety with center coinciding with the center of I and with coefficient 2.
Therefore

|{MI(θ)(hχ
2I

) ≥ 1} = 2n|{MI(θ)(hχ
I
) ≥ 1}|. (2)

By (1) and (2) we have

|S(θ)| ≤ 2n|{MI(θ)(hχ
I
) ≥ 1}|.

The lemma is proved. ¤
Lemma 5. Let I be a rectangle in Rn with center at the origin and h > 1.

Then for every E ⊂ θ(Rn), E 6= ∅, there exist θ1, . . . , θm ∈ E such that for
every θ ∈ E there are i = iθ ∈ 1,m and a rotation γ = γθ such that

{MI(θ)(hχ
I
) ≥ 1} ⊂ γ

[{MI(θi)(hχ
2I

) ≥ 1}] and γ(2I) ⊂ 4I.

Proof. As usual by SO(n) we denote the rotation group. For a matrix A ∈
SO(n) by γA denote the rotation defined by the equality γA(x) = Ax (x ∈ Rn).

For A ∈ SO(n), by I(A) denote the basis for which

I(A)(x) = {γA(R) : R is interval, x ∈ γA(R)} (x ∈ Rn).
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For the matrix A ∈ SO(n) denote θA = {γA(0x1), . . . , γA(0xn)}. Let Ẽ be
the set of all A ∈ SO(n) for which θA ∈ E.

For A = (aij) ∈ SO(n) and B = (bij) ∈ SO(n) set

dist(A,B) =
n∑

i=1

n∑
j=1

|aij − bij|. (1)

It is easy to verify that there exists ε > 0 such that

I ⊂ γA(2I) ⊂ 4I if dist(A,U) < ε, (2)

where U denotes the unit matrix.
Let A,B ∈ SO(n) and γ = γBA−1 . It is easy to check that for any rectangle

J MI(B)(hχγ(J))(γ(x)) = MI(A)(hχ
J
)(x) (x ∈ Rn) and therefore

{MI(B)(hχγ(J)) ≥ 1} = γ
[{MI(A)(hχ

J
) ≥ 1}]. (3)

As is easy to see, dist(AC,BC) ≤ n2 dist(A,B) (A,B, C ∈ SO(n)). Therefore
dist(BA−1, U) ≤ n2 dist(A,B) < ε if dist(A,B) < ε/n2. Hence, using (2) and
(3) we get: if A,B ∈ SO(n), dist(A,B) < ε

n2 and γ = γBA−1 , then

{MI(B)(hχ
I
) ≥ 1} ⊂ {MI(B)(hχγ(2I)) ≥ 1} = γ

[{MI(A)(hχ
2I

) ≥ 1}]. (4)

Since SO(n) is compact with respect to metric (1), there are A1, . . . , Am ∈ E

which make up a ε/n2-net of the set Ẽ. Now, taking into account (2) and (4) and
noting that I(θA) = I(A) (A ∈ SO(n)), we conclude that θ1 = θA1 , . . . , θm = θAm

are the desired frames. The lemma is proved. ¤
We are ready now to begin proving the Lemma on Contrast.

Proof of the Lemma on Contrast. I. Assume without of loss of generality that
the origin is the center of I.

The following simple fact, which is useful in the construction of various coun-
terexamples, is well known (see, e.g., [2, p. 239]) in the theory of differentiation
of integrals : for any interval J in Rn and α > 1

|{MI(αχ
J
) > 1}| ≥ c5(n)α(ln α)n−1|J |. (1)

Denote k = kE. By Proposition 1 it is sufficient to consider the case where
∆E = {0x1, . . . , 0xn−k}. Clearly, I has the form

I = γ0[(−δ1, δ1)× · × (−δn−k, δn−k)× (−δ, δ)k],

where γ0 is the rotation which does not remove the axes 0x1, . . . , 0xn−k.
Let θ ∈ E. Obviously, θ ⊃ {0x1, . . . , 0xn−k}. Consider the rotation γ which

does not remove 0x1, . . . , 0xn−k and maps 0xn−k+1, . . . , 0xn into the lines from
θ \ {0x1, . . . , 0xn−k}. Assume

S(A) = γ
[{MI(hχ

Q
) > 1}], (2)

where Q = (−δ1, δ1) × · · · × (−δn−k, δn−k) × (−δ/
√

k, δ/
√

k)k. It is easy to see
that γ(Q) ⊂ I. Hence by Proposition 1 we have

{MI(θ)(hχ
I
) > 1} ⊃ {MI(θ)(hχ

γ(Q)
) > 1} = γ

[{MI(hχ
Q
) > 1}] = S(θ). (3)
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By Proposition 3
S(θ) ⊂ 22nhγ(Q) ⊂ 22nhI, (4)

and by (1)

|S(θ)| > c5(n)h(ln h)n−1|γ(Q)| = c5(n)h(ln h)n−1 |I|
kk/2

. (5)

It is obvious that the set {MI(7χQ
> 1} is open. Thus the sets S(θ) (θ ∈ E)

are derived by the rotation of the fixed open set. Therefore, taking into account
(4)–(5), it is easy to find the sets T (θ) (θ ∈ E) with properties I.1) and I.2).

II. Due to Lemma 5 there are θ1, . . . , θm ∈ E(σ, ε) such that for any given
θ ∈ E(σ, ε) there exist i ∈ 1, m and a rotation γ such that

{MI(θ)(hχ
I
) ≥ 1} ⊂ γ

[{MI(θi)(hχ
2I

) ≥ 1}] and γ(2I) ⊂ 4I. (6)

According to Lemma 4, for every i ∈ 1, m there is a compact set Si such that

{MI(θi)(hχ
2I

) ≥ 1} ⊂ Si, (7)

|Si| ≤ 2n|{MI(θi)(hχ
2I

) ≥ 1}|, (8)

Si ⊂ 24nh(2I) = 24n+1hI. (9)

Taking into account the inclusion {MI(θi)(hχ
2I

) ≥ 1} ⊂ {MI(θi)(2hχ
2I

) > 1},
using (8) and noting that r(2I) = r(I) > 4n

√
nh

sin ε
, from Lemma 3 we have

|Si| ≤ 2n2nc4(n)h(ln h)n−2|2I| = 23nc4(n)h(ln h)n−2|I|. (10)

By (6) and (9) we get

γ(Si) ⊂ γ(24n+1hI) = 24nhγ(2I) ⊂ 24nh(4I) = 24n+2hI. (11)

Now taking into account (6), (7), (10), (11) and the properties of compact
sets, it is easy to find the sets T (θ) (θ ∈ E(σ, ε)) with properties II.1) and II.2).
The lemma is proved. ¤
Proof of the Lemma on Distribution. Obviously, there exists an increasing
function f∗ : (0, 1) → R such that |{f∗ > λ}|1 = F (λ) for any λ ∈ R. Set
E(x) = [(x1, 1) × (0, 1)n−1] ∩ E for x ∈ E. Define the function f as follows:
f(x) = f∗(1− |E(x)|) when x ∈ E, |E(x)| > 0 and f(x) = 0 otherwise.

Obviously, supp f ⊂ E. It is easy to verify that f is equimeasurable with f∗
and therefore Ff = F .

Denote Eα = [ [α, 1] × [0, 1]n−1] ∩ E (α ≤ 1). It is easy to see that for
every ε > 0, f is bounded on the set Aε = Rn \ [α0 − ε, α0] × [0, 1]n−1, where
α0 = inf{α ≥ 0 : |Eα| = 0}. Therefore by virtue of the Jessen–Marcinkiewicz–
Zygmund theorem we easily conclude that

∫
f is strongly differentiable along

every frame. The lemma is proved. ¤

7. Proof of the Theorem

First, let us prove the following assertion:
Let E be a nonempty orbit. Then for every f ∈ L \ L(ln+ L)n−1(Gn), f ≥ 0,

and m ∈ N there are a measurable set A ∈ Rn and a measurable function
g : Rn → R such that:
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1) A ⊂ {f ≥ 2m} and fχ
A

is a bounded function;
2) g is equimeasurable with fχ

A
and supp g ⊂ Gn;

3) for every θ ∈ E |{M (1/m)
I(θ) (g) > m}| > 1− 1/m;

4) if E is nontrivial, then, in addition, g can be chosen such that, for σ ∈
σ(E), an a priori given g satisfies the condition: for every θ ∈ E(σ, 1/2m)
|{MI(θ)(g) > 1/2m}| < 1/2m.

Proof. Let E be a nontrivial orbit and σ ∈ σ(E). Let r ∈ N. Since f ∈
L \L(ln+ L)n−1(Gn), it is easy to find p ∈ N, sets {Ai}p

i=1 and numbers {hi}p
i=1

such that

|Ai| > 0 (i ∈ 1, p), Ai ∩ Aj = ∅ (1 ≤ i < j ≤ p);

hi ≥ 2r (i ∈ 1, p);
hi ≤ f(x) < hi + 1 (x ∈ Ai, i ∈ 1, p),

(1)

p∑
i=1

hi

r
lnn−1 hi

r
|Ai| = r; (2)

p∑
i=1

2rhi ln
n−2(2rhi)|Ai| < 1

4r
; (3)

for the rectangle Ii (i ∈ 1, p) with the properties: Ii ∈ I(E, σ), |Ii| = |Ai|,
(1/2, . . . , 1/2) is the center of I and r(I) = 2r+3n

√
n(hi + 1)/ sin(1/2r); the

inclusion 27n+r+1(hi + 1)Ii ⊂ Gn is true.
Let us consider numbers 2rn < q1 < · · · < qp of the type 2nν (their choice will

be discussed below) and carry out the following construction:
I. for every i ∈ 1, p, we divide Gn into qi equal diadic cubes and denote them

by Gi,q (q ∈ 1, qi);
II. for i ∈ 1, p and q ∈ 1, qi assume Ii,q = Hi,q(Ii), where Hi,q is the homothety

mapping of Gn into Gi,q;
III. for i ∈ 1, p, q ∈ 1, qi assume that {Ti,q(θ) : θ ∈ E} is the collection of sets

corresponding to I = Ii,q and h = hi/r due to the Lemma on Contrast;
IV. for i ∈ 1, p, q ∈ 1, qi assume that {Ti,q(θ) : θ ∈ E(σ, 1/2r)} is the

collection of sets corresponding to I = Ii,q, h = 2r+1(hi + 1) and ε = 1/2r due
to the Lemma on Contrast.

For θ ∈ E ∪ E(σ, 1/2r) denote Ti(θ) =
qi⋃

q=1

Ti,q(θ) i ∈ 1, p). Now if we take

into account the structure of sets Ti,q(θ) (see the Lemma on Contrast), then by
a rapid increase of numbers qi we can carry out “uniform approximation” of
sets Ti(θ) by unions of diadic cubes Gi+1,q (from below and from above in the
cases θ ∈ E and θ ∈ E(σ, 1/2r), respectively). More exactly, if we denote:

I. for i ∈ 1, p− 1 and θ ∈ E, by Si(θ) the union of all Gi+1,q that are contained
in Ti(θ);

II. for i ∈ 1, p− 1 and θ ∈ E(σ, 1/2r), by Si(θ) the union of all Gi+1,q that
have a nonempty intersection with Ti(θ),
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then, by a rapid increase of numbers qi, the following conditions can be fulfilled:

|Si(θ)| > |Ti(θ)|
2

(i ∈ 1, p− 1, θ ∈ E), (4)

|Si(θ)| < 2|Ti(θ)| (i ∈ 1, p− 1, θ ∈ E(σ, 1/2r)). (5)

By virtue of the construction and the Lemma on Contrast
qi∑

q=1

|Ii,q| = |Ai|; (6)

Ti,q(θ) ⊂ 27n+r+1(hi + 1)Ii,q ⊂ Gi,q (θ ∈ E ∪ E(σ, 1/2r)); (7)
{
M

(1/r)
I(θ) (hiχIi,q

) > r
} ⊃ Ti,q(θ),

|Ti,q(θ)| ≥ c1(n)
hi

r
lnn−1 hi

r
|Ii,q|;

(θ ∈ E) (8)

{
MI(θ)[(hi + 1)χ

Ii,q
] > 1/2r

} ⊂ Ti,q(θ),

|Ti,q(θ)| ≤ 2nc2(n)2rhi ln
n−2(2rhi)|Ii,q|.

(θ ∈ E(σ, 1/2r)) (9)

Denote

Ji =

qi⋃
q=1

Ii,q \
p⋃

j=i+1

qj⋃
q=1

Ij,q (i ∈ 1, p− 1), Jp =

qp⋃
q=1

Ip,q.

Let A′
i (i ∈ 1, p) be sets such that A′

i ⊂ Ai, |A′
i| = |Ji| and A =

r⋃
i=1

A′
i.

Obviously, A ⊂ {f ≥ 2r} and fχ
A

is bounded.
Due to the Lemma on Distribution there exists an equimeasurable with fχ

A′
i

(i ∈ 1, p) function vi with supp vi = Ji. Set v =
r∑

i=1

vi. It is easy to see that v is

equimeasurable with fχ
A

and

sup
1≤i≤p

qi∑
q=1

hiχIi,q
≤ v ≤ sup

1≤i≤p

qi∑
q=1

(hi + 1)χ
Ii,q

.

Let θ ∈ E. Assume Sp(θ) = Tp(θ). It is not difficult to see that the sets
Gn \ Si(θ) are probabilistically independent. Therefore, using (4), we have

∣∣∣∣
p⋂

i=1

[Gn \ Si(θ)]

∣∣∣∣ =

p∏
i=1

|Gn \ Si(θ)| <
p∏

i=1

(
1− |Ti(θ)|

2

)
. (10)

By virtue of (6)–(8) for i ∈ 1, p− 1

|Ti(θ)| =
qi∑

q=1

|Ti,q(θ)| ≥ c1(n)
hi

r
lnn−1 hi

r
|Ai|,

therefore from (2), (10) and the inequality ln(1−α) < −α (0 < α < 1) we have
∣∣∣∣

p⋂
i=1

[Gn \ Si(θ)]

∣∣∣∣ <
1

2c6(n)r
.
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By virtue of the construction

{
M

(1/r)
I(θ) (v) > r

} ⊃
p⋃

i=1

{
M

(1/r)
I(θ)

( qi∑
q=1

hiχIi,q

)
> r

}
⊃

p⋃
i=1

Ti(θ) ⊃
p⋃

i=1

Si(θ).

Thus ∣∣{M
(1/r)
I(θ) (v) > r

}∣∣ > 1− 1

2c6(n)r
. (11)

Let θ ∈ E(σ, 1/2r). Denote

N1 = 1, q1, t1 =

q1∑
q=1

(hi + 1)χ
I1,q

,

and for i ∈ 2, p

Ni =

{
q ∈ 1, qi : Gi,q ∩

i−1⋃
j=1

Tj(θ) = ∅
}

,

N∗
i =

{
q ∈ 1, qi : Gi,q ∩

i−1⋃
j=1

Tj(θ) 6= ∅
}

,

ti =
∑
q∈Ni

(hi + 1)χ
Ii,q

, t∗i =
∑

q∈N∗
i

(hi + 1)χ
Ii,q

.

Let t =
p∑

i=1

ti and t∗ = sup
2≤i≤p

t∗i . Obviously, v ≤ t+t∗. Clearly, the functions (hi+

1)χIi,q
belong to L(Rn). Therefore from (7), (9) and the Lemma on Separation

we obtain

{MI(θ)(ti) > 1/2r+1} ⊂
⋃

q∈Ni

Ti,q(θ) (i ∈ 1, p). (12)

We easily observe that
[ ⋃

q∈Ni

Ti,q(θ)

]
∩

[ ⋃
q∈Nj

Tj,q(θ)

]
= ∅ (i 6= j).

Thus again by virtue of the Lemma on Separation

{
MI(θ)(t) > 1/2r+1

}
=

p⋃
i=1

{MI(θ)(ti) > 1/2r+1}. (13)

(13), (12), (6), (9), and (3) imply

∣∣{MI(θ)(t) > 1/2r+1
}∣∣ ≤

p∑
i=1

∑
q∈Ni

|Ti,q(θ)|

≤
p∑

i=1

qi∑
q=1

|Ti,q(θ)| ≤
p∑

i=1

2nc2(n)2rhi ln
n−2(2rhi)|Ai| < 2nc2(n)

4r
. (14)
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Let i ∈ 2, p. If j > i, then every Gi,q is included in some Gj,q. Therefore
⋃

q∈N∗
i

Gi,q ⊂
i−1⋃
j=1

Sj(θ), from which, using (5), we have
∣∣∣ ⋃

q∈N∗
i

Gi,q

∣∣∣ ≤
i−1∑
j=1

2|Tj(θ)|.
This with (9), (6) and (3) gives

| supp t∗i | =
∣∣∣∣

⋃

q∈N∗
i

Ii,q

∣∣∣∣ =

∣∣∣∣
qi⋃

q=1

Ii,q

∣∣∣∣
∣∣∣∣

⋃

q∈N∗
i

Gi,q

∣∣∣∣ ≤ |Ai|
i−1∑
j=1

2|Tj(θ)|

≤ 2|Ai|
p∑

j=1

2nc2(n)2rhj lnn−2(2rhj)|Aj| ≤ 2n+1c2(n)

4r
|Ai|. (15)

By virtue of the strong maximal inequality (see e.g. [3, p. 51]), (15), (1), and
(2) we have

|{MI(θ)(t
∗) > 1/2r+1}| ≤ 2nc3(n)

∫

Rn

2r+1t∗ lnn−1(2r+2t∗)

≤ 2nc3(n)

p∑
i=2

2r+1(hi + 1) lnn−1[2r+1(hi + 1)]| supp t∗i |

≤ c7(n)

p∑
i=1

2rhi ln
n−1(2rhi)

|Ai|
4r

≤ c8(n)r

2r

p∑
i=1

hi

r
lnn−1 hi

r
|Ai| = c8(n)r2

2r
. (16)

Taking into account (14), (16) and the inequality v ≤ t + t∗, we write

|{MI(θ)(v) > 1/2r}| ≤ 2n+1c2(n)

4r
+

c8(n)r2

2r
. (17)

As r ∈ N is arbitrary, by (11) and (17) we conclude that in the case of a
nontrivial orbit the assertion is proved.

If from the above arguments we remove those connected with “good” frames
and assume that E = θ(Rn), then we can prove the remaining case: E = θ(Rn).
The assertion is proved. ¤

Now let us proceed to a direct proof of the theorem.

First, let us consider the case E =
p⋃

i=0

Ei, where Ei (i ∈ 0, p) are nontrivial

orbits. Assume σi ∈ σ(E) (i ∈ 0, p) and let f ∈ L \ (ln+ L)n−1(Gn).
Denote m∗ = m(mod p+1) (m ∈ N). By virtue of the assertion proved above

there are a sequence of sets Am ⊂ Gn and a sequence of functions gm ∈ L(Gn)
such that

fχ
Am

is bounded (m ∈ N), (1)

Am ∩ Am′ = ∅ (m 6= m′), (2)

gm is equimeasurable with fχ
Am

(m ∈ N), (3)
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|{M (1/m)
I(θ) (gm) > m}| > 1− 1

m
(m ∈ N, θ ∈ Em∗), (4)

|{MI(θ)(gm) > 1/2m}| < 1

2m
(m ∈ N, θ ∈ Em∗(σm∗ , 1/2m)). (5)

Set g∗ = sup
m∈N

gm. Let θ ∈ E. Then from (4) we have

∣∣∣ lim
m→∞

{
M

(1/m)
I(θ) (gm) > m}

∣∣∣ = 1.

Therefore

DI(θ)

( ∫
g∗, x

)
= ∞ a.e. on Gn. (6)

Let now θ /∈ E. It is clear that

θ(Rn) \ E =

p⋂
i=0

⋃

m (mod p+1)=i

Em∗(σm∗ , 1/2m)

and therefore θ ∈ Em∗(σm∗ , 1/2m) for m large enough. Consequently, there is
(see (5)) m(θ) ∈ N such that |{MI(θ)(gm) > 1/2m}| < 1

2m when m > m(θ).

Hence
∣∣ lim

m→∞
{
MI(θ)(gm) > 1/2m}

∣∣ = 0. ¿From this, (1) and (3) we obtain

MI(θ)(g
∗)(x) ≤

∞∑
m=1

MI(θ)(gm)(x) < ∞ a.e. on Gn.

Therefore

0 ≤ DI(θ)

( ∫
g∗, x

)
≤ DI(θ)

( ∫
g∗, x

)
≤ MI(θ)(g

∗)(x) < ∞ a.e. on Gn.

Now according to Guzmán–Menargues’ theorem (see [3, p. 106]) we conclude∫
g∗ is strongly differentiable along θ. (7)

Taking into account the decomposition g∗ =
∞∑

m=1

gmχ
Qm

, where Qm = {x :

sup
1≤i≤m−1

gi(x) < g∗(x), gm(x) = g∗(x)}, and using (2) and (3), it is not difficult

to see that |{λ1 < g∗ ≤ λ2}| ≤ |{λ1 < f ≤ λ2}| (λ1 ≤ λ2). Therefore the
function

F (λ) =

{
1, λ < 0,
Ff (λ)− Fg∗(λ), λ ≥ 0

(8)

is a distribution. Furthermore, according to the Lemma on Distribution there
is a function g∗ such that Fg∗ = F , supp g∗ ⊂ Gn \ supp g∗ and g∗ for every
θ ∈ θ(Rn) ∫

g∗ is strongly differentiable along θ. (9)

Set g = g∗ + g∗. Obviously, g is equimeasurable with f . Hence (6), (7), and
(9) imply that g is the desired function. Thus the theorem is proved in the
considered case.
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If from the above arguments we remove those connected with differentiability
and assume that E = E0 = θ(Rn), then we can prove the theorem in the case
E = θ(Rn).

In the remaining case E = ∅, it is sufficient to use the Lemma on Distribution.
The theorem is proved. ¤
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