MAPPING PROPERTIES OF INTEGRAL OPERATORS OF LEVY TYPE

THOMAS RUNST AND ABDELLAH YOUSSFI

Abstract. We study the boundedness and compactness of a special class of integral operators defined on generalized Sobolev spaces.

2000 Mathematics Subject Classification: 47G10, 47G20, 46E35, 47D07.

Key words and phrases: Integral operator, Bessel potential spaces, Markov process, mapping properties.

1. INTRODUCTION AND THE MAIN RESULTS

Let us consider the integral operator S,

$$Su(x) = \int_{\mathbb{R}^n \setminus \{0\}} \left[u(x+z) - u(x) - \sum_{j=1}^n z_j \frac{\partial u}{\partial x_j}(x) \right] K(x,z) \, d\mu(z), \quad x \in \mathbb{R}^n,$$

where the kernel K is defined on $\mathbb{R}^n \times \mathbb{R}^n$ and satisfies the following growth conditions:

- (H1): $K \in L^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$,
- (H2): for fixed $0 < \theta_0 < 1$, we suppose that $H(\theta_0) < +\infty$, where

$$H(\theta_0) = \sup_{x,z \in \mathbb{R}^n} \int_{\mathbb{R}^n} \left| K(x+h,z) - K(x,z) \right|^2 \frac{dh}{|h|^{n+2\theta_0}}.$$

Furthermore, the Radon measure $d\mu(z)$ on $\mathbb{R}^n \setminus \{0\}$ satisfies the moment condition:

• (H3):
$$\int_{0 < |z| \le 1} |z|^{\alpha} d\mu(z) + \int_{|z| \ge 1} |z| d\mu(z) < +\infty$$
, where $1 \le \alpha \le 2$ holds.

Our first mapping result deals with the generalized Sobolev spaces $H_p^s(\mathbb{R}^n)$ of functions defined on \mathbb{R}^n .

Theorem 1. Suppose that (H1), (H2) and (H3) hold. Then

$$S: H_p^{\theta+\alpha}(\mathbb{R}^n) \to H_p^{\theta}(\mathbb{R}^n)$$

is a bounded operator for all $1 and all <math>0 \le \theta \le \theta_0$.

In our second result we consider the case of bounded connected domains Ω in \mathbb{R}^n with smooth boundary $\partial \Omega$.

ISSN 1072-947X / \$8.00 / © Heldermann Verlag www.heldermann.de

Theorem 2. Let $K \in L^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ with K(x, z) = 0 if $x + z \notin \overline{\Omega}$. Suppose that (H2) and (H3) are satisfied with $0 < \theta_0 < 1$ and $1 \le \alpha \le 2$, respectively. Then

$$S: H_p^{\alpha+\theta}(\Omega) \to H_p^{\theta}(\Omega)$$

is bounded for $0 \le \theta \le \theta_0$ and all $1 . Moreover, if <math>\frac{n}{p} + 1 < \alpha$, then

$$S: H_p^{\alpha+\theta}(\Omega) \to H_p^{\theta}(\Omega)$$

is compact for all $0 \leq \theta < \theta_0$.

Note that the condition K(x, z) = 0 for $x + z \notin \overline{\Omega}$ implies that our integral operator can be interpreted as a mapping acting on functions u which are defined in $\overline{\Omega}$.

Operators of such a type play an important role in the theory of Waldenfels operators W = P + S, where P is a second-order elliptic partial differential operator of the type

$$Pu(x) = \sum_{i,j=1}^{n} a_{i,j}(x) \frac{\partial^2 u}{\partial x_i \partial x_j}(x) + \sum_{i=1}^{n} b_i(x) \frac{\partial u}{\partial x_i}(x) + c(x)u(x), \quad x \in \Omega,$$

see [1] and [4]. In particular, the Levy operator S occurs as a compact perturbation.

The paper is organized as follows. First we recall some properties of spaces of type H_p^s . In Section 3, we prove Theorem 1 and then Theorem 2 in Section 4.

2. FUNCTION SPACES

In general, all functions, distributions, etc. are defined on the Euclidean space \mathbb{R}^n . As usual $\mathcal{S} = \mathcal{S}(\mathbb{R}^n)$ denotes the Schwartz space of test functions, $\mathcal{S}' = \mathcal{S}'(\mathbb{R}^n)$ is its dual. For $f \in \mathcal{S}'$, \hat{f} denotes the Fourier transform of f.

To define the Bessel potential space $H_p^s = H_p^s(\mathbb{R}^n)$, we make use of the Fourieranalytic approach.

Throughout the paper let ψ in $\mathcal{S}(\mathbb{R}^n)$ be fixed so that $\hat{\psi}$ be supported by the set $\{\xi \in \mathbb{R}^n : \frac{1}{2} \leq |\xi| \leq 2\}$ and

$$\sum_{j \in \mathbb{Z}} \hat{\psi}(2^j \xi) = 1 \quad \text{for} \quad \xi \neq 0 \;. \tag{1}$$

Define φ by

$$\hat{\varphi}(\xi) = 1 - \sum_{j \ge 1} \hat{\psi}(2^{-j}\xi) ,$$
 (2)

and denote now by Δ_j $(j \in \mathbb{N})$ the convolution operator with symbol $\hat{\psi}(2^{-j}\xi)$.

For $s \in \mathbb{R}$ and $1 , the generalized Sobolev space or the Bessel potential space <math>H_p^s = H_p^s(\mathbb{R}^n)$ is a subspace of $\mathcal{S}'(\mathbb{R}^n)$ given by the norm

$$\|g\|_{H_p^s} = \|\varphi * g\|_p + \left\| \left[\sum_{j \ge 1} 4^{sj} |\Delta_j g|^2 \right]^{\frac{1}{2}} \right\|_p < +\infty,$$

and for $1 \leq q \leq \infty$, the Besov space $B_{p,q}^s = B_{p,q}^s(\mathbb{R}^n)$ is a subspace of $\mathcal{S}'(\mathbb{R}^n)$ with the norm

$$||g||_{B^{s}_{p,q}} = ||\varphi * g||_{p} + \left[\sum_{j\geq 1} 2^{sjq} ||\Delta_{j}g||_{p}^{q}\right]^{\frac{1}{q}} < +\infty.$$

Note that if s < s' holds, then $H_p^s \subset B_{p,\infty}^s$ and $B_{p,\infty}^{s'} \subset H_p^s$. Now let Ω be a bounded connected domain in \mathbb{R}^n with smooth boundary $\partial\Omega$,

Now let Ω be a bounded connected domain in \mathbb{R}^n with smooth boundary $\partial\Omega$, and its closure be given by $\overline{\Omega} = \Omega \cup \partial\Omega$. To define function spaces on Ω we use restriction arguments. Let $\mathcal{D}'(\Omega)$ be the space of distributions on Ω . Then we put

$$H_p^s(\Omega) = \left\{ f \in \mathcal{D}'(\Omega) : \exists g \in H_p^s(\mathbb{R}^n) \text{ such that } g|_{\Omega} = f \right\}$$

and

$$\| f \|_{H^s_p(\Omega)} = \inf_{g|_{\Omega} = f} \| g \|_{H^s_p}.$$

In the same way we define the Besov space

$$B_{p,q}^{s}(\Omega) = \left\{ f \in \mathcal{D}'(\Omega) : \exists g \in B_{p,q}^{s}(\mathbb{R}^{n}) \text{ such that } g|_{\Omega} = f \right\}$$

and

$$||f||_{B^s_{p;q}(\Omega)} = \inf_{g|_{\Omega}=f} ||g||_{B^s_{p,q}},$$

see for example [5] and [3].

For the proof of Theorem 1 we make use of the following characterization of generalized Sobolev spaces H_p^s (*Strichartz' norm*) which can be found, for example, in [5, p. 194].

Lemma 1. Let 0 < s < 1 and 1 . Then

$$N_p^s(g) = \|g\|_p + \|L_s(g)\|_p$$

defines an equivalent norm on H_p^s , where

$$L_{s}(g)(x) = \begin{cases} \left(\int_{\mathbb{R}^{n}} |g(x+h) - g(x)|^{2} \frac{dh}{|h|^{n+2s}} \right)^{1/2} & \text{if } p \ge 2, \\ \left(\int_{0}^{\infty} \left[\int_{|h| \le 1} |g(x+th) - g(x)| dh \right]^{2} \frac{dt}{t^{1+2s}} \right)^{1/2} & \text{if } 1$$

The second Lemma which will be used in our proof is the following.

Lemma 2. Let $0 \le s \le 1$, $0 \le \gamma \le 1$, $1 and set <math>T_h(f)(x) = f(x+h) - f(x)$. Then there exists C > 0 such that

$$\left\|T_h(f)\right\|_{H_p^{\gamma}} \le C|h|^s \left\|f\right\|_{H_p^{s+\gamma}}$$

for all $f \in H_p^{s+\gamma}$.

Proof. We are not able to give a reference for this result. For the reader's convenience we prove the assertion.

1) The case $\gamma = 0$:

for s = 0 the lemma is trivial and for s = 1 it is known, see [6, pp. 45–46], for example;

for 0 < s < 1 we recall that

$$\left[\int_{\mathbb{R}^n} \left| f(x+h) - f(x) \right|^p dx \right]^{\frac{1}{p}} \le C|h|^s \, \|f\|_{B^s_{p,\infty}}.$$

Since $H_p^s \subset B_{p,\infty}^s$ the lemma follows.

2) The case $\gamma = 1$:

Note that

$$\left\|T_h(f)\right\|_{H_p^1} \le C\left[\sum_{j=1}^n \left\|\frac{\partial T_h(f)}{\partial x_j}\right\|_p + \left\|T_h(f)\right\|_p\right]$$

and it follows from 1) that

$$\left\|T_{h}(f)\right\|_{p}+\left\|\frac{\partial T_{h}(f)}{\partial x_{j}}\right\|_{p}\leq C|h|^{s}\left[\left\|\frac{\partial f}{\partial x_{j}}\right\|_{H_{p}^{s}}+\left\|f\right\|_{p}\right],$$

and hence

$$\left\|T_h(f)\right\|_{H^1_p} \le C|h|^s \left\|f\right\|_{H^{s+1}_p}.$$

3) From 1) and 2) we obtain that T_h is a bounded linear operator from H_p^s into L^p and from H_p^{s+1} into H_p^1 , respectively.

Then by interpolation arguments we obtain that T_h is bounded from $H_p^{s+\gamma}$ into H_p^{γ} for all $0 \leq \gamma \leq 1$ and the norm of T_h is bounded by $C|h|^s$.

Lemma 3. Let $0 < \theta_0 < 1$. There exists $C_1 = C_1(\theta_0) > 0$ such that

$$\sup_{x,h\in\mathbb{R}^n} \left[\frac{|g(x+h) - g(x)|}{|h|^{\theta_0}} \right] \le C_1 \left[\sup_{x\in\mathbb{R}^n} \left[\int_{\mathbb{R}^n} |g(x+h) - g(x)|^2 \frac{dh}{|h|^{n+2\theta_0}} \right]^{\frac{1}{2}} + \|g\|_{\infty} \right]$$

for all $g \in L^{\infty}(\mathbb{R}^n)$. Moreover, for every $0 \leq \theta < \theta_0$, there exists a finite constant $C_2 = C_2(\theta_0) > 0$ such that

$$\int_{\mathbb{R}^n} \left| g(x+h) - g(x) \right|^2 \frac{dh}{|h|^{n+2\theta}} \right|^{\frac{1}{2}} \le C_1 \left[\sup_{x,h \in \mathbb{R}^n} \frac{|g(x+h) - g(x)|}{|h|^{\theta_0}} + \|g\|_{\infty} \right]$$

for all $g \in L^{\infty}(\mathbb{R}^n)$.

In particular, if $K \in L^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$, then $H(\theta_0) < +\infty$ implies $H(\theta) < +\infty$ for all $0 \le \theta < \theta_0$ and

$$\left|g(x+h) - g(x)\right| \le C|h|^{\theta_0}$$

for all $x, h \in \mathbb{R}^n$.

Proof. Indeed, we have

$$\|g\|_{B^{\theta_0}_{\infty,\infty}} = \|g\|_{\infty} + \sup_{x,h \in \mathbb{R}^n} \frac{|g(x+h) - g(x)|}{|h|^{\theta_0}}$$

and

$$\|g\|_{B^{\theta_0}_{\infty,2}} = \|g\|_{\infty} + \sup_{x \in \mathbb{R}^n} \left[\int_{\mathbb{R}^n} |g(x+h) - g(x)|^2 \frac{dh}{|h|^{n+2\theta_0}} \right]^{\frac{1}{2}},$$

see [5] or [3] for example. The embeddings $B_{\infty,2}^{\theta_0} \subset B_{\infty,2}^{\theta} \subset B_{\infty,\infty}^{\theta}$ finish the proof.

3. Proof of Theorem 1

To prove Theorem 1 we show first the boundedness of S from $H_p^{\alpha}(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ (the case $\theta = 0$) and after that we prove that there exists a positive constant C such that

$$\left\|L_{\theta}(Su)\right\|_{p} \leq C \left\|u\right\|_{H_{p}^{\alpha+\theta}}$$

holds for all $u \in H_p^{\alpha+\theta}(\mathbb{R}^n)$ and $0 < \theta \leq \theta_0$. This implies

 $\|Su\|_{H_p^{\theta}} \le C \|u\|_{H_p^{\theta+\alpha}}.$

Indeed, $H(\theta_0) < +\infty$ implies $H(\theta) < +\infty$ by Lemma 3.

3.1. L^p -boundedness. To prove the L^p -boundedness, we write $Su(x) = S_1u(x) + S_2u(x)$, where

$$S_1 u(x) = \int_{|z| \ge 1} \left[u(x+z) - u(x) - \sum_{j=1}^n z_j \frac{\partial u}{\partial x_j}(x) \right] K(x,z) \, d\mu(z),$$

$$S_2 u(x) = \int_{|z| \le 1} \left[u(x+z) - u(x) - \sum_{j=1}^n z_j \frac{\partial u}{\partial x_j}(x) \right] K(x,z) \, d\mu(z).$$

First observe that

$$|S_1u(x)| \le ||K||_{\infty} [g_1(x) + g_2(x)],$$

where

$$g_1(x) = \int_{|z| \ge 1} |u(x+z) - u(x)| d\mu(z)$$

and

$$g_2(x) = \sum_{j=1}^n \frac{\partial u}{\partial x_j}(x) \int_{|z| \ge 1} |z_j| \, d\mu(z).$$

Hence

$$||g_1||_p \le \int_{|z|\ge 1} \left[\int_{\mathbb{R}^n} \left| u(x+z) - u(x) \right|^p dx \right]^{\frac{1}{p}} d\mu(z)$$

and

$$\|g_2\|_p \le \sum_{j=1}^n \left\| \frac{\partial u}{\partial x_j} \right\|_p \left[\sum_{j=1}^n \int_{|z|\ge 1} |z_j| \, d\mu(z) \right].$$

Combining now (H3), Lemma 2 with s = 1 and $\gamma = 0$, we obtain

$$||S_1 u||_p \le C ||K||_{\infty} ||u||_{H^1_p} \int_{|z|\ge 1} |z| \, d\mu(z).$$

Next we give an estimate for $||S_2u||_p$. We write

$$u(x+z) - u(x) - \sum_{j=1}^{n} z_j \frac{\partial u}{\partial x_j}(x) = \sum_{j=1}^{n} z_j \int_{0}^{1} \left[\frac{\partial u}{\partial x_j}(x+tz) - \frac{\partial u}{\partial x_j}(x) \right] dt,$$

and it follows that

$$|S_2u(x)| \le ||K||_{\infty} \sum_{j=1}^n \int_0^1 \int_{|z|\le 1}^1 |z| \left| \frac{\partial u}{\partial x_j}(x+tz) - \frac{\partial u}{\partial x_j}(x) \right| d\mu(z) dt.$$

Hence

$$\|S_2 u\|_p \le C \sum_{j=1}^n \|K\|_{\infty} \int_0^1 \int_{|z| \le 1} |z| \left[\int_{\mathbb{R}^n} \left| \frac{\partial u}{\partial x_j} (x+tz) - \frac{\partial u}{\partial x_j} (x) \right|^p dx \right]^{\frac{1}{p}} d\mu(z) \, dt.$$

Applying now Lemma 2 with $s = \alpha - 1$ and $\gamma = 0$, we obtain

$$\left[\int\limits_{\mathbb{R}^n} \left|\frac{\partial u}{\partial x_j}(x+tz) - \frac{\partial u}{\partial x_j}(x)\right|^p dx\right]^{\frac{1}{p}} \le C|tz|^{\alpha-1} \left\|\frac{\partial u}{\partial x_j}\right\|_{H_p^{\alpha-1}} \le C|tz|^{\alpha-1} \|u\|_{H_p^{\alpha}}.$$

Thus

$$||S_2 u||_p \le C ||K||_{\infty} ||u||_{H^{\alpha}_p} \int_{|z| \le 1} |z|^{\alpha} d\mu(z).$$

3.2. Estimation of $||L_{\theta}(Su)||_p$. In the following, we consider the case where $p \geq 2$ holds. The other case can be handled similarly. We are to prove that $L_{\theta}(Su) \in L^p$, where

$$L_{\theta}(Su)(x) = \left[\int \frac{\left|Su(x+h) - Su(x)\right|^2}{|h|^{n+2\theta}} dh\right]^{\frac{1}{2}}.$$

As above we put $Su = S_1u + S_2u$, where

$$S_1 u(x) = \int_{|z| \ge 1} \left[u(x+z) - u(x) - \sum_{j=1}^n z_j \frac{\partial u}{\partial x_j}(x) \right] K(x,z) d\mu(z),$$

$$S_2 u(x) = \int_{|z| \le 1} \left[u(x+z) - u(x) - \sum_{j=1}^n z_j \frac{\partial u}{\partial x_j}(x) \right] K(x,z) d\mu(z).$$

A) Estimation of $L_{\theta}(S_1u)$. First we write $S_1u(x+h) - S_1u(x)$ in the following form:

$$\begin{split} S_{1}u(x+h) &- S_{1}u(x) \\ &= \int\limits_{|z|\geq 1} \left[u(x+h+z) - u(x+z) + u(x) - u(x+h) \right] K(x+h,z) d\mu(z) \\ &+ \int\limits_{|z|\geq 1} \left[u(x+z) - u(x) \right] \left[K(x+h,z) - K(x,z) \right] d\mu(z) \\ &+ \sum\limits_{j=1}^{n} \left[\frac{\partial u}{\partial x_{j}}(x) - \frac{\partial u}{\partial x_{j}}(x+h) \right] \int\limits_{|z|\geq 1} z_{j} K(x+h,z) d\mu(z) \\ &+ \sum\limits_{j=1}^{n} \frac{\partial u}{\partial x_{j}}(x) \int\limits_{|z|\geq 1} z_{j} \left[K(x,z) - K(x+h,z) \right] d\mu(z) \\ &= A_{1}(x,h) + A_{2}(x,h) + A_{3}(x,h) + A_{4}(x,h). \end{split}$$

1) $A_1(x,h)$:

We have

$$A_1(x,h) = \int_{|z|\ge 1} \left(\int_0^1 \sum_{j=1}^n \left[\frac{\partial u}{\partial x_j} (x+h+tz) - \frac{\partial u}{\partial x_j} (x+tz) \right] z_j \, dt \right) K(x+h,z) \, d\mu(z)$$

which implies

$$\left[\int\limits_{\mathbb{R}^n} \left[\int\limits_{\mathbb{R}^n} |A_1(x,h)|^2 \frac{dh}{|h|^{n+2\theta}}\right]^{\frac{p}{2}} dx\right]^{\frac{1}{p}} \le C \sum_{j=1}^n \left\| L_\theta \left(\frac{\partial u}{\partial x_j}\right) \right\|_p \|K\|_{\infty} \left[\int\limits_{|z|\ge 1} |z| d\mu(z)\right].$$

2) $A_2(x,h)$:

In this case we get

$$\left[\int_{\mathbb{R}^{n}} |A_{2}(x,h)|^{2} \frac{dh}{|h|^{n+2\theta}}\right]^{\frac{1}{2}}$$

$$\leq \int_{|z|\geq 1} |u(x+z) - u(x)| \int_{\mathbb{R}^{n}} \left[|K(x+h,z) - K(x,z)|^{2} \frac{dh}{|h|^{n+2\theta}} \right]^{\frac{1}{2}} d\mu(z)$$

$$\leq H(\theta) \int_{|z|\geq 1} |u(x+z) - u(x)| d\mu(z)$$

and

$$\left[\int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} |A_2(x,h)|^2 \frac{dh}{|h|^{n+2\theta}}\right]^{\frac{p}{2}} dx\right]^{\frac{1}{p}} \le CH(\theta) \|u\|_p \left[\int_{|z|\ge 1} |z| \, d\mu(z)\right].$$

3) $A_3(x,h)$: It is clear that

$$\left[\int_{\mathbb{R}^n} |A_3(x,h)|^2 \frac{dh}{|h|^{n+2\theta}}\right]^{\frac{1}{2}} \le \sum_{j=1}^n \left[\|K\|_{\infty} L_{\theta} \left(\frac{\partial u}{\partial x_j}\right)(x) \right] \left[\int_{|z|\ge 1} |z| d\mu(z)\right]$$

and hence

$$\left[\int\limits_{\mathbb{R}^n} \left[\int\limits_{\mathbb{R}^n} |A_3(x,h)|^2 \frac{dh}{|h|^{n+2\theta}}\right]^{\frac{p}{2}} dx\right]^{\frac{1}{p}} \le \sum_{j=1}^n \left[\|K\|_{\infty} \|L_\theta\left(\frac{\partial u}{\partial x_j}\right)\|_p \right] \left[\int\limits_{|z|\ge 1} |z| \, d\mu(z)\right].$$

4) $A_4(x,h)$:

In the last case we obtain

$$\left[\int\limits_{\mathbb{R}^n} \left[\int\limits_{\mathbb{R}^n} |A_4(x,h)|^2 \frac{dh}{|h|^{n+2\theta}}\right]^{\frac{p}{2}} dx\right]^{\frac{1}{p}} \le H(\theta) \left[\int\limits_{|z|\ge 1} |z| \, d\mu(z)\right] \sum_{j=1}^n \left\|\frac{\partial u}{\partial x_j}\right\|_p.$$

Summing up we get

$$\begin{split} \left| L_{\theta}(S_{1}u) \right\|_{p} &\leq \left[\|K\|_{\infty} + H(\theta) \right] \left[\int_{|z| \geq 1} |z| \, d\mu(z) \right] \\ &\times \left[\|u\|_{p} + \sum_{j=1}^{n} \left\| L_{\theta} \left(\frac{\partial u}{\partial x_{j}} \right) \right\|_{p} + \sum_{j=1}^{n} \left\| \frac{\partial u}{\partial x_{j}} \right\|_{p} \right]. \end{split}$$

We have

$$\left\|\frac{\partial u}{\partial x_j}\right\|_p \le C \|u\|_{H_p^1}$$

and

$$\left\|L_{\theta}\left(\frac{\partial u}{\partial x_{j}}\right)\right\|_{p} \leq C \|u\|_{H_{p}^{\theta+1}}.$$

It follows finally that

$$\left\| L_{\theta}(S_{1}u) \right\|_{p} \leq C \left[\|K\|_{\infty} + H(\theta) \right] \|u\|_{H_{p}^{\theta+1}} \int_{|z| \geq 1} |z| \, d\mu(z).$$

B) Estimation of $L_{\theta}(S_2 u)$.

Here we write

$$S_2u(x+h) - S_2u(x) = B_1(x,h) + B_2(x,h),$$

where

$$B_1(x,h) = \int_{|z| \le 1} \left[u(x+z+h) - u(x+z) - u(x+h) + u(x) - \sum_{j=1}^n z_j \left(\frac{\partial u}{\partial x_j}(x+h) - \frac{\partial u}{\partial x_j}(x) \right) \right] K(x+h,z) \, d\mu(z)$$

and

$$B_2(x,h) = \int_{|z| \le 1} \left[u(x+z) - u(x) - \sum_{j=1}^n z_j \left(\frac{\partial u}{\partial x_j}(x) \right) \left(K(x+h,z) - K(x,z) \right) \right] d\mu(z).$$

First we put $f_{tz}^j(x) = \frac{\partial u}{\partial x_j}(x+tz) - \frac{\partial u}{\partial x_j}(x)$ and observe that

$$|B_1(x,h)| \le \sum_{j=1}^n ||K||_{\infty} \int_{|z|\le 1}^1 \int_0^1 |z| \left| f_{tz}^j(x+h) - f_{tz}^j(x) \right| dt \, d\mu(z).$$

Hence we get

$$\left[\int_{\mathbb{R}^n} \frac{|B_1(x,h)|^2}{|h|^{n+2\theta}} dh\right]^{\frac{1}{2}} \le \sum_{j=1}^n \|K\|_{\infty} \int_{|z|\le 1} |z| \int_0^1 L_{\theta}(f_{tz}^j)(x) dt d\mu(z).$$

Applying now Lemma 2 with $s = \alpha - 1$ and $\gamma = \theta$, we obtain

$$\left\|L_{\theta}(f_{tz}^{j})\right\|_{p} \leq C|tz|^{\alpha-1} \left\|\frac{\partial u}{\partial x_{j}}\right\|_{H_{p}^{\theta+\alpha-1}}$$

and, consequently,

$$\left[\int\limits_{\mathbb{R}^n} \left[\int\limits_{\mathbb{R}^n} \frac{|B_1(x,h)|^2}{|h|^{n+2\theta}} dh\right]^{\frac{p}{2}} dx\right]^{\frac{1}{p}} \le C \|K\|_{\infty} \int\limits_{|z|\le 1} |z|^{\alpha} d\mu(z) \sum_{j=1}^n \left\|\frac{\partial u}{\partial x_j}\right\|_{H_p^{\theta+\alpha-1}}.$$

On the other hand, we have

$$\left|B_2(x,h)\right| \le \sum_{j=1}^n \int_0^1 \int_{|z|\le 1} |z| \left|\frac{\partial u}{\partial x_j}(x+tz) - \frac{\partial u}{\partial x_j}(x)\right| \left|K(x+h,z) - K(x,z)\right| d\mu(z) dt.$$

Using (H2), it follows that

$$\left[\int\limits_{\mathbb{R}^n} \frac{|B_2(x,h)|^2}{|h|^{n+2\theta}} \, dh\right]^{\frac{1}{2}} \le \sum_{j=1}^n H(\theta) \int\limits_{|z| \le 1} |z| \int\limits_0^1 \left| \frac{\partial u}{\partial x_j}(x+tz) - \frac{\partial u}{\partial x_j}(x) \right| d\mu(z) \, dt.$$

Using again Lemma 2 with $s = \alpha - 1$ and $\gamma = 0$, we obtain

$$\left[\int\limits_{\mathbb{R}^n} \left[\int\limits_{\mathbb{R}^n} \frac{|B_2(x,h)|^2}{|h|^{n+2\theta}} dh\right]^{\frac{p}{2}} dx\right]^{\frac{1}{p}} \le CH(\theta) \sum_{j=1}^n \left\|\frac{\partial u}{\partial x_j}\right\|_{H_p^{\alpha-1}}.$$

Therefore we have shown that

$$\left\|L_{\theta}(S_{2}u)\right\|_{p} \leq C\left(H(\theta) + \|K\|_{\infty}\right) \|u\|_{H_{p}^{\theta+\alpha}}$$

holds.

4. Proof of Theorem 2

Step 1: The proof of part 1) follows from Theorem 1 by restriction arguments. Step 2: Let $\frac{n}{p} + 1 < \alpha \leq 2$. We show that

$$S: H_p^{\alpha}(\Omega) \to L_p(\Omega)$$

is a compact mapping. We recall that K(x, z) = 0 if $x + z \notin \overline{\Omega}$. Hence there exists a compact set $M \subset \mathbb{R}^n$ such that

$$Su(x) = \int_{M} \left[u(x+z) - u(x) - \sum_{j=1}^{n} z_j \frac{\partial u}{\partial x_j}(x) \right] K(x,z) \, d\mu(z)$$

can be interpreted as a mapping acting on functions u defined on $\overline{\Omega}$.

Now we introduce for $0 < \varepsilon < 1$ a family of truncation operators given by

$$S_{\Phi_{\varepsilon}}u(x) = \int_{M} \left[u(x+z) - u(x) - \sum_{j=1}^{n} z_j \frac{\partial u}{\partial x_j}(x) \right] K(x,z) \Phi_{\varepsilon}(x,z) \, d\mu(z),$$

where $\Phi_{\varepsilon} \in C^{\infty}(\overline{\Omega} \times \mathbb{R}^n)$ such that

$$\Phi_{\varepsilon}(x,z) = 0$$
 if $|x-z| \le \varepsilon$,

and

$$\Phi_{\varepsilon}(x,z) = 1$$
 if $|x-z| \ge 2\varepsilon$.

Furthermore, by Lemma 3 there exists $C_0 > 0$ such that

$$|K(x,z) - K(y,z)| < C_0 |x - y|^{\theta_0}$$

holds for all $x, y \in M$ and all $z \in \mathbb{R}^n$. Hence we can show that

$$S_{\Phi_{\varepsilon}}: C^1(\overline{\Omega}) \to C(\overline{\Omega})$$

is bounded. Since $\frac{n}{p} + 1 < \alpha \leq 2$, the embedding $H_p^{\alpha}(\Omega) \hookrightarrow C^1(\overline{\Omega})$ is compact and the embedding $C(\overline{\Omega}) \hookrightarrow L^p(\Omega)$ is continuous. We establish that

$$S_{\Phi_{\varepsilon}}: H_p^{\alpha}(\Omega) \to L_p(\Omega)$$

is compact. As in the proof of Theorem 1, we get

$$||S_{\Phi_{\varepsilon}}u||_{p} \leq C||K||_{\infty} ||u||_{H^{\alpha}_{p}(\Omega)}.$$

Furthermore, we have by Lebesgue's Theorem,

$$S_{\Phi_{\varepsilon}} \to S \text{ as } \varepsilon \downarrow 0$$

with respect to the operator norm in $\mathcal{L}(H_p^{\alpha}(\Omega), L_p(\Omega))$. Because of the fact that the compact operators are a closed subspace in $\mathcal{L}(H_p^{\alpha}(\Omega), L_p(\Omega))$ it follows that

$$S: H_p^{\alpha}(\Omega) \to L_p(\Omega)$$

is compact for $\frac{n}{p} + 1 < \alpha$.

Step 3: Now we can finish the proof of Part 2). From Step 1 we can derive that

$$S: H_p^{\alpha+\theta}(\Omega) \to H_p^{\theta}(\Omega)$$

is bounded for all $1 and all <math>0 < \theta < \theta_0$. Using the result of Step 2 we have

$$S: H_p^{\alpha}(\Omega) \to L_p(\Omega)$$

is compact if $\frac{n}{p} + 1 < \alpha$.

Now we can apply a result concerning the complex interpolation of compact linear operators, see [2], in order to obtain our result. Indeed, $H_p^{\alpha}(\Omega)$ is reflexive and it is known that $H_p^{\alpha}(\Omega) = [L^p(\Omega), H_p^{\alpha+\theta}(\Omega)]_{\sigma}$ where $\sigma = 1 - \frac{\alpha}{\alpha+\theta}$.

References

- J. -M. BONY, P. COURRÈGE and P. PRIOURET, Semi-groupes de Feller sur une variété bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum. Ann. Inst. Fourier (Grenoble) 18(1968), fasc. 2, 369–521 (1969).
- M. CWIKEL and N. J. KALTON, Interpolation of compact operators by the methods of Calderón and Gustavsson-Peetre. Proc. Edinburgh Math. Soc. (2) 38(1995), No. 2, 261– 276.
- 3. T. RUNST and W. SICKEL, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. de Gruyter Series in Nonlinear Analysis and Applications, 3. Walter de Gruyter & Co., Berlin, 1996.
- K. TAIRA, Feller semigroups and degenerate elliptic operators. I, II. Conf. Semin. Mat. Univ. Bari Nos. 274, 275 (1999).
- 5. H. TRIEBEL, Theory of function spaces. II. Monographs in Mathematics, 84. Birkhäuser Verlag, Basel, 1992.
- 6. W. P. ZIEMER, Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989.

(Received 27.07.2004)

Authors' addresses:

T. Runst

Math. Institut, Friedrich-Schiller-University Jena D-07740 Jena, Ernst-Abbe-Platz 1–4 Germany E-mail: runst@minet.uni-jena.de

A. Youssfi Laboratoire d'Analyse et de Mathématiques Appliquées CNRS UMR 8050, Université Marne–La–Vallée 5 bd Descartes, Cité Descartes Champs-sur-Marne, F-77454 Marne-La-Vallée Cedex 2 France E-mail: youssfi@math.univ-mlv.fr