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1. Introduction and the Main Results

Let us consider the integral operator S,

Su(x) =

∫

Rn\{0}

[
u(x + z)− u(x)−

n∑
j=1

zj
∂u

∂xj

(x)
]
K(x, z) dµ(z), x ∈ Rn,

where the kernel K is defined on Rn × Rn and satisfies the following growth
conditions:
• (H1): K ∈ L∞(Rn × Rn),
• (H2): for fixed 0 < θ0 < 1, we suppose that H(θ0) < +∞, where

H(θ0) = sup
x,z∈Rn

∫

Rn

∣∣K(x + h, z)−K(x, z)
∣∣2 dh

|h|n+2θ0
.

Furthermore, the Radon measure dµ(z) on Rn \ {0} satisfies the moment con-
dition:

• (H3):

∫

0<|z|≤1

|z|α dµ(z) +

∫

|z|≥1

|z| dµ(z) < +∞, where 1 ≤ α ≤ 2 holds.

Our first mapping result deals with the generalized Sobolev spaces Hs
p(Rn)

of functions defined on Rn.

Theorem 1. Suppose that (H1), (H2) and (H3) hold. Then

S : Hθ+α
p (Rn) → Hθ

p(Rn)

is a bounded operator for all 1 < p < ∞ and all 0 ≤ θ ≤ θ0.

In our second result we consider the case of bounded connected domains Ω
in Rn with smooth boundary ∂Ω.
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Theorem 2. Let K ∈ L∞(Rn ×Rn) with K(x, z) = 0 if x + z /∈ Ω. Suppose
that (H2) and (H3) are satisfied with 0 < θ0 < 1 and 1 ≤ α ≤ 2, respectively.
Then

S : Hα+θ
p (Ω) → Hθ

p(Ω)

is bounded for 0 ≤ θ ≤ θ0 and all 1 < p < +∞. Moreover, if n
p

+ 1 < α, then

S : Hα+θ
p (Ω) → Hθ

p(Ω)

is compact for all 0 ≤ θ < θ0.

Note that the condition K(x, z) = 0 for x + z /∈ Ω implies that our integral
operator can be interpreted as a mapping acting on functions u which are defined
in Ω.

Operators of such a type play an important role in the theory of Waldenfels
operators W = P + S, where P is a second-order elliptic partial differential
operator of the type

Pu(x) =
n∑

i,j=1

ai,j(x)
∂2u

∂xi ∂xj

(x) +
n∑

i=1

bi(x)
∂u

∂xi

(x) + c(x)u(x), x ∈ Ω,

see [1] and [4]. In particular, the Levy operator S occurs as a compact pertur-
bation.

The paper is organized as follows. First we recall some properties of spaces
of type Hs

p . In Section 3, we prove Theorem 1 and then Theorem 2 in Section 4.

2. Function Spaces

In general, all functions, distributions, etc. are defined on the Euclidean
space Rn. As usual S = S(Rn) denotes the Schwartz space of test functions,

S ′ = S ′(Rn) is its dual. For f ∈ S ′, f̂ denotes the Fourier transform of f .
To define the Bessel potential space Hs

p = Hs
p(Rn), we make use of the Fourier-

analytic approach.
Throughout the paper let ψ in S(Rn) be fixed so that ψ̂ be supported by the

set {ξ ∈ Rn : 1
2
≤ |ξ| ≤ 2} and

∑

j∈Z
ψ̂(2jξ) = 1 for ξ 6= 0 . (1)

Define ϕ by

ϕ̂(ξ) = 1−
∑
j≥1

ψ̂(2−jξ) , (2)

and denote now by ∆j (j ∈ N) the convolution operator with symbol ψ̂(2−jξ).
For s ∈ R and 1 < p < +∞, the generalized Sobolev space or the Bessel

potential space Hs
p = Hs

p(Rn) is a subspace of S ′(Rn) given by the norm

‖g‖Hs
p

= ‖ϕ ∗ g‖p +
∥∥∥
[∑

j≥1

4sj|∆jg|2
] 1

2
∥∥∥

p
< +∞,
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and for 1 ≤ q ≤ ∞, the Besov space Bs
p,q = Bs

p,q(Rn) is a subspace of S ′(Rn)
with the norm

‖g‖Bs
p,q

= ‖ϕ ∗ g‖p +
[ ∑

j≥1

2sjq‖∆jg‖q
p

] 1
q

< +∞.

Note that if s < s′ holds, then Hs
p ⊂ Bs

p,∞ and Bs′
p,∞ ⊂ Hs

p .
Now let Ω be a bounded connected domain in Rn with smooth boundary ∂Ω,

and its closure be given by Ω = Ω∪ ∂Ω. To define function spaces on Ω we use
restriction arguments. Let D′(Ω) be the space of distributions on Ω. Then we
put

Hs
p(Ω) =

{
f ∈ D′(Ω) : ∃ g ∈ Hs

p(Rn) such that g|Ω = f
}

and

‖ f‖Hs
p(Ω) = inf

g|Ω=f
‖ g‖Hs

p
.

In the same way we define the Besov space

Bs
p,q(Ω) =

{
f ∈ D′(Ω) : ∃ g ∈ Bs

p,q(Rn) such that g|Ω = f
}

and

‖ f‖Bs
p;q(Ω) = inf

g|Ω=f
‖ g‖Bs

p,q
,

see for example [5] and [3].
For the proof of Theorem 1 we make use of the following characterization

of generalized Sobolev spaces Hs
p (Strichartz’ norm) which can be found, for

example, in [5, p. 194].

Lemma 1. Let 0 < s < 1 and 1 < p < +∞. Then

N s
p (g) = ‖g‖p + ‖Ls(g)‖p

defines an equivalent norm on Hs
p , where

Ls(g)(x) =





(∫

Rn

∣∣g(x + h)− g(x)
∣∣2 dh

|h|n+2s

)1/2

if p ≥ 2,

( ∞∫

0

[ ∫

|h|≤1

∣∣g(x + th)− g(x)
∣∣dh

]2
dt

t1+2s

)1/2

if 1 < p ≤ 2.

The second Lemma which will be used in our proof is the following.

Lemma 2. Let 0 ≤ s ≤ 1, 0 ≤ γ ≤ 1, 1 < p < +∞ and set Th(f)(x) =
f(x + h)− f(x). Then there exists C > 0 such that

∥∥Th(f)
∥∥

Hγ
p
≤ C|h|s ∥∥f

∥∥
Hs+γ

p

for all f ∈ Hs+γ
p .
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Proof. We are not able to give a reference for this result. For the reader’s
convenience we prove the assertion.

1) The case γ = 0:
for s = 0 the lemma is trivial and for s = 1 it is known, see [6, pp. 45–46],

for example;
for 0 < s < 1 we recall that

[ ∫

Rn

∣∣f(x + h)− f(x)
∣∣pdx

] 1
p

≤ C|h|s ‖f‖Bs
p,∞ .

Since Hs
p ⊂ Bs

p,∞ the lemma follows.
2) The case γ = 1:
Note that

∥∥Th(f)
∥∥

H1
p
≤ C

[ n∑
j=1

∥∥∥∂Th(f)

∂xj

∥∥∥
p
+

∥∥Th(f)
∥∥

p

]

and it follows from 1) that

∥∥Th(f)
∥∥

p
+

∥∥∥∂Th(f)

∂xj

∥∥∥
p
≤ C|h|s

[∥∥∥ ∂f

∂xj

∥∥∥
Hs

p

+
∥∥f

∥∥
p

]
,

and hence ∥∥Th(f)
∥∥

H1
p
≤ C|h|s

∥∥f
∥∥

Hs+1
p

.

3) From 1) and 2) we obtain that Th is a bounded linear operator from Hs
p

into Lp and from Hs+1
p into H1

p , respectively.
Then by interpolation arguments we obtain that Th is bounded from Hs+γ

p

into Hγ
p for all 0 ≤ γ ≤ 1 and the norm of Th is bounded by C|h|s. ¤

Lemma 3. Let 0 < θ0 < 1. There exists C1 = C1(θ0) > 0 such that

sup
x,h∈Rn

[ |g(x + h)− g(x)|
|h|θ0

]
≤ C1

[
sup
x∈Rn

[ ∫

Rn

∣∣g(x + h)− g(x)
∣∣2 dh

|h|n+2θ0

] 1
2

+ ‖g‖∞
]

for all g ∈ L∞(Rn). Moreover, for every 0 ≤ θ < θ0, there exists a finite
constant C2 = C2(θ0) > 0 such that

∫

Rn

∣∣g(x + h)− g(x)
∣∣2 dh

|h|n+2θ
]
1
2 ≤ C1

[
sup

x,h∈Rn

|g(x + h)− g(x)|
|h|θ0

+ ‖g‖∞
]

for all g ∈ L∞(Rn).
In particular, if K ∈ L∞(Rn × Rn), then H(θ0) < +∞ implies H(θ) < +∞

for all 0 ≤ θ < θ0 and
∣∣g(x + h)− g(x)

∣∣ ≤ C|h|θ0

for all x, h ∈ Rn.
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Proof. Indeed, we have

‖g‖
B

θ0∞,∞
= ‖g‖∞ + sup

x,h∈Rn

|g(x + h)− g(x)|
|h|θ0

and

‖g‖
B

θ0
∞,2

= ‖g‖∞ + sup
x∈Rn

[ ∫

Rn

∣∣g(x + h)− g(x)
∣∣2 dh

|h|n+2θ0

] 1
2

,

see [5] or [3] for example. The embeddings Bθ0
∞,2 ⊂ Bθ

∞,2 ⊂ Bθ
∞,∞ finish the

proof. ¤

3. Proof of Theorem 1

To prove Theorem 1 we show first the boundedness of S from Hα
p (Rn) into

Lp(Rn) (the case θ = 0) and after that we prove that there exists a positive
constant C such that ∥∥Lθ(Su)

∥∥
p
≤ C ‖u‖Hα+θ

p

holds for all u ∈ Hα+θ
p (Rn) and 0 < θ ≤ θ0. This implies

‖Su‖Hθ
p
≤ C‖u‖Hθ+α

p
.

Indeed, H(θ0) < +∞ implies H(θ) < +∞ by Lemma 3.

3.1. Lp-boundedness. To prove the Lp-boundedness, we write Su(x) = S1u(x)
+ S2u(x), where

S1u(x) =

∫

|z|≥1

[
u(x + z)− u(x)−

n∑
j=1

zj
∂u

∂xj

(x)

]
K(x, z) dµ(z),

S2u(x) =

∫

|z|≤1

[
u(x + z)− u(x)−

n∑
j=1

zj
∂u

∂xj

(x)

]
K(x, z) dµ(z).

First observe that

|S1u(x)| ≤ ‖K‖∞
[
g1(x) + g2(x)

]
,

where

g1(x) =

∫

|z|≥1

∣∣u(x + z)− u(x)
∣∣ dµ(z)

and

g2(x) =
n∑

j=1

∂u

∂xj

(x)

∫

|z|≥1

|zj| dµ(z).

Hence

‖g1‖p ≤
∫

|z|≥1

[ ∫

Rn

∣∣u(x + z)− u(x)
∣∣p dx

] 1
p

dµ(z)
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and

‖g2‖p ≤
n∑

j=1

∥∥∥ ∂u

∂xj

∥∥∥
p

[ n∑
j=1

∫

|z|≥1

|zj| dµ(z)

]
.

Combining now (H3), Lemma 2 with s = 1 and γ = 0, we obtain

‖S1u‖p ≤ C‖K‖∞ ‖u‖H1
p

∫

|z|≥1

|z| dµ(z).

Next we give an estimate for ‖S2u‖p. We write

u(x + z)− u(x)−
n∑

j=1

zj
∂u

∂xj

(x) =
n∑

j=1

zj

1∫

0

[ ∂u

∂xj

(x + tz)− ∂u

∂xj

(x)
]
dt,

and it follows that

|S2u(x)| ≤ ‖K‖∞
n∑

j=1

1∫

0

∫

|z|≤1

|z|
∣∣∣ ∂u

∂xj

(x + tz)− ∂u

∂xj

(x)
∣∣∣dµ(z) dt.

Hence

‖S2u‖p ≤ C

n∑
j=1

‖K‖∞
1∫

0

∫

|z|≤1

|z|
[ ∫

Rn

∣∣∣ ∂u

∂xj

(x + tz)− ∂u

∂xj

(x)
∣∣∣
p

dx

] 1
p

dµ(z) dt.

Applying now Lemma 2 with s = α− 1 and γ = 0, we obtain
[ ∫

Rn

∣∣∣ ∂u

∂xj

(x + tz)− ∂u

∂xj

(x)
∣∣∣
p

dx

] 1
p

≤ C|tz|α−1
∥∥∥ ∂u

∂xj

∥∥∥
Hα−1

p

≤ C|tz|α−1‖u‖Hα
p
.

Thus

‖S2u‖p ≤ C‖K‖∞ ‖u‖Hα
p

∫

|z|≤1

|z|αdµ(z).

3.2. Estimation of ‖Lθ(Su)‖p. In the following, we consider the case where
p ≥ 2 holds. The other case can be handled similarly. We are to prove that
Lθ(Su) ∈ Lp, where

Lθ(Su)(x) =

[ ∫ ∣∣Su(x + h)− Su(x)
∣∣2

|h|n+2θ
dh

] 1
2

.

As above we put Su = S1u + S2u, where

S1u(x) =

∫

|z|≥1

[
u(x + z)− u(x)−

n∑
j=1

zj
∂u

∂xj

(x)

]
K(x, z) dµ(z),

S2u(x) =

∫

|z|≤1

[
u(x + z)− u(x)−

n∑
j=1

zj
∂u

∂xj

(x)

]
K(x, z) dµ(z).
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A) Estimation of Lθ(S1u). First we write S1u(x+h)−S1u(x) in the following
form:

S1u(x + h)− S1u(x)

=

∫

|z|≥1

[
u(x + h + z)− u(x + z) + u(x)− u(x + h)

]
K(x + h, z)dµ(z)

+

∫

|z|≥1

[
u(x + z)− u(x)

][
K(x + h, z)−K(x, z)

]
dµ(z)

+
n∑

j=1

[ ∂u

∂xj

(x)− ∂u

∂xj

(x + h)
] ∫

|z|≥1

zjK(x + h, z)dµ(z)

+
n∑

j=1

∂u

∂xj

(x)

∫

|z|≥1

zj

[
K(x, z)−K(x + h, z)

]
dµ(z)

=A1(x, h) + A2(x, h) + A3(x, h) + A4(x, h).

1) A1(x, h):
We have

A1(x, h) =

∫

|z|≥1

( 1∫

0

n∑
j=1

[ ∂u

∂xj

(x+h+ tz)− ∂u

∂xj

(x+ tz)
]
zj dt

)
K(x+h, z) dµ(z)

which implies
[ ∫

Rn

[ ∫

Rn

|A1(x, h)|2 dh

|h|n+2θ

] p
2

dx

] 1
p

≤ C

n∑
j=1

∥∥∥Lθ

( ∂u

∂xj

)∥∥∥
p
‖K‖∞

[ ∫

|z|≥1

|z|dµ(z)

]
.

2) A2(x, h):
In this case we get

[ ∫

Rn

|A2(x, h)|2 dh

|h|n+2θ

] 1
2

≤
∫

|z|≥1

∣∣u(x + z)− u(x)
∣∣
∫

Rn

[∣∣K(x + h, z)−K(x, z)
∣∣2 dh

|h|n+2θ

] 1
2
dµ(z)

≤ H(θ)

∫

|z|≥1

∣∣u(x + z)− u(x)
∣∣ dµ(z)

and
[ ∫

Rn

[ ∫

Rn

|A2(x, h)|2 dh

|h|n+2θ

] p
2

dx

] 1
p

≤ CH(θ)‖u‖p

[ ∫

|z|≥1

|z| dµ(z)

]
.
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3) A3(x, h):
It is clear that

[ ∫

Rn

|A3(x, h)|2 dh

|h|n+2θ

] 1
2

≤
n∑

j=1

[
‖K‖∞ Lθ

( ∂u

∂xj

)
(x)

][ ∫

|z|≥1

|z| dµ(z)

]

and hence
[ ∫

Rn

[ ∫

Rn

|A3(x, h)|2 dh

|h|n+2θ

] p
2

dx

] 1
p

≤
n∑

j=1

[
‖K‖∞‖Lθ

( ∂u

∂xj

)
‖p

][ ∫

|z|≥1

|z| dµ(z)

]
.

4) A4(x, h):
In the last case we obtain

[ ∫

Rn

[ ∫

Rn

|A4(x, h)|2 dh

|h|n+2θ

] p
2

dx

] 1
p

≤ H(θ)

[ ∫

|z|≥1

|z| dµ(z)

] n∑
j=1

∥∥∥ ∂u

∂xj

∥∥∥
p
.

Summing up we get

∥∥Lθ(S1u)
∥∥

p
≤[‖K‖∞ + H(θ)

][ ∫

|z|≥1

|z| dµ(z)

]

×
[
‖u‖p +

n∑
j=1

∥∥∥Lθ

( ∂u

∂xj

)∥∥∥
p
+

n∑
j=1

∥∥∥ ∂u

∂xj

∥∥∥
p

]
.

We have ∥∥∥ ∂u

∂xj

∥∥∥
p
≤ C‖u‖H1

p

and ∥∥∥Lθ

( ∂u

∂xj

)∥∥∥
p
≤ C‖u‖Hθ+1

p
.

It follows finally that

∥∥Lθ(S1u)
∥∥

p
≤ C

[‖K‖∞ + H(θ)
]‖u‖Hθ+1

p

∫

|z|≥1

|z| dµ(z).

B) Estimation of Lθ(S2u).
Here we write

S2u(x + h)− S2u(x) = B1(x, h) + B2(x, h),

where

B1(x, h) =

∫

|z|≤1

[
u(x + z + h)− u(x + z)− u(x + h) + u(x)

−
n∑

j=1

zj

( ∂u

∂xj

(x + h)− ∂u

∂xj

(x)
)]

K(x + h, z) dµ(z)
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and

B2(x, h) =

∫

|z|≤1

[
u(x+z)−u(x)−

n∑
j=1

zj

( ∂u

∂xj

(x)
)(

K(x+h, z)−K(x, z)
)]

dµ(z).

First we put f j
tz(x) = ∂u

∂xj
(x + tz)− ∂u

∂xj
(x) and observe that

|B1(x, h)| ≤
n∑

j=1

‖K‖∞
∫

|z|≤1

1∫

0

|z|
∣∣f j

tz(x + h)− f j
tz(x)

∣∣ dt dµ(z).

Hence we get

[ ∫

Rn

|B1(x, h)|2
|h|n+2θ

dh

] 1
2

≤
n∑

j=1

‖K‖∞
∫

|z|≤1

|z|
1∫

0

Lθ(f
j
tz)(x) dt dµ(z).

Applying now Lemma 2 with s = α− 1 and γ = θ, we obtain

∥∥Lθ(f
j
tz)

∥∥
p
≤ C|tz|α−1

∥∥∥ ∂u

∂xj

∥∥∥
Hθ+α−1

p

and, consequently,

[ ∫

Rn

[ ∫

Rn

|B1(x, h)|2
|h|n+2θ

dh

] p
2

dx

] 1
p

≤ C‖K‖∞
∫

|z|≤1

|z|α dµ(z)
n∑

j=1

∥∥∥ ∂u

∂xj

∥∥∥
Hθ+α−1

p

.

On the other hand, we have

∣∣B2(x, h)
∣∣ ≤

n∑
j=1

1∫

0

∫

|z|≤1

|z|
∣∣∣ ∂u

∂xj

(x+tz)− ∂u

∂xj

(x)
∣∣∣
∣∣K(x+h, z)−K(x, z)

∣∣ dµ(z) dt.

Using (H2), it follows that

[ ∫

Rn

|B2(x, h)|2
|h|n+2θ

dh

] 1
2

≤
n∑

j=1

H(θ)

∫

|z|≤1

|z|
1∫

0

∣∣∣ ∂u

∂xj

(x + tz)− ∂u

∂xj

(x)
∣∣∣ dµ(z) dt.

Using again Lemma 2 with s = α− 1 and γ = 0, we obtain

[ ∫

Rn

[ ∫

Rn

|B2(x, h)|2
|h|n+2θ

dh

] p
2

dx

] 1
p

≤ CH(θ)
n∑

j=1

∥∥∥ ∂u

∂xj

∥∥∥
Hα−1

p

.

Therefore we have shown that
∥∥Lθ(S2u)

∥∥
p
≤ C

(
H(θ) + ‖K‖∞

) ‖u‖Hθ+α
p

holds.
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4. Proof of Theorem 2

Step 1: The proof of part 1) follows from Theorem 1 by restriction arguments.
Step 2: Let n

p
+ 1 < α ≤ 2. We show that

S : Hα
p (Ω) → Lp(Ω)

is a compact mapping. We recall that K(x, z) = 0 if x + z /∈ Ω. Hence there
exists a compact set M ⊂ Rn such that

Su(x) =

∫

M

[
u(x + z)− u(x)−

n∑
j=1

zj
∂u

∂xj

(x)

]
K(x, z) dµ(z)

can be interpreted as a mapping acting on functions u defined on Ω.
Now we introduce for 0 < ε < 1 a family of truncation operators given by

SΦεu(x) =

∫

M

[
u(x + z)− u(x)−

n∑
j=1

zj
∂u

∂xj

(x)

]
K(x, z)Φε(x, z) dµ(z),

where Φε ∈ C∞(Ω× Rn) such that

Φε(x, z) = 0 if |x− z| ≤ ε,

and
Φε(x, z) = 1 if |x− z| ≥ 2ε.

Furthermore, by Lemma 3 there exists C0 > 0 such that∣∣K(x, z)−K(y, z)
∣∣ < C0|x− y|θ0

holds for all x, y ∈ M and all z ∈ Rn. Hence we can show that

SΦε : C1(Ω) → C(Ω)

is bounded. Since n
p

+ 1 < α ≤ 2, the embedding Hα
p (Ω) ↪→ C1(Ω) is compact

and the embedding C(Ω) ↪→ Lp(Ω) is continuous. We establish that

SΦε : Hα
p (Ω) → Lp(Ω)

is compact. As in the proof of Theorem 1, we get

‖SΦεu‖p ≤ C‖K‖∞ ‖u‖Hα
p (Ω).

Furthermore, we have by Lebesgue’s Theorem,

SΦε → S as ε ↓ 0

with respect to the operator norm in L(Hα
p (Ω), Lp(Ω)). Because of the fact that

the compact operators are a closed subspace in L(Hα
p (Ω), Lp(Ω)) it follows that

S : Hα
p (Ω) → Lp(Ω)

is compact for n
p

+ 1 < α.

Step 3: Now we can finish the proof of Part 2). From Step 1 we can derive
that

S : Hα+θ
p (Ω) → Hθ

p(Ω)
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is bounded for all 1 < p < ∞ and all 0 < θ < θ0. Using the result of Step 2 we
have

S : Hα
p (Ω) → Lp(Ω)

is compact if n
p

+ 1 < α.

Now we can apply a result concerning the complex interpolation of compact
linear operators, see [2], in order to obtain our result. Indeed, Hα

p (Ω) is reflexive

and it is known that Hα
p (Ω) = [Lp(Ω), Hα+θ

p (Ω)]σ where σ = 1− α
α+θ

.
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