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INTERVAL OSCILLATION CRITERIA OF MATRIX
DIFFERENTIAL SYSTEMS WITH DAMPING

ZHAOWEN ZHENG AND JINGZHAO LIU

Abstract. Using a generalized Riccati transformation, some new oscillation
criteria of linear second order matrix differential system with damping are
built by the method of integral average. These results are based on the
information on a sequence of subintervals of [t0,∞).
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1. Introduction

In this paper, we consider oscillatory properties for the linear second order
matrix differential system with a damped term

Y ′′ + R(t)Y ′ + Q(t)Y = 0, t ∈ [t0,∞), (1)

where R(t), Q(t), and Y (t) are n × n continuous matrix functions, R(t) and
Q(t) being symmetric. When R(t) ≡ 0, system (1) reduces to the linear second
order matrix differential system

Y ′′ + Q(t)Y = 0, t ∈ [t0,∞). (2)

By M∗ we mean the transpose of the matrix M ; for any symmetric n ×
n matrix M , its eigenvalues are real numbers always denoted by λ1{M} ≥
λ2{M} ≥ · · · ≥ λn{M}. For any symmetric n × n matrices A, B, by A > B
(A ≥ B) we mean that A−B is positive (semi-)definite. A solution Y (t) of (1)
(or (2)) is said to be nontrivial if det Y (t) 6= 0 for at least one t ∈ [t0,∞), and
a nontrivial solution Y (t) of (1) (or (2)) is said to be prepared if

Y ∗(t)Y ′(t)− (Y ∗(t))′Y (t) ≡ 0,

Y ∗(t)R(t)Y ′(t)− (Y ∗(t))′R(t)Y (t) ≡ 0, t ∈ [t0,∞).

System (1) (or (2)) is said to be oscillatory on [t0,∞) in case the determinant
of every nontrivial prepared solution vanishes at least at one point on [T,∞)
for each T ≥ t0.

Here, we point out that the definition of a prepared solution coincides with
that of the system

(P (t)Y ′(t))′ + Q(t)Y (t) = 0, t ∈ [t0,∞), (3)

where P (t) is nonsingular (see [1] for details), because we can transform (1) into
system (3) by using the fundamental symmetric solution of Z ′ = R(t)Z.
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There are quite a number of works on oscillation for (2) and (3). It was
conjectured by Hinton and Lewis [2] that (2) is oscillatory if

lim
t→∞

λ1





t∫

t0

Q(s) ds



 = ∞.

This conjecture was partially proved by several authors and finally settled by
Byers, Harris and Kwong [3]. Coles [4 , 5] extended this result by applying the
weighted average method. Butler, Erbe and Mingarelli [6] showed that (2) is
oscillatory if

lim sup
t→∞

1

t

t∫

t0

λ1





s∫

t0

(Q1(τ) dτ



 ds = ∞

provided that

lim inf
t→∞

1

t

t∫

a

s∫

a

tr(Q(τ)) dτ ds > −∞.

Erbe, Kong and Ruan [1] gave the following theorem.

Theorem A. Suppose that there exists a constant α > 1 such that

lim sup
t→∞

1

tα
λ1





t∫

t0

(t− s)αQ(s) ds



 = ∞.

Then system (2) is oscillatory.

The above results can be regarded as extensions of the classical oscillation
criteria for scalar equations corresponding to (2) and (3). All the criteria are
dependent on the values of Q on the whole half-line [t0,∞) for some t0. How-
ever, for the scalar equation (2), as implied by the Sturm Separation Theorem,
oscillation is essentially an interval property, i.e., if there exists a sequence of
subintervals [ai, bi] of [t0,∞), ai → ∞, such that for each i, there exists a so-
lution of (2) which has at least two zeros in [ai, bi], then every solution of (2)
is oscillatory no matter how “bad” the scalar equation (2)(or (3)) is on the
remaining parts of [t0,∞). Based on these facts, Kong [7] gives interval type
criteria for the oscillation of system (2), which are extensions of those for scalar
equations obtained by Kong [11]. Meanwhile, the oscillation of a system with
damping has drawn less attention, Zheng [13] gave oscillation criteria for system
(1), which generalize Theorem A. In this paper, we are concerned with extend-
ing interval oscillation criteria for system (2) to those of the damped linear
second order matrix differential system (1). We also notice that in the criteria
mentioned above, only the largest eigenvalues of some integrals are involved.
It is not clear from them how oscillation is affected by other eigenvalues. Our
results will show that not only the largest one, but every single eigenvalue of
an integral can be used to determine oscillation. The main results are stated in
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Section 2, the proofs are given in Section 3, and two interesting examples are
given to illustrate the efficiency of the theorems in Section 4.

2. Main Results

In the sequel we say that a function h = h(t, s) belongs to a function classH if
h ∈ C(D, R+), where D = {(t, s) : t ≥ s ≥ t0}, and satisfies h(t, t) = 0, h(t, s) >
0 for (t, s) ∈ D0 = {(t, s) : t > s ≥ t0}. Furthermore, h has a continuous
derivatives ∂h

∂t
and ∂h

∂s
on D, and there exist two functions λ1, λ2 ∈ C(D0, R+)

depending on the function h, such that for all (t, s) ∈ D0,

∂h(t, s)

∂t
= λ1(t, s)h(t, s) and

∂h(t, s)

∂s
= −λ2(t, s)h(t, s).

Note that (t − s)α for α > 1; ln( t
s
); β(t − s) with β ∈ C1(0,∞), β′(t) > 0 for

t > 0 and β(0) = 0 belong to the function class H. In particular, if h(t, s) =
h(t− s) ∈ H, then λ1(t, s) = λ2(t, s) , λ(t− s). We denote by H0 the class of
all functions h(t − s). Let ρ ∈ C1[t0,∞) and ρ > 0 on [t0,∞). We now define
the operators Aρ(.; τ, t) and Bρ(.; t, τ) in terms of h and ρ as

Aρ(g; τ, t) =

t∫

τ

ρ(s)h(t, s)g(s)ds, t ≥ τ, (4)

Bρ(g; t, τ) =

τ∫

t

ρ(s)h(s, t)g(s)ds, t ≤ τ, (5)

where g ∈ C[t0,∞). It is easy to verify that Aρ(.; τ, t) and Bρ(.; t, τ) are linear
operators and satisfy

Aρ(g′; τ, t) = −ρ(τ)h(t, τ)g(τ) + Aρ

([
λ2 − ρ′

ρ

]
g; τ, t

)
, t ≥ τ, (6)

Bρ(g′; t, τ) = ρ(τ)h(τ, t)g(τ)−Bρ

([
λ1 +

ρ′

ρ

]
g; t, τ

)
, t ≤ τ, (7)

with λ1 = λ1(s, t), λ2 = λ2(t, s).

Theorem 1. Suppose there exist h ∈ H and f, ρ ∈ C1[t0,∞) with ρ > 0 such
that for each T ≥ t0, there exist a, b and c with T ≤ a < c < b, and

1

h(c, a)
Bρ(N(s, a); a, c) +

1

h(b, c)
Aρ(M(b, s); c, b) (8)

has a positive eigenvalue. Then system (1) is oscillatory, where

M(t, s) = G(s)− α(s)

4

[
R(s) +

(
λ2(t, s)− ρ′(s)

ρ(s)

)
I

]2

,

N(s, t) = G(s)− α(s)

4

[
R(s)−

(
λ1(s, t) +

ρ′(s)
ρ(s)

)
I

]2

,

G(t) = α(t){Q(t) + f 2(t)I − f(t)R(t)− f ′(t)I} and α(t) = exp(−2
∫ t

f(s) ds).
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As special cases of Theorem 1, we have

Corollary 1. Suppose there exist h ∈ H and f, ρ ∈ C1[t0,∞) with ρ > 0
such that for each T ≥ t0, there exist a, b and c with T ≤ a < c < b, and

λi

{
1

h(c, a)
Bρ(G; a, c) +

1

h(b, c)
Aρ(G; c, b)

}

>
1

4
λi

{
1

h(c, a)
Bρ

(
α(s)

[
R(s)−

(
λ1(s, a) +

ρ′(s)
ρ(s)

)
I

]2

; a, c

)

+
1

h(b, c)
Aρ

(
α(s)

[
R(s) +

(
λ2(b, s)− ρ′(s)

ρ(s)

)
I

]2

; c, b

)}

for some i ∈ {1, 2, . . . , n}. Then system (1) is oscillatory.

Corollary 2. Suppose there exist h ∈ H and f, ρ ∈ C1[t0,∞) with ρ > 0
such that for each T ≥ t0, there exist a, b and c with T ≤ a < c < b, and

1

h(c, a)
Bρ(trN(s, a); a, c) +

1

h(b, c)
Aρ(trM(b, s); c, b) > 0. (9)

Then system (1) is oscillatory.

Remark 1. Replacing “tr” in Corollary 2 by any positive linear functional,
we can obtain new oscillation criteria for system (1).

Corollary 3. Suppose there exist h ∈ H and f, ρ ∈ C1[t0,∞) with ρ > 0
such that for each r ≥ t0,

lim sup
t→∞

Bρ(trN(s, r); r, t) > 0, (10)

lim sup
t→∞

Aρ(trM(t, s); r, t) > 0. (11)

Then system (1) is oscillatory.

Theorem 2. Suppose there exist h ∈ H0 and f, ρ ∈ C1[t0,∞) with ρ > 0 such
that for each T ≥ t0, there exist a, c with T ≤ a < c, and one of the following
conditions is fulfilled:

(I) Bρ
(

ρ(2c−s)
ρ(s)

M(2c− a, 2c− s) + N(s, a); a, c
)

has a positive eigenvalue;

(II) there exist i ∈ {1, 2, . . . , n} such that

λi

{
Bρ

(
G(s) +

ρ(2c− s)

ρ(s)
G(2c− s); a, c

)}
>

1

4
λi {Bρ (U(s); a, c)} ,

where

U(s) =
ρ(2c− s)

ρ(s)
α(2c− s)

[
R(2c− s) +

(
λ(s− a)− ρ′(2c− s)

ρ(2c− s)

)
I

]2

+ α(s)

[
R(s)−

(
λ(s− a) +

ρ′(s)
ρ(s)

)
I

]2

;
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(III) Bρ
(

ρ(2c−s)
ρ(s)

trM(2c− a, 2c− s) + trN(s, a); a, c
)

> 0.

Then system (1) is oscillatory.

3. Proofs

Proof of Theorem 1. Suppose to the contrary that there exists a prepared
solution Y (t) of (1) which is not oscillatory. Without loss of generality, we may
suppose that det Y (t) 6= 0 for t ≥ t0. Define

V (t) = a(t)(Y ′(t)Y −1(t) + f(t)I), t ≥ t0. (12)

Then V (t) is symmetric, this and (1) imply the Riccati equation

V ′(t) +
1

α(t)
V 2(t) + R(t)V (t) + G(t) = 0, t ≥ t0. (13)

From (12) and the definition of a prepared solution, we get that RV is sym-

metric. Denote W (t) = V (t) + α(t)R(t)
2

. Let t0 ≤ T ≤ a < c < b. Applying
Aρ(·; c, t) (c < t ≤ b) to (13) and using (4), we get

Aρ

([
λ2 − ρ′

ρ

]
V ; c, t

)
+Aρ

(
1

α
W 2; c, t

)
+Aρ

(
G−α

4
R2; c, t

)
≤ ρ(c)h(t, c)V (c).

This yields

Aρ

(
1

α

[
W +

α

2
(λ2 − ρ′

ρ
)I

]2

; c, t

)
+ Aρ(M ; c, t) ≤ ρ(c)h(t, c)V (c).

Note that the first term is nonnegative, so

Aρ(M ; c, t) ≤ ρ(c)h(t, c)V (c).

In particular, assuming that t = b, we have

1

h(b, c)
Aρ(M(b, s); c, b) ≤ ρ(c)V (c). (14)

On the other hand, applying Bρ(·; t, c) (a ≤ t < c) to (13) and using (5), we
get

−Bρ

([
λ1 +

ρ′

ρ

]
V ; t, c

)
+ Bρ

(
1

α
W 2; t, c

)
+ Bρ

(
G− α

4
R2; t, c

)

≤ −ρ(c)h(c, t)V (c).

This yields

Bρ

(
1

α

[
W − α

2

(
λ1 +

ρ′

ρ

)
I

]2

; t, c

)
+ Bρ(N ; t, c) ≤ −ρ(c)h(c, t)V (c).

Also, the first term is nonnegative, so

Bρ(N ; t, c) ≤ −ρ(c)h(c, t)V (c).
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In particular, assuming that t = a, we obtain

1

h(c, a)
Bρ(N(s, a); a, c) ≤ −ρ(c)V (c). (15)

Now, (14) and (15) imply that the matrix defined by (8) is negative semi-
definite, then all the eigenvalues are non-positive, which contradicts the hy-
pothesis. This completes the proof of Theorem 1. ¤

The proofs of Corollary 1 and Corollary 2 are based on the knowledge of
eigenvalues and traces of the given matrices (see [15] for details), here we omit
the details. ¤

Proof of Corollary 3. For any T ≥ t0, let a = T. We choose r = a in (10).
Then there exists c ≥ a such that

Bρ(trN(s, a); a, c) > 0. (16)

In (11), we choose r = c. Then there exists b ≥ c such that

Aρ(trM(b, s); c, b) > 0. (17)

Combining (16) and (17) we obtain (9). The conclusion thus comes from Corol-
lary 2. ¤

Proof of Theorem 2. Let b = 2c− a. Then h(b− c) = h(c− a), and for any
function g ∈ L[a, b], we have

b∫

c

g(s)ds =

c∫

a

g(2c− s)ds.

Now, Theorem 1 and Corollaries 1 and 2 imply that system (1) of oscillatory. ¤

4. Examples

Example 1. Consider the following 2-dimensional systems

Y ′′ + R(t)Y ′ + Q(t)Y = 0, t ≥ 1, (18)

where R(t) = 1
t2

I2,

Q(t) =





diag
(

γ
t3

, µ
t3

)
(t− 3n), 3n ≤ t ≤ 3n + 1,

diag
(

γ
t3

, µ
t3

)
(−t + 3n + 2), 3n + 1 < t ≤ 3n + 2,

F (t), 3n + 2 < t ≤ 3n + 3,

γ ≥ µ > 0, F (t) is an arbitrary 2 × 2 matrix function such that Q(t) is a
continuous function, n ∈ N0 = {1, 2, · · · }. Suppose that γ > 1

4
. Take h(s−a) =
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(s− a)2, f(t) = −1/(2t) and ρ ≡ 1 in Theorem 1. It is easy to verify that

G(t) =





[
1
t
(γ − 1

4
) + l1

2t2
0

0 1
t
(µ− 1

4
) + l2

2t2

]
, 3n ≤ t ≤ 3n + 1,

[
−1

t
(γ + 1

4
) + l3

2t2
0

0 −1
t
(µ + 1

4
) + l4

2t2

]
, 3n + 1 ≤ t ≤ 3n + 2,

F ∗(t), 3n + 2 < t ≤ 3n + 3,

where l1 = 1 − 6nγ, l2 = 1 − 6nµ, l3 = 1 + (6n + 4)γ, l4 = 1 + (6n + 4)µ
are constants, F ∗(t) are some matrix functions such that G(t) is continuous
for t ∈ [1,∞). For each T ≥ 0, let n be large enough so that 3n ≥ T . Let
a = 3n, c = 3n + 1, b = 3n + 2. Since R(t) and Q(t) are diagonal matrices, we
obtain that one of the eigenvalues of 1

h(c,a)
Bρ(N(s, a); a, c)+ 1

h(b,c)
Aρ(M(b, s); c, b)

is

λi

{
1

h(c, a)
Bρ(N(s, a); a, c) +

1

h(b, c)
Aρ(M(b, s); c, b)

}

=

3n+1∫

3n

(s− 3n)2

[
1

s

(
γ − 1

4

)
+

l1
2s2

− s

4

(
1

s2
− 2

s− 3n

)2
]

ds

+

3n+2∫

3n+1

(3n + 2− s)2

[
−1

s

(
γ +

1

4

)
+

l3
2s2

− s

4

(
1

s2
− 2

3n + 2− s

)2
]

ds

=

3n+1∫

3n

(s− 3n)2

[
1

s

(
γ − 1

4

)
+

l1
2s2

− s

4

(
1

s2
− 2

s− 3n

)2
]

ds

+

3n+1∫

3n

(s− 3n)2

[
γ + 1

4

s− 6n− 2
+

l3
2(6n + 2− s)2

− 6n + 2− s

4

(
1

(6n + 2− s)2
− 2

s− 3n

)2 ]
ds

> 0

(
since γ >

1

4

)
.

Consequently, by Theorem 1, we obtain that system (18) is oscillatory for γ > 1
4
.

Nevertheless, F (t) can be chosen as a “bad” term of Q(t) such that either the
upper limit in Theorem 1 of paper [13] exists or tends to −∞. So our theorems
are improvements of those criteria.

Example 2. Consider the following 2-dimensional systems

Y ′′ + R(t)Y ′ + Q(t)Y = 0, t ≥ 0, (19)
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where R(t) = cos tI2, Q(t) =

(
2 sin t− cos t − sin t + cos t

2 sin t− 2 cos t − sin t + 2 cos t

)
. Taking

h(t, s) = (t − s)2, f(t) ≡ 0 and ρ(t) = exp(sin t) in Theorem 2 (II), we ob-
tain λ(t, s) = 2

t−s
, G(t) = Q(t). For each T ≥ 0, let n be large enough such that

a = 2nπ ≥ T and c = 2(n+1)π+ π
2
, then sin(2c−s) = sin s, and ρ(t) = ρ(2c−t).

Bρ

(
G(s) +

ρ(2c− s)

ρ(s)
G(2c− s); a, c

)

=

c∫

a

(s− a)2 exp(sin s)(Q(s) + Q(2c− s))ds

=

2(n+1)π+π
2∫

2nπ

(s− 2nπ)2 exp(sin s)

[
4 sin s −2 sin s
4 sin s −2 sin s

]
ds

=

[
4A −2A
4A −2A

]
,

where

A ,
2(n+1)π+π

2∫

2nπ

(s− 2nπ)2 sin s exp(sin s)ds =

5π
2∫

0

s2 sin s exp(sin s)ds.

Hence one of its eigenvalues is

λi

{
Bρ

(
G(s) +

ρ(2c− s)

ρ(s)
G(2c− s); a, c

)}
= 2

5π
2∫

0

s2 sin s exp(sin s)ds.

On the other hand, we compute that

1

4
λi {Bρ (U(s); a, c)}

=
1

4

c∫

a

(s− a)2 exp(sin s)

[(
2

s− a

)2

+

(
2

s− a

)2
]

ds

= 2

2(n+1)π+π
2∫

2nπ

exp(sin s)ds = 2

5π
2∫

0

exp(sin s)ds.

Since
5π
2∫

0

s2 sin s exp(sin s)ds >

5π
2∫

0

exp(sin s)ds, (20)

system (19) is oscillatory by (20) and Theorem 2 (II).
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