THE ALGEBRAIC SUM OF TWO ABSOLUTELY NEGLIGIBLE SETS CAN BE AN ABSOLUTELY NONMEASURABLE SET

ALEXANDER KHARAZISHVILI

Abstract. We prove that there exist two absolutely negligible subsets A and B of the real line R, whose algebraic sum A+B is an absolutely nonmeasurable subset of R. We also obtain some generalization of this result and formulate a relative open problem for uncountable commutative groups.

2000 Mathematics Subject Classification: 28A05, 28D05. **Key words and phrases:** Invariant measure, quasi-invariant measure, absolutely negligible set, absolutely nonmeasurable set, extension of measure.

Let R denote the real line and let λ be the standard Lebesgue measure on R. In the well-known article by Sierpiński [1] it was demonstrated that there exist two sets A and B in R satisfying the relations

$$\lambda(A) = \lambda(B) = 0, \ A + B \not\in dom(\lambda).$$

In other words, it was shown that the algebraic sum of two small sets (in the sense of λ) can be a nonmeasurable set with respect to the same λ . This result was strengthened in [2] by using purely set-theoretical and combinatorial techniques. Namely, let μ be a nonzero σ -finite complete measure on R quasi-invariant under the group Γ_R of all affine transformations of R and let $\mathcal{I}(\mu)$ denote the σ -ideal of all μ -measure zero subsets of R. Then the following two assertions are equivalent:

- 1) there exist sets $X \in \mathcal{I}(\mu)$ and $Y \in \mathcal{I}(\mu)$ such that $X + Y \notin \mathcal{I}(\mu)$;
- 2) there exist sets $A \in \mathcal{I}(\mu)$ and $B \in \mathcal{I}(\mu)$ such that $A + B \notin \text{dom}(\mu)$.

In particular, suppose that μ is an extension of λ and μ is quasi-invariant under the group Γ_R . Then, taking into account the simple fact that there are sets $X \in \mathcal{I}(\lambda)$ and $Y \in \mathcal{I}(\lambda)$ for which X+Y=R, we easily infer that there are sets $A \in \mathcal{I}(\mu)$ and $B \in \mathcal{I}(\mu)$ for which $A+B \notin \text{dom}(\mu)$. Of course, here the sets A and B essentially depend on μ . In the present paper we are going to describe another situation where A and B are fixed small subsets of R whose algebraic sum is a set with extremely bad properties from the measure-theoretical point of view. First, let us introduce the precise notion of "smallness" which will play a significant role in our further considerations.

Let (G, +) be an arbitrary commutative group and let Z be a subset of G. We say that Z is G-absolutely negligible in G if, for any σ -finite G-invariant (respectively, G-quasi-invariant) measure μ on G, there exists a G-invariant (respectively, G-quasi-invariant) measure μ' on G extending μ and satisfying the relation $\mu'(Z) = 0$.

Various properties of absolutely negligible sets are discussed in the monograph [3]. Here we need one auxiliary proposition about these sets which gives us their purely algebraic characterization.

Lemma 1. Let Z be a subset of a commutative group (G, +). The following two assertions are equivalent:

- 1) Z is G-absolutely negligible in G;
- 2) for any countable family $\{f_i : i \in I\}$ of elements from G, there exists a countable family $\{g_i : j \in J\}$ of elements from G such that

$$\bigcap_{j \in J} \left(g_j + \bigcup_{i \in I} (f_i + Z) \right) = \varnothing.$$

The proof of Lemma 1 is given in [2] and [3].

Let (G, +) be a commutative group and let H be a subgroup of G. Clearly, H can be regarded as a certain group of transformations (in fact, translations) of G. As usual, we denote by G/H the family of all H-orbits in G.

Lemma 1 implies the next auxiliary proposition.

Lemma 2. Suppose that a subset Z of an uncountable commutative group (G, +) has the following property: for every countable subgroup H of G, the relation

$$\operatorname{card}\left(\left\{T \in G/H : \operatorname{card}(T \cap Z) \ge 2\right\}\right) < \operatorname{card}(G)$$

is satisfied. Then Z is a G-absolutely negligible set in G.

Proof. Take any countable family $\{f_i: i \in I\} \subset G$ and denote by F the subgroup of G generated by this family. Since $\operatorname{card}(F) \leq \omega$ and $\operatorname{card}(G) > \omega$, we can choose an element $h \in G \setminus F$. Further, denote by H the subgroup of G generated by h and $\{f_i: i \in I\}$. Obviously, $\operatorname{card}(H) \leq \omega$. According to our assumption, we have

$$\operatorname{card} (\{T \in G/H : \operatorname{card}(T \cap Z) > 1\}) < \operatorname{card}(G).$$

Let us put

$$P = \cup \{T \in G/H : \operatorname{card}(T \cap Z) \le 1\}, \ Z' = Z \cap P.$$

Then $\operatorname{card}(Z \setminus Z') < \operatorname{card}(G)$ and, in view of Lemma 1, it is sufficient to demonstrate that

$$\bigcap_{g \in H} \left(g + \bigcup_{f \in F} (f + Z') \right) = \varnothing.$$

Suppose to the contrary that there exists an element

$$z \in \bigcap_{g \in H} \left(g + \bigcup_{f \in F} (f + Z') \right).$$

Taking into account the definition of Z', we infer that there exists a unique element $z' \in Z'$ for which the inclusion

$$H + z \subset F + z'$$

is valid. Consequently, we can write

$$z \in F + z'$$
, $F + z = F + z'$, $H + z \subset F + z$.

The latter inclusion implies at once that h + z = f + z for some $f \in F$. Therefore, we get h = f and $h \in F$ which contradicts the choice of h. The obtained contradiction ends the proof of Lemma 2.

Let (G,+) be a commutative group and let Z be a subset of G. We say that Z is G-absolutely nonmeasurable in G if, for any nonzero σ -finite G-quasi-invariant measure μ on G, we have $Z \notin \text{dom}(\mu)$ (i.e., Z is nonmeasurable with respect to μ). It is known that in every uncountable commutative group (G,+) there are G-absolutely nonmeasurable sets. In this connection, see [3] where a more general fact is proved stating that every uncountable solvable group (G,\cdot) contains G-absolutely nonmeasurable subsets.

Let us mention that the structure of absolutely nonmeasurable sets can be rather simple in some infinite-dimensional vector spaces (considered as commutative groups). Namely, the following proposition is valid.

Lemma 3. Let E be an infinite-dimensional separable Hilbert space (over R) and let K be an arbitrary open ball in E. Then K is an E-absolutely nonmeasurable subset of E.

The proof of Lemma 3 is presented in [3]. This lemma easily implies the well-known fact that E does not admit a nonzero σ -finite Borel measure quasi-invariant under the group of all translations of E (see, e.g., [4]).

Lemma 4. Suppose that $(G_1, +)$ and $(G_2, +)$ are two isomorphic commutative groups. Then the following assertions are equivalent:

- 1) there exist G_1 -absolutely negligible subsets X and Y of G_1 whose algebraic sum X + Y is G_1 -absolutely nonmeasurable in G_1 ;
- 2) there exist G_2 -absolutely negligible subsets A and B of G_2 whose algebraic sum A + B is G_2 -absolutely nonmeasurable in G_2 .

We omit a trivial proof of Lemma 4.

Now, we are able to establish the following statement.

Theorem 1. There exist two R-absolutely negligible subsets of R such that their algebraic sum is an R-absolutely nonmeasurable set in R.

Proof. Fix an infinite-dimensional separable Hilbert space $(E, \|\cdot\|)$ and denote

$$K = \{e \in E : ||e|| < 2\}.$$

By virtue of Lemma 3, the open ball K is an E-absolutely nonmeasurable subset of E. Taking into account Lemma 4 and the fact that E and R are isomorphic as commutative groups, it is sufficient to show that there exist two E-absolutely negligible sets X and Y in E for which the equality X + Y = K holds true. We are going to define the required sets X and Y by using the method of transfinite induction.

Let α be the least ordinal number of cardinality continuum, let $\{k_{\xi} : \xi < \alpha\}$ be an enumeration of all elements from K and let $\{H_{\xi} : \xi < \alpha\}$ be an enumeration of all countable subgroups of the additive group E. For any $\xi < \alpha$, denote by G_{ξ} the subgroup of E generated by the set $\bigcup \{H_{\zeta} : \zeta < \xi\}$. Now, construct by transfinite recursion two α -sequences $\{x_{\xi} : \xi < \alpha\}$ and $\{y_{\xi} : \xi < \alpha\}$ of elements from E satisfying the following conditions:

- (1) $||x_{\xi}|| < 1$ and $||y_{\xi}|| < 1$ for each $\xi < \alpha$;
- (2) $x_{\xi} + y_{\xi} = k_{\xi}$ for each $\xi < \alpha$;
- (3) $(G_{\xi} + x_{\xi}) \cap (G_{\xi} + \{x_{\zeta} : \zeta < \xi\}) = \emptyset$ for any $\xi < \alpha$;
- $(4) (G_{\xi} + y_{\xi}) \cap (G_{\xi} + \{y_{\zeta} : \zeta < \xi\}) = \emptyset \text{ for any } \xi < \alpha.$

Suppose that, for an ordinal $\xi < \alpha$, the partial ξ -sequences $\{x_{\zeta} : \zeta < \xi\}$ and $\{y_{\zeta} : \zeta < \xi\}$ have already been constructed. Let us put

$$Z_{\xi} = \{x_{\zeta} : \zeta < \xi\} \cup \{y_{\zeta} : \zeta < \xi\},$$

$$K_{\xi} = \{e \in E : ||e - k_{\xi}|| < 1\},$$

$$D = \{e \in E : ||e|| < 1\}.$$

Note that

$$K_{\xi} = D + k_{\xi},$$

$$\operatorname{card}(G_{\xi} + Z_{\xi}) \leq \operatorname{card}(\xi) + \omega < \operatorname{card}(E),$$

$$\operatorname{card}(K_{\xi} \cap D) = \operatorname{card}(E).$$

Consequently, there are two points $x \in D$ and $y \in D$ such that

$$(G_{\xi} + x) \cap (G_{\xi} + Z_{\xi}) = \emptyset,$$

$$(G_{\xi} + y) \cap (G_{\xi} + Z_{\xi}) = \emptyset,$$

$$x + y = k_{\xi}.$$

Let us define $x_{\xi} = x$ and $y_{\xi} = y$. Proceeding in this fashion, we are able to construct the α -sequences $\{x_{\xi} : \xi < \alpha\}$ and $\{y_{\xi} : \xi < \alpha\}$ with properties (1)–(4). Now, putting

$$X = \{x_{\xi} : \xi < \alpha\}, \quad Y = \{y_{\xi} : \xi < \alpha\},$$

we easily deduce that X + Y = K (in view of (1) and (2)). We also deduce that both X and Y are E-absolutely negligible subsets of E (in view of (3), (4) and Lemma 2). This completes the proof of Theorem 1.

Actually, the preceding argument yields a much stronger result. Namely, we can assert that there exists an E-absolutely negligible set $C \subset E$ such that C + C = K. Indeed, it suffices to put $C = X \cup Y$ where X and Y are the above-mentioned E-absolutely negligible subsets of E.

Theorem 2. There are two subsets A and B of R having the following property: for every nonzero σ -finite R-invariant (R-quasi-invariant) measure μ on R, there exists an R-invariant (R-quasi-invariant) measure μ' on R extending μ and such that

$$\mu'(A) = \mu'(B) = 0, \quad A + B \not\in \text{dom}(\mu').$$

Proof. It suffices to take as A and B any two R-absolutely negligible subsets of R whose algebraic sum A+B is R-absolutely nonmeasurable in R (the existence of such subsets is stated by Theorem 1).

- Let $(G_1, +)$ and $(G_2, +)$ be commutative groups and let $\phi : G_1 \to G_2$ be a surjective homomorphism. It is not difficult to verify that:
- (a) if a set $Y \subset G_2$ is G_2 -absolutely negligible, then the set $X = \phi^{-1}(Y)$ is G_1 -absolutely negligible;
- (b) if a set $Y \subset G_2$ is G_2 -absolutely nonmeasurable, then the set $X = \phi^{-1}(Y)$ is G_1 -absolutely nonmeasurable.
- From (a), (b) and Theorem 1 we easily derive (under \mathbf{CH}) that in every uncountable vector space E over the field Q of all rational numbers there exist two E-absolutely negligible sets whose algebraic sum is E-absolutely nonmeasurable. In connection with this fact, the following open problem is of certain interest (cf. [5]).

Problem. Let (G, +) be an arbitrary uncountable commutative group. Do there exist two G-absolutely negligible sets A and B in G whose algebraic sum A + B is G-absolutely nonmeasurable in G?

As indicated above, the answer to this question is positive (under \mathbf{CH}) for all uncountable vector spaces over Q.

Remark. Let E be a topological space and let X be a subset of E. We recall that X is a universal measure zero set if $\mu^*(X) = 0$ for every σ -finite diffused Borel measure μ on E.

A set $Y \subset E$ is absolutely nonmeasurable (in the topological sense) if, for any nonzero σ -finite diffused Borel measure μ on E, we have $Y \not\in \text{dom}(\mu')$, where μ' denotes the completion of μ .

It is well known that there exist uncountable universal measure zero subsets of R (the classical construction of such subsets due to Luzin is presented, e.g., in [6]).

Also, if E is an uncountable Polish space and $Y \subset E$, then the following two assertions are equivalent:

- i) Y is absolutely nonmeasurable in the topological sense;
- ii) Y is a Bernstein subset of E.

A detailed information about the properties of Bernstein sets can be found in [6].

Here it is reasonable to point out a topological version of Theorem 2. Namely, assuming Martin's Axiom, there exist two subsets A and B of R which are universal measure zero (actually, they are generalized Luzin subsets of R) and whose algebraic sum A+B is absolutely nonmeasurable in the topological sense.

Note that this result essentially needs additional set-theoretical axioms since there are models of set theory in which ω_1 is strictly less than the cardinality continuum and in which the cardinality of any universal measure zero subset of R does not exceed ω_1 .

References

- 1. W. Sierpiński, Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math. 1(1920), 105–111.
- 2. A. B. Kharazishvilli, Applications of point set theory in real analysis. *Mathematics and its Applications*, 429. *Kluwer Academic Publishers, Dordrecht*, 1998.
- 3. A. B. Kharazishvili, Nonmeasurable sets and functions. *North-Holland Mathematics Studies*, 195. *Elsevier Science B.V.*, *Amsterdam*, 2004.
- 4. A. V. Skorokhod, Integration in Hilbert space. (Translated from the Russian) Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 79. Springer-Verlag, New York-Heidelberg, 1974.
- 5. A. Kharazishvili and A. Kirtadze, On algebraic sums of measure zero sets in uncountable commutative groups. *Proc. A. Razmadze Math. Inst.* **135**(2004), 97–103.
- 6. K. Kuratowski, Topology. I. (Translated from the French) Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966.

(Received 24.05.2004)

Author's Address:

- I. Vekua Institute of Applied Mathematics
- I. Javakhishvili Tbilisi State University
- 2, University St., Tbilisi 0143

Georgia

E-mail: kharaz2@yahoo.com