THE ALGEBRAIC SUM OF TWO ABSOLUTELY NEGLIGIBLE SETS CAN BE AN ABSOLUTELY NONMEASURABLE SET

ALEXANDER KHARAZISHVILI

Abstract. We prove that there exist two absolutely negligible subsets A and B of the real line \mathbb{R}, whose algebraic sum $A + B$ is an absolutely nonmeasurable subset of \mathbb{R}. We also obtain some generalization of this result and formulate a relative open problem for uncountable commutative groups.

2000 Mathematics Subject Classification: 28A05, 28D05.

Key words and phrases: Invariant measure, quasi-invariant measure, absolutely negligible set, absolutely nonmeasurable set, extension of measure.

Let \mathbb{R} denote the real line and let λ be the standard Lebesgue measure on \mathbb{R}. In the well-known article by Sierpiński [1] it was demonstrated that there exist two sets A and B in \mathbb{R} satisfying the relations
$$
\lambda(A) = \lambda(B) = 0, \quad A + B \notin \text{dom}(\lambda).
$$

In other words, it was shown that the algebraic sum of two small sets (in the sense of λ) can be a nonmeasurable set with respect to the same λ. This result was strengthened in [2] by using purely set-theoretical and combinatorial techniques. Namely, let μ be a nonzero σ-finite complete measure on \mathbb{R} quasi-invariant under the group $\Gamma_\mathbb{R}$ of all affine transformations of \mathbb{R} and let $\mathcal{I}(\mu)$ denote the σ-ideal of all μ-measure zero subsets of \mathbb{R}. Then the following two assertions are equivalent:

1) there exist sets $X \in \mathcal{I}(\mu)$ and $Y \in \mathcal{I}(\mu)$ such that $X + Y \notin \mathcal{I}(\mu);$
2) there exist sets $A \in \mathcal{I}(\mu)$ and $B \in \mathcal{I}(\mu)$ such that $A + B \notin \text{dom}(\mu).$

In particular, suppose that μ is an extension of λ and μ is quasi-invariant under the group $\Gamma_\mathbb{R}$. Then, taking into account the simple fact that there are sets $X \in \mathcal{I}(\lambda)$ and $Y \in \mathcal{I}(\lambda)$ for which $X + Y = R$, we easily infer that there are sets $A \in \mathcal{I}(\mu)$ and $B \in \mathcal{I}(\mu)$ for which $A + B \notin \text{dom}(\mu)$. Of course, here the sets A and B essentially depend on μ. In the present paper we are going to describe another situation where A and B are fixed small subsets of \mathbb{R} whose algebraic sum is a set with extremely bad properties from the measure-theoretical point of view. First, let us introduce the precise notion of "smallness" which will play a significant role in our further considerations.

Let $(G, +)$ be an arbitrary commutative group and let Z be a subset of G. We say that Z is G-absolutely negligible in G if, for any σ-finite G-invariant (respectively, G-quasi-invariant) measure μ on G, there exists a G-invariant (respectively, G-quasi-invariant) measure μ' on G extending μ and satisfying the relation $\mu'(Z) = 0$.
Various properties of absolutely negligible sets are discussed in the monograph [3]. Here we need one auxiliary proposition about these sets which gives us their purely algebraic characterization.

Lemma 1. Let Z be a subset of a commutative group $(G, +)$. The following two assertions are equivalent:

1) Z is G-absolutely negligible in G;
2) for any countable family $\{f_i : i \in I\}$ of elements from G, there exists a countable family $\{g_j : j \in J\}$ of elements from G such that

$$\bigcap_{j \in J} \left(g_j + \bigcup_{i \in I} (f_i + Z) \right) = \emptyset.$$

The proof of Lemma 1 is given in [2] and [3].

Let $(G, +)$ be a commutative group and let H be a subgroup of G. Clearly, H can be regarded as a certain group of transformations (in fact, translations) of G. As usual, we denote by G/H the family of all H-orbits in G.

Lemma 1 implies the next auxiliary proposition.

Lemma 2. Suppose that a subset Z of an uncountable commutative group $(G, +)$ has the following property: for every countable subgroup H of G, the relation

$$\operatorname{card} \left(\{ T \in G/H : \operatorname{card}(T \cap Z) \geq 2 \} \right) < \operatorname{card}(G)$$

is satisfied. Then Z is a G-absolutely negligible set in G.

Proof. Take any countable family $\{f_i : i \in I\} \subset G$ and denote by F the subgroup of G generated by this family. Since $\operatorname{card}(F) \leq \omega$ and $\operatorname{card}(G) > \omega$, we can choose an element $h \in G \setminus F$. Further, denote by H the subgroup of G generated by h and $\{f_i : i \in I\}$. Obviously, $\operatorname{card}(H) \leq \omega$. According to our assumption, we have

$$\operatorname{card} \left(\{ T \in G/H : \operatorname{card}(T \cap Z) > 1 \} \right) < \operatorname{card}(G).$$

Let us put

$$P = \bigcup\{ T \in G/H : \operatorname{card}(T \cap Z) \leq 1 \}, \ Z' = Z \cap P.$$

Then $\operatorname{card}(Z \setminus Z') < \operatorname{card}(G)$ and, in view of Lemma 1, it is sufficient to demonstrate that

$$\bigcap_{g \in H} \left(g + \bigcup_{f \in F} (f + Z') \right) = \emptyset.$$

Suppose to the contrary that there exists an element

$$z \in \bigcap_{g \in H} \left(g + \bigcup_{f \in F} (f + Z') \right).$$

Taking into account the definition of Z', we infer that there exists a unique element $z' \in Z'$ for which the inclusion

$$H + z \subset F + z'$$

is violated.
is valid. Consequently, we can write
\[z \in F + z', \quad F + z = F + z', \quad H + z \subset F + z. \]
The latter inclusion implies at once that \(h + z = f + z \) for some \(f \in F \). Therefore, we get \(h = f \) and \(h \in F \) which contradicts the choice of \(h \). The obtained contradiction ends the proof of Lemma 2. \(\square \)

Let \((G, +)\) be a commutative group and let \(Z \) be a subset of \(G \). We say that \(Z \) is \(G \)-absolutely nonmeasurable in \(G \) if, for any nonzero \(\sigma \)-finite \(G \)-quasi-invariant measure \(\mu \) on \(G \), we have \(Z \not\in \text{dom}(\mu) \) (i.e., \(Z \) is nonmeasurable with respect to \(\mu \)). It is known that in every uncountable commutative group \((G, +)\) there are \(G \)-absolutely nonmeasurable sets. In this connection, see [3] where a more general fact is proved stating that every uncountable solvable group \((G, \cdot)\) contains \(G \)-absolutely nonmeasurable subsets.

Let us mention that the structure of absolutely nonmeasurable sets can be rather simple in some infinite-dimensional vector spaces (considered as commutative groups). Namely, the following proposition is valid.

Lemma 3. Let \(E \) be an infinite-dimensional separable Hilbert space (over \(R \)) and let \(K \) be an arbitrary open ball in \(E \). Then \(K \) is an \(E \)-absolutely nonmeasurable subset of \(E \).

The proof of Lemma 3 is presented in [3]. This lemma easily implies the well-known fact that \(E \) does not admit a nonzero \(\sigma \)-finite Borel measure quasi-invariant under the group of all translations of \(E \) (see, e.g., [4]).

Lemma 4. Suppose that \((G_1, +)\) and \((G_2, +)\) are two isomorphic commutative groups. Then the following assertions are equivalent:
1) there exist \(G_1 \)-absolutely negligible subsets \(X \) and \(Y \) of \(G_1 \) whose algebraic sum \(X + Y \) is \(G_1 \)-absolutely nonmeasurable in \(G_1 \);
2) there exist \(G_2 \)-absolutely negligible subsets \(A \) and \(B \) of \(G_2 \) whose algebraic sum \(A + B \) is \(G_2 \)-absolutely nonmeasurable in \(G_2 \).

We omit a trivial proof of Lemma 4.

Now, we are able to establish the following statement.

Theorem 1. There exist two \(R \)-absolutely negligible subsets of \(R \) such that their algebraic sum is an \(R \)-absolutely nonmeasurable set in \(R \).

Proof. Fix an infinite-dimensional separable Hilbert space \((E, \| \cdot \|)\) and denote
\[K = \{ e \in E : \| e \| < 2 \}. \]
By virtue of Lemma 3, the open ball \(K \) is an \(E \)-absolutely nonmeasurable subset of \(E \). Taking into account Lemma 4 and the fact that \(E \) and \(R \) are isomorphic as commutative groups, it is sufficient to show that there exist two \(E \)-absolutely negligible sets \(X \) and \(Y \) in \(E \) for which the equality \(X + Y = K \) holds true. We are going to define the required sets \(X \) and \(Y \) by using the method of transfinite induction.
Lemma 2). This completes the proof of Theorem 1.

Now, putting

\[y = y_\xi \]

we easily deduce that \(x + y = k_\xi \). Indeed, it suffices to put \(C = k_\xi \).

Let us define \(x_\xi = x \) and \(y_\xi = y \). Proceeding in this fashion, we are able to construct the \(\alpha \)-sequences \(\{x_\xi : \xi < \alpha\} \) and \(\{y_\xi : \xi < \alpha\} \) with properties (1)–(4).

Now, putting

\[X = \{x_\xi : \xi < \alpha\}, \quad Y = \{y_\xi : \xi < \alpha\}, \]

we easily deduce that \(X + Y = K \) (in view of (1) and (2)). We also deduce that both \(X \) and \(Y \) are \(E \)-absolutely negligible subsets of \(E \) (in view of (3), (4) and Lemma 2). This completes the proof of Theorem 1.

Actually, the preceding argument yields a much stronger result. Namely, we can assert that there exists an \(E \)-absolutely negligible set \(C \subset E \) such that \(C + C = K \). Indeed, it suffices to put \(C = X \cup Y \) where \(X \) and \(Y \) are the above-mentioned \(E \)-absolutely negligible subsets of \(E \).

Theorem 2. There are two subsets \(A \) and \(B \) of \(R \) having the following property: for every nonzero \(\sigma \)-finite \(R \)-invariant \((R\text{-quasi-invariant}) \) measure \(\mu \) on \(R \), there exists an \(R \)-invariant \((R\text{-quasi-invariant}) \) measure \(\mu' \) on \(R \) extending \(\mu \) and such that

\[\mu'(A) = \mu'(B) = 0, \quad A + B \not\in \text{dom}(\mu'). \]
Proof. It suffices to take as A and B any two R-absolutely negligible subsets of R whose algebraic sum $A + B$ is R-absolutely nonmeasurable in R (the existence of such subsets is stated by Theorem 1).

Let $(G_1, +)$ and $(G_2, +)$ be commutative groups and let $\phi : G_1 \to G_2$ be a surjective homomorphism. It is not difficult to verify that:

(a) if a set $Y \subset G_2$ is G_2-absolutely negligible, then the set $X = \phi^{-1}(Y)$ is G_1-absolutely negligible;
(b) if a set $Y \subset G_2$ is G_2-absolutely nonmeasurable, then the set $X = \phi^{-1}(Y)$ is G_1-absolutely nonmeasurable.

From (a), (b) and Theorem 1 we easily derive (under CH) that in every uncountable vector space E over the field \mathbb{Q} of all rational numbers there exist two E-absolutely negligible sets whose algebraic sum is E-absolutely nonmeasurable. In connection with this fact, the following open problem is of certain interest (cf. [5]).

Problem. Let $(G, +)$ be an arbitrary uncountable commutative group. Do there exist two G-absolutely negligible sets A and B in G whose algebraic sum $A + B$ is G-absolutely nonmeasurable in G?

As indicated above, the answer to this question is positive (under CH) for all uncountable vector spaces over \mathbb{Q}.

Remark. Let E be a topological space and let X be a subset of E. We recall that X is a universal measure zero set if $\mu^*(X) = 0$ for every σ-finite diffused Borel measure μ on E.

A set $Y \subset E$ is absolutely nonmeasurable (in the topological sense) if, for any nonzero σ-finite diffused Borel measure μ on E, we have $Y \notin \text{dom}(\mu')$, where μ' denotes the completion of μ.

It is well known that there exist uncountable universal measure zero subsets of R (the classical construction of such subsets due to Luzin is presented, e.g., in [6]).

Also, if E is an uncountable Polish space and $Y \subset E$, then the following two assertions are equivalent:

i) Y is absolutely nonmeasurable in the topological sense;
ii) Y is a Bernstein subset of E.

A detailed information about the properties of Bernstein sets can be found in [6].

Here it is reasonable to point out a topological version of Theorem 2. Namely, assuming Martin’s Axiom, there exist two subsets A and B of R which are universal measure zero (actually, they are generalized Luzin subsets of R) and whose algebraic sum $A + B$ is absolutely nonmeasurable in the topological sense.

Note that this result essentially needs additional set-theoretical axioms since there are models of set theory in which ω_1 is strictly less than the cardinality continuum and in which the cardinality of any universal measure zero subset of R does not exceed ω_1.
References

(Received 24.05.2004)

Author’s Address:
I. Vekua Institute of Applied Mathematics
I. Javakhishvili Tbilisi State University
2, University St., Tbilisi 0143
Georgia
E-mail: kharaz2@yahoo.com