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SOME BASIC d-ORTHOGONAL POLYNOMIAL SETS

ALI ZAGHOUANI

Abstract. The purpose of this paper is to study the class of polynomial sets
which are at the same time d-orthogonal and q-Appell. By a linear change
of variable, the resulting set reduces to q-Al-Salam–Carlitz polynomials, for
d = 1. Various properties of the obtained polynomials are singled out: a
generating function, a recurrence relation of order d + 1. We also explicitly
express a d-dimensional functional for which the d-orthogonality holds.
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1. Introduction and Preliminaries

During the past few years, there has been a growing interest in multiple or-
thogonal polynomials (see, for instance, [4], [5] ,[6], [13], [27], [28]). However,
it is only recently that examples of multiple orthogonal polynomials have ap-
peared in the literature. A convenient framework to discuss such examples
consists in considering a subclass of multiple orthogonal polynomials known as
d-orthogonal polynomials (see, for instance, [8–12], [14–18], [24], [29]). Many of
these papers generalized some known characterization theorems for orthogonal
polynomials [2] to the d-orthogonality, especially, for continuous and discrete
cases. As far as we know, the basic polynomials are not considered. So, it is
significant to study this case. In this paper, we investigate some d-orthogonal
polynomials related to the q-difference operator (1.4).

Next, we present some basic definitions which we need below.
Let P be the vector space of polynomials with coefficients in C, the set of

complex numbers, and let P ′ be its dual. We denote by 〈u, f〉 the effect of
a functional u ∈ P ′ on a polynomial f ∈ P . Let {Pn}n≥0 be a sequence of
polynomials in P such that deg Pn(x) = n for all n. In this case, we also
call {Pn}n≥0 a polynomial set. The corresponding monic polynomial sequence

{P̂n}n≥0 is given by Pn = λnP̂n, n ≥ 0, where λn is the normalization coefficient

and its dual sequence {un}n≥0 is defined by 〈un, P̂m〉 = δn,m, n,m ≥ 0.

Definition 1.1. Let d be an arbitrary positive integer. A polynomial sequence
{Pn}n≥0 is called a d-orthogonal polynomial sequence (d-OPS, shortly) with
respect to a d-dimensional functional U = t(u0, . . . , ud−1) if it satisfies [24], [29]

{
〈uk, PmPn〉 = 0, m > dn + k , n ≥ 0,

〈uk, PnPdn+k〉 6= 0, n ≥ 0,
(1.1)
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for each integer k belonging to {0, 1, . . . , d− 1}.
The orthogonality conditions (1.1) are equivalent to the fact that the sequence

{Pn}n≥0 satisfies a (d + 1)-order recurrence relation [29] which we write in the
monic form as

P̂m+d+1(x) = (x− βm+d)P̂m+d(x)−
d−1∑
ν=0

γd−1−ν
m+d−ν P̂m+d−1−ν(x) , m ≥ 0, (1.2)

with the initial conditions




P̂0(x) = 1, P̂1(x) = x− β0 and if d ≥ 2,

P̂n(x) = (x− βn−1)P̂n−1(x)−
n−2∑
ν=0

γd−1−ν
n−1−νP̂n−2−ν(x) , 2 ≤ n ≤ d,

(1.3)

and the regularity conditions

γ0
n+1 6= 0 , n ≥ 0.

When d = 1, recurrence (1.2) with (1.3) is the well-known second-order recur-
rence relation{

P̂n+2(x) = (x− βn+1)P̂n+1(x)− γn+1P̂n(x), n ≥ 0,

P̂0(x) = 1, P̂1(x) = x− β0.

In the remainder of this paper, all the polynomial sets are assumed monic.
Let q be a real number, Hahn [21] defined a linear operator Lq by

Lq(f)(x) =
f(qx)− f(x)

(q − 1)x
, |q| 6= 1, (1.4)

where f is a suitable function for which the second member of this equality
exists. This operator tends to the derivative operator D as q−→1.

Let {Pn}n≥0 be a d-OPS. Put Qn(x) = LqPn+1(x), n ≥ 0. According to
Hahn’s property [21], if the sequence {Qn}n≥0 is also d-orthogonal, the sequence
{Pn}n≥0 is called Lq-classical d-OPS.

Throughout this paper, we shall use the following notation, definitions and
formulas related to the q-theory. For details the reader is referred to [19] or
[23]. If n, k are positive integers, we use the notation

(a; q)n :=
n−1∏

k=0

(1− aqk), (1.5)

[n] := [n]q :=
qn − 1

q − 1
, [n]q! := [n][n− 1] · · · [1], [0]! = 1. (1.6)

We define the Gaussian polynomial or the q-binomial coefficient by
[
n

k

]

q

:=
(q; q)n

(q; q)k(q; q)n−k

=
(qn − 1) · · · (qn−k+1 − 1)

(qk − 1) · · · (q − 1)
. (1.7)
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So [
n

k

]

q

=

[
n

n− k

]

q

=
[n][n− 1] · · · [n− k + 1]

[k]!
=

[n]!

[k]![n− k]!
. (1.8)

It is clear that when q−→1,
[
n
j

]−→(
n
j

)
and [n]q−→n.

For positive integers m1, . . . , mr, we define the Gaussian multinomial coeffi-
cient or the q-multinomial coefficient by[

m1 + m2 + · · ·+ mr

m1,m2, . . . , mr

]

q

:=
(q; q)m1+m2+···mr

(q; q)m1(q; q)m2 · · · (q; q)mr

. (1.9)

A q-analogue of the exponential function is defined by

eq(t) :=
∑
n≥0

tn

[n]!
= e((1− q)t) (1.10)

with

e(t) = e(q, t) =
∑
n≥0

tn

(q; q)n

=





∞∏
m=0

(1− tqm)−1 if |q| < 1,

∞∏
m=1

(
1− tq−m

)
if |q| > 1,

(1.11)

e(t)−1 =
∑
n≥0

(−1)nq
n(n−1)

2
tn

(q; q)n

. (1.12)

One easily verifies that
Lqeq(xt) = xeq(xt) (1.13)

for a fixed real x and
eq(t)−→et if (q−→1). (1.14)

For given two functions f and g, we have:

Ln
q (f)(0) := Lq(L

n−1
q )(f)(0) =

[n]!

n!
f (n)(0). (1.15)

Lq(fg)(t) = g(t)Lq(f)(t) + f(qt)Lq(g)(t). (1.16)

A polynomial sequence {Pn}n≥0 is called an Appell polynomial set if
DPn+1(x) = (n + 1)Pn(x), n ≥ 0. A natural generalization of this definition
with the operator Lq is given by the following

Definition 1.2. A polynomial set {Pn}n≥0 is called a Lq-Appell or a q-Appell
polynomial set if

LqPn+1(x) = [n + 1]qPn(x), n ≥ 0. (1.17)

When q−→1, we deal with the Appell polynomials.

Now, let us consider the following problem:
P: Find all polynomial sets which are at the same time d-OPS and q-Appell.
Such a characterization takes into account the fact that polynomial sets which

are obtainable from one another by a linear change of variable are assumed
equivalent.
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Note that the polynomial sets obtained as solutions of this problem must be
Lq-classical d-OPS according to (1.17) and Hahn’s property [21].

This problem, for the limiting case (d, q) = (1, 1), was solved by many au-
thors. The obtained solution is the Hermite polynomial set. It should be men-
tioned that Hahn, Al-Salam, Carlitz and Chihara are among the authors who
treated the case d = 1 for arbitrary q. The obtained q-Al-Salam–Carlitz poly-
nomials are a unique solution [1], [2], [3]. Later, Douak [14] treated the limiting
case (q−→1) for a general positive integer d and obtained certain generaliza-
tions of the Hermite polynomials, containing among others the Gould–Hopper
polynomials [20]. In connection with this problem, Khériji and Maroni [23]
discussed the Lq classical orthogonal polynomials. In this paper, we solve the
problem when d is a positive integer. The main result is

Theorem 1.1. The only polynomial sets which are at the same time d-OPS
and q-Appell are given by

∑
n≥0

Pn (q; x)
tn

[n]!
=

eq (xt)

eq(x0t)eq(x1t) · · · eq(xdt)
, (1.18)

where x0, x1, . . . , xd ∈ C∗ := C \ {0}.
The outline of the paper is as follows. In Section 2, we give some properties

of q-Appell polynomials, we recall a characterization of these polynomials by
means of a generating function from which a recurrence relation is deduced.
In Section 3, we prove Theorem 1.1 and derive other results related to the
particular case: q−→1.

In Section 4, we explicitly express the d-dimensional functional U =
t(u0, · · · , ud−1) for which we have the d-orthogonality.

2. q-Appell Polynomial Sets

At first, we mention that the polynomial set {xn}n≥0 is a q-Appell polynomial
set since

Lq(x
n+1) = [n + 1]qx

n.

Such a polynomial set is generated by

eq(xt) =
∑
n≥0

xntn

[n]!
. (2.1)

The polynomial set defined by (2.1) can be used to characterize all q-Appell
polynomial sets. We have in fact

Theorem 2.1 ([25]). Let {Pn(q; .)}n≥0 be a polynomial set. The following
assertions are equivalent:

(i) {Pn(q; .)}n≥0 is a q-Appell polynomial set.
(ii) There exists a sequence (ak)k≥0, independent of n; a0 = 1, such that

Pn(q; x) =
n∑

k=0

ak
[n]!

[n− k]!
xn−k.
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(iii) {Pn(q; ·)}n≥0 is generated by

A(t)eq(xt) =
∑
n≥0

Pn(q; x)
tn

[n]!
, (2.2)

where
A(t) =

∑

k≥0

akt
k, a0 = 1.

Theorem 2.1 allows us to recognize some well known polynomial sets as q-
Appell. For instance, the polynomial set {Hn(x)}n≥0, generated by

∑
n≥0

Hn(x)
tn

[n]!
= eq(t)eq(xt), (2.3)

is q-Appell. Szegö [26] proved that this set is orthogonal over the unit circle

with respect to the weight function: f(α) =
∑+∞

−∞ q
n2

2 einα, |q| < 1.
Another example of a q-Appell polynomial set is q-Al-Salam and Carlitz

polynomials denoted by {U (a)
n (x)}n≥0 and generated by

∑
n≥0

U (a)
n (x)

tn

[n]!
=

eq(xt)

eq(t)eq(at)
. (2.4)

As shown in [3], {U (a)
n (x)}n≥0 are orthogonal over the real line.

Two interesting properties of q-Appell polynomial sets are given by

Theorem 2.2. Let {Pn(q; )}n≥0 be a q-Appell polynomial set generated by
(2.2). Put

LqA(t)

A(qt)
=

∑
n≥0

αnt
n. (2.5)

Then we have:
(i) The polynomial set {Pn(q; ·)}n≥1 satisfies the recurrence relation

Pn+1(x) = (x + α0q
n)Pn(x) +

n∑

k=1

αkq
n−k [n]!

[n− k]!
Pn−k(x). (2.6)

(ii) The polynomial set {Pn(q; ·)}n≥2 satisfies the q-difference equation
( n∑

k=2

αk−1q
n−kLk

q + (x + α0q
n−1)Lq − [n]q

)
Pn(x) = 0. (2.7)

Proof. (i) According to (1.13) and (1.16), if we apply Lq to the two members of
(2.2) viewed as functions of the variable t, we obtain

∑
n≥0

Pn+1(x)
tn

[n]!
= LqA(t)eq(qxt) + xA(t)eq(xt), (2.8)

which, according to (2.5), may be rewritten as
∑
n≥0

Pn+1(x)
tn

[n]!
= A(qt)eq(qxt)

∑
n≥0

αntn + x
∑
n≥0

Pn(x)
tn

[n]!
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=
∑
n≥0

qnPn(x)
tn

[n]!

∑
n≥0

αntn + x
∑
n≥0

Pn(x)
tn

[n]!
. (2.9)

Finally, by comparing the coefficients of tn

[n]!
in (2.9), we obtain (2.6).

(ii) By shifting n → n− 1 and multiplying both sides of (2.6) by [n]q, we can

deduce that {Pn(x)}n≥2 satisfies (2.7) since Lk
qPn(x) = [n]!

[n−k]!
Pn−k. ¤

Remark. When q−→1, we have the He-Ricci result [22]: Appell polynomials
{Pn(x)}n≥0 generated by A(t)ext satisfy the differential equation

( n∑

k=2

αk−1D
k + (x + α0)D − n

)
Pn(x) = 0.

3. d-Orthogonal q-Appell Polynomial Sets

In order to characterize all d-OPS and q-Appell polynomials, we first state
the following lemma.

Lemma 3.1. The polynomial sequence {Pn(q; .)}n≥0 generated by (2.2) is a
d-OPS if and only if the coefficients (αk)k≥0; given by (2.5) satisfy the conditions

αk = 0 for k ≥ d + 1 and αd 6= 0. (3.1)

Proof. According to Definition 1.1, the polynomial set generated by (2.2) is a
d-OPS if and only if these polynomials satisfy a recurrence relation of type
(1.2) − (1.3). Such conditions, by virtue of Theorem 2.2, are equivalent to the
fact that the coefficients (αk)k≥0, given by (2.5) satisfy conditions (3.1). ¤
Proof of Theorem 1.1. Let {Pn(q, .)}n≥0 be a polynomial set generated by
(2.2). If {Pn(q, .)}n≥0 is d-orthogonal, then by using Lemma 3.1, condition
(2.5) becomes

LqA(t)

A(qt)
=

d∑

k=0

αkt
k = P (t), αd 6= 0. (3.2)

Therefore, taking into account that deg P = d and LqA(t)= 1
(q−1)t

(A(qt)−A(t)),

we deduce from (3.2) that there exist d+1 complex numbers x0, x1, . . . , xd ∈ C∗
such that

A(t) = (1− (1− q)x0t)(1− (1− q)x1t) · · · (1− (1− q)xdt)A(qt). (3.3)

Iterate relation (3.3) m times for |q| < 1 and let m−→∞ to obtain

A(t) =
1

eq(x0t) · · · eq(xdt)
. (3.4)

Notice that the same result holds when |q| > 1.
Conversely, assume that the polynomial sequence {Pn(q, .)}n≥0 satisfies (1.18).

By virtue of the identity eq((1− q)qt) = (1− (1− q)t)eq(t), one can easily verify
that

A(t) = (1− (1− q)x0t) · · · (1− (1− q)xdt)A(qt), (3.5)
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from which we deduce

LqA(t)

A(qt)
=

(1− (1− q)x0t) · · · (1− (1− q)xdt)− 1

(1− q)t
= P (t), (3.6)

where P (t) is a polynomial of degree d. It follows then, according to Lemma
3.1, that the polynomial set {Pn}n≥0 is d-orthogonal. ¤

As a consequence of this characterization, we mention that a d-orthogonal and
q-Appell polynomial set {Pn}n≥0 satisfies a (d + 1)-order q-difference equation
of the type

( d+1∑

k=2

αk−1q
n−kLk

q + (x + α0q
n−1 − [n]q)Lq

)
Pn(q, x) = 0. (3.7)

Remarks:
1) For the particular case: d = 1, if {Pn(q; .)}n≥0 is an orthogonal and also

q-Appell polynomial set generated by (2.2) with (2.5), we have

Pn+1(x) = (x + α0q
n)Pn(x) + α1q

n−1[n]qPn−1(x). (3.8)

Note that we can show the existence of two constants c and a in C∗ as solutions
of the system 




α1

(1− q)c2
= a,

α0

c
= −(1 + a)

such that U
(a)
n (q; x) = 1

cn Pn(q; cx).
We again have the result shown by Al-Salam in ([1, Theorem 4.1]): By a linear

change of variable, the polynomial set {U (a)
n (q; .)}n≥0 is the only orthogonal

polynomial set and also q-Appell.
2) If a < 0 and 0 < q < 1, it is shown in [3] that there exists a distribution

function α(x) such that

∞∫

−∞

xkU (a)
n (x)dα(x) = 0 (k = 0, 1, 2, . . . , n− 1) with

∞∫

−∞

dα(x) = 1.

The corresponding moments of the distribution function α(x) are given by

Cn =

∞∫

−∞

xndα(x) =
n∑

k=0

[
n

k

]
ak. (3.9)

4. d-Dimensional Functionals

We are now interested in determining an d-dimensional functional for which
we have the d-orthogonality of a q-Appell polynomial set. It is convenient
to adopt the technique used in [7] to express the dual sequence of a given
polynomial set. The main result of this section is given in our next theorem.
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Theorem 4.1. The q-Appell polynomial set {Pn(q; .)}n≥0 generated by

G(x, t) =
∞∑

n=0

Pn(x)
tn

[n]!
=

eq(xt)

eq(x0t)eq(x1t) · · · eq(xdt)
, (4.1)

is a d-OPS with respect to the d-dimensional functional U = t(u0, u1 · · ·ud−1)
given by

〈u0, f〉 =
∑
m≥0

Hm(x0, x1, . . . , xd)
f (m)(0)

m!
, f ∈ P , (4.2)

〈ur, f〉 =
1

[r]!
〈u0, L

r
qf〉, r = 1, . . . , d− 1, (4.3)

where

Hm(x0, x1, . . . , xd) =
∑

(i0+i1+...+id)=m

[
m

i0, i1, . . . , id

]
xi0

0 xi1
1 . . . xid

d . (4.4)

To prove Theorem 4.1, we need the following lemma.

Lemma 4.1. The polynomial set {Pn}n≥0, generated by

∑
n≥0

Pn(x)
tn

[n]!
=

eq(xt)

eq(x0t)eq(x1t) · · · eq(xdt)

is a d-OPS with respect to the d-dimensional functional U = t(u0, . . . , ud−1)
given by

〈ur, f〉 =
1

[r]!
B(Lq)L

r
q(f)(0), r = 1, . . . , d− 1, f ∈ P , (4.5)

where

B(t) = e(x0t) · · · e(xdt).

Proof. Put B(t) :=
∑

k≥0 bkt
k.

From the relation eq(xt) = B(t)G(x, t) we deduce that

xn =
n∑

k=0

bk
[n]!

[n− k]!
Pn−k(x) =

n∑

k=0

bkL
k
qPn(x)

=
( ∑

k≥0

bkL
k
q

)
Pn(x) = B(Lq)Pn(x). (4.6)

On the other hand, we have
[
Ln

q xm
]
x=0

= [n]! δmn, (4.7)

(4.6) and (4.7) allow us to express the dual sequence {un}n≥0 of {Pn(q; .)}n≥0

by

〈un, f〉 =
1

[n]!
B(Lq)L

n
q (f)(0), f ∈ P , n = 0, 1, . . . . ¤



SOME BASIC d-ORTHOGONAL POLYNOMIAL SETS 591

Proof of Theorem 4.1. Observe that B(t) can be written in the form

B(t) =
∑
m≥0

( ∑

(i0+...+id)=m

[
m

i0, . . . , id

]
xi0

0 xi1
1 . . . xid

d

)
tm

[m]!

=
∑
m≥0

Hm(x0, x1, . . . , xd)
tm

[m]!
. (4.8)

Replacing t by Lq in (4.8) and using (1.15) and (4.5) we derive (4.2). ¤
We remark that equation (4.3) follows directly from (4.5).
Next, we consider two examples from Theorem 4.1.

Example 1. Consider the case: d = 1, B(t) = eq(t)eq(at), a 6= 0. That
corresponds to q-Al-Salam-Carlitz polynomials.

For this case, according to (4.2), the moments of u0 are given by

Cn = 〈u0, x
n〉 =

∑
m≥0

Hm(1, a)

m!

[
(xn)(m)

]
x=0

= Hn(1, a) =
n∑

k=0

[
n

k

]
ak.

We again have the result obtained by Al-Salam-Carlitz in [3] as mentioned in
(3.9).

Example 2. Consider now the case d = 2. Then the polynomial set {Pn}n≥0

generated by
∑
n≥0

Pn(x)
tn

[n]!
=

eq(xt)

eq(t)eq(at)eq(bt)
, a, b ∈ C∗,

is a 2-OPS with respect to the 2-dimensional functional U = t(u0, u1), where
the moments of u0 and u1 are given by

〈u0, x
n〉 = Hn(1, a, b) =

∑
0≤n1,n2≤n

[
n

n1, n2, n− n1 − n2

]
an1bn2

and {
〈u1, x

n〉 = 〈u0, Lqx
n〉 = [n]qHn−1(1, a, b) if n ≥ 1,

〈u1, 1〉 = 0.
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16. K. Douak and P. Maroni, Les polynômes orthogonaux “classiques” de dimension deux.
Analysis 12(1992), No. 1-2, 71–107.

17. K. Douak and P. Maroni, On d-orthogonal Tchebychev polynomials. I. Appl. Numer.
Math. 24(1997), No. 1, 23–53.

18. K. Douak and P. Maroni, On d-orthogonal Tchebychev polynomials. II. Methods Appl.
Anal. 4 (1997), no. 4, 404–429.

19. G. Gasper and M. Rahman, Basic hypergeometric series. With a foreword by Richard
Askey. Encyclopedia of Mathematics and its Applications, 35. Cambridge University
Press, Cambridge, 1990.

20. H. W. Gould and A. T. Hopper, Operational formulas connected with two general-
izations of Hermite polynomials. Duke Math. J. 29(1962), 51–63.
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