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ON A GENERALIZED WILSON FUNCTIONAL EQUATION

ROMAN BADORA

Abstract. We solve the functional equation
N−1∑
n=0

g(x + kn · y) = Ng(x)f(y), x, y ∈ G,

where G is a locally compact Abelian group, {k0 = idG, k1, . . . , kN−1} is a
finite group of continuous automorphisms of G, f is a bounded continuous
complex-valued function on G and g is an almost periodic function on G.
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1. Introduction

Let (G, +) be a locally compact Abelian group, N ∈ N and let K = {k0 =
idG, k1, . . . , kN−1} be a finite group of continuous automorphisms of G (the
action of k ∈ K on x ∈ G is denoted by k · x).

In this paper we find the set of solutions of the following version of Wilson’s
functional equation:

N−1∑
n=0

g(x + kn · y) = Ng(x)f(y), (1)

where f : G → C is a bounded continuous function and g : G → C is an
almost periodic function. This functional equation was studied by Förg-Rob
and Schwaiger [4], Gajda [6] and Stetkær [13], [14]. In the main the authors
found only the form of the function f . Our aim is to calculate also the form
of the function g, which combined with the results by Stetkær [12] leads to a
solution of the Pexiderized version (6) of (1) and of more general functional
equations like (14) and (15). However, like [5], but in contrast to the works just
mentioned, we do not seek our solutions among all continuous functions or even
among the bounded continuous functions, but in the subalgebra of all almost
periodic functions on G. We find that to each such solution there corresponds
a character γ ∈ Ĝ (Ĝ is defined on the next page) such that the solution is a
linear combination of the functions x → γ(k · x), where k ∈ K. This is known
for the function f in (1), but not for g for a general group K.

In the case where G = C and ω is an N th root of 1 such that ωn 6= 1 for
n = 1, 2, . . . , N − 1, equation (1) with K = {1, ω, ω2, . . . , ωN−1} reduces to the
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equation
N−1∑
n=0

g(x + ωn · y) = Ng(x)f(y),

which was solved by Stetkær in [14].
The classical example of (1) is Wilson’s first generalization of d’Alembert’s

functional equation (see Wilson [15] and Aczél [1])

g(x + y) + g(x− y) = 2g(x)f(y),

while K = {idG,−idG}.
In the final part of our paper we consider the case where the finite group K

is replaced by a compact group.

2. Almost Periodic Functions

Let G be a topological group. Then Bc(G) denotes the Banach algebra of all
continuous complex-valued bounded functions on G with the supremum norm.

If f ∈ Bc(G) and x ∈ G, then by fx we denote the complex-valued function
defined on G by the formula

fx(y) = f(yx), y ∈ G.

A function f ∈ Bc(G) is called almost periodic if the set { fx : x ∈ G }
is relatively compact in Bc(G). The set of all almost periodic functions on G
with the norm of uniform convergence is a Banach algebra which is denoted by
Ac(G) (see [7], vol. I, Theorem 18.3).

It is known ([7], vol. I, Theorem 18.8) that on the space Ac(G) there exists
a complex linear functional M with the following properties:

(A) M(fx) = M(f), for f ∈ Ac(G) and x ∈ G;
(B) M(f) > 0, for f ∈ Ac(G) with f ≥ 0G, f 6= 0G;
(C) M(1G) = 1.
Such a functional M is continuous (its norm is equal to 1), uniquely deter-

mined (see [7], vol. I, Theorem 18.9) and referred to as the invariant mean on
the space Ac(G).

A continuous homomorphism of G into the complex unit circle is called a
character of G (see [7]). The set of all characters of G equipped with the

pointwise multiplication forms an Abelian group which we denote by Ĝ. It can
be proved easily (using the definition) that all characters are almost periodic.

Finally, we define the Fourier transformation on Ac(G) by the formula

f̂(γ) = M(f · γ̄), γ ∈ Ĝ,

for all f ∈ Ac(G), where γ̄ is a character of the group G defined by

γ̄(x) = γ(x), x ∈ G.

If G is a locally compact Abelian group, then Ĝ is a separating family and
then the Fourier transformation is injective and the inversion theorem holds. In
particular, we have
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Lemma 1 (see [9], Satz V.31.3). If G is a locally compact Abelian group,

f ∈ Ac(G) and f 6= 0G, then there exists a character γ ∈ Ĝ such that

f̂(γ) 6= 0.

Lemma 2 (see [8] or [5], Lemma 3). If G is a locally compact Abelian group,
f ∈ Ac(G) and k ∈ K, then f ◦ k ∈ Ac(G).

3. The Main Result

Let f and g satisfy equation (1). If g = 0G, then f is an arbitrary function.
If f = 0G, then putting y = 0 in (1) we have g = 0G. So, in the sequel we can
assume that f 6= 0G and g 6= 0G. (It suffices to assume that g 6= 0G, because
then also f 6= 0G. Indeed, putting y = e in (1) we find that f(e) = 1.)

Our main result reads as follows

Theorem 1. Let (G, +) be a locally compact Abelian group, N ∈ N and let
K = {k0 = idG, k1, . . . , kN−1} be a finite group of continuous automorphisms of
G. Then functions f ∈ Bc(G) \ {0} and g ∈ Ac(G) \ {0} satisfy equation (1) if

and only if there exist a character γ ∈ Ĝ and a function κ : K → C such that

f(x) =
1

N

N−1∑
n=0

γ(kn · x), x ∈ G; (2)

g(x) =
1

N

N−1∑
n=0

κ(kn)γ(kn · x), x ∈ G. (3)

Proof. Simple calculations show that functions of form (2)–(3) satisfy equa-
tion (1).

Let f and g satisfy equation (1). Then the function f satisfies the following
functional equation (see [12], Corollary III.2):

N−1∑
n=0

f(x + kn · y) = Nf(x)f(y), (4)

for all x, y ∈ G.
From equation (1) and Lemma 2 we infer that f is an almost periodic function

and Lemma 1 implies the existence of a character γ ∈ Ĝ such that

f̂(γ) 6= 0. (5)

Applying equation (4) and the linearity of M we get

Nf(y)f̂(γ) = Nf(y)Mx(f(x)γ(x))

= Mx(Nf(y)f(x)γ(x))

= Mx(
N−1∑
n=0

f(x + kn · y)γ(x)), y ∈ G,
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(in the above formula and in the sequel the subscript letter next to M shows
that M is applied to a function of the respective variable) which, jointly with
the linearity of M and property (A), yields

Nf(y)f̂(γ) =
N−1∑
n=0

Mx(f(x + kn · y)γ(x + kn · y − kn · y))

=
N−1∑
n=0

Mx(f(x)γ(x− kn · y))

=
N−1∑
n=0

Mx(f(x)γ(x)γ(kn · y))

=
N−1∑
n=0

f̂(γ)γ(kn · y), y ∈ G.

Hence, by (5), we have

f(x) =
1

N

N−1∑
n=0

γ(kn · x), x ∈ G,

which is the required formula for f .
Similarly, using equation (1) and the assumption that g ∈ Ac(G), for each

x ∈ G, we get

Ng(x)f̂(γ) =
N−1∑
n=0

My(g(kn · y)γ(y))γ(k−1
n · x).

Putting

κ(k−1
n ) =

My(g(kn · y)γ(y))

f̂(γ)
, n ∈ {0, 1, . . . , N − 1},

we define the function κ : K → C and now

Ng(x)f̂(γ) =
N−1∑
n=0

κ(k−1
n )f̂(γ)γ(k−1

n · x), x ∈ G.

Dividing the above equation by Nf̂(γ) we obtain the required formula for the
function g and the proof of Theorem 1 is finished. ¤

Remark 1. The character γ in (2) (or (3)) is unique modulo K for given f
(g): If

f(x) =
1

N

N−1∑
n=0

δ(kn · x), x ∈ G,

for some δ ∈ Ĝ, then there exists k ∈ K such that δ = γ ◦ k. This follows from
the linear independence of the set of characters (see [7], Lemma 29.41).
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Remark 2. Chojnacki in [3] proved that any non-zero bounded continuous
solution of (4) has the form

f(x) =
1

N

N−1∑
n=0

δ(kn · x), x ∈ G,

for some δ ∈ Ĝ. Thus f is almost periodic. So, this fact follows without using
the assumption that g is almost periodic.

4. Examples of the Application

For the Pexider version of equation (1)

N−1∑
n=0

g(x + kn · y) = Nh(x)f(y), x, y ∈ G, (6)

we have

Corollary 1. Let (f, g, h) be a solution of (6) such that f, h ∈ Bc(G)\{0G}
and g ∈ Ac(G)\{0G}. Then there exist a character γ ∈ Ĝ, a function κ : K → C
and a constant c ∈ C \ {0} such that

f(x) = c
1

N

N−1∑
n=0

γ(kn · x), x ∈ G; (7)

g(x) =
1

N

N−1∑
n=0

κ(kn)γ(kn · x), x ∈ G; (8)

h(x) =
1

c

1

N

N−1∑
n=0

κ(kn)γ(kn · x), x ∈ G. (9)

Conversely, (f, g, h) given by (7), (8) and (9) solves (6).

Proof. Putting y = 0 in (6) we have

g(x) = h(x)f(0), x ∈ G. (10)

Since g is a non-zero function, we have

f(0) 6= 0

and condition (10) implies

h(x) =
1

f(0)
g(x), x ∈ G. (11)

The function g and the function f1 : G → C defined by the formula

f1(x) =
1

f(0)
f(x), x ∈ G,
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satisfy equation (1). From Theorem 1 we obtain the existence of a character

γ ∈ Ĝ and a function κ : K → C such that

1

f(0)
f(x) =

1

N

N−1∑
n=1

γ(kn · x), x ∈ G, (12)

and

g(x) =
1

N

N−1∑
n=1

κ(kn)γ(kn · x), x ∈ G. (13)

Putting c = f(0) and using (11), (12) and (13) we get the required formulas for
f , g and h. ¤

Now we shall study the extension of equation (1)

N−1∑
n=0

g(x + kn · y)χ(kn) = Ng(x)f(y), x, y ∈ G, (14)

and the equation

N−1∑
n=0

g(x + kn · y)χ(kn) = Nf(x)g(y), x, y ∈ G, (15)

where χ : K → C is a given character of the group K.
Equations (14) and (15) were studied by Stetkær in [12]. The classical exam-

ples of (14) and (15) are

g(x + y)− g(x− y) = 2g(x)f(y)

and

g(x + y)− g(x− y) = 2f(x)g(y)

while K = {idG,−idG} and χ is defined by

χ(idG) = 1 and χ(−idG) = −1.

Proposition 1. Let (G, +) be a locally compact Abelian group, N ∈ N,
K = {k0 = idG, k1, . . . , kN−1} be a finite group of continuous automorphisms of

G and let χ ∈ K̂ be a character of K. Assume that (f, g, h) is a solution of
the functional equation

N−1∑
n=0

g(x + kn · y)χ(kn) = Nh(x)f(y), x, y ∈ G, (16)

satisfying g ∈ Bc(G) \ {0G} and f, h ∈ Ac(G) \ {0G}. Then there exist a

character γ ∈ Ĝ and functions ι, κ : K → C such that

f(x) =
1

N

N−1∑
n=0

ι(kn)γ(kn · x), x ∈ G,
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and

h(x) =
1

N

N−1∑
n=0

κ(kn)γ(kn · x), x ∈ G.

Proof. The proof of Stetkær’s result ([12], Theorem III.1) guarantees the exis-
tence of a non-zero bounded continuous function F : G → C such that

N−1∑
n=0

h(x + kn · y) = Nh(x)F (y), x, y ∈ G, (17)

and
N−1∑
n=0

f̌(x + kn · y) = Nf̌(x)F̌ (y), x, y ∈ G, (18)

where f̌ and F̌ are defined as follows:

f̌(x) = f(−x) and F̌ (x) = (−x), x ∈ G.

In [5] Gajda proved (Lemma 3) that if a function ϕ ∈ Ac(G) and m is a
morphism of the group G, then ϕ ◦m ∈ Ac(G) and

M(ϕ ◦m) = M(ϕ).

Therefore

f̌ ∈ Ac(G) \ {0G}
(see also [9], Satz II.7.3). Applying Theorem 1 to equation (17) we have the

existence of a character γ ∈ Ĝ and a function κ : K → C such that

F̂ (γ) 6= 0,

F (x) =
1

N

N−1∑
n=0

γ(kn · x), x ∈ G,

and

h(x) =
1

N

N−1∑
n=0

κ(kn)γ(kn · x), x ∈ G.

Then

F̌ (x) = F (−x) =
1

N

N−1∑
n=0

γ(kn · (−x))

=
1

N

N−1∑
n=0

γ(kn · (−x)) =
1

N

N−1∑
n=0

γ(kn · x)

=
1

N

N−1∑
n=0

γ(kn · x), x ∈ G.
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Moreover, using Gajda’s Lemma, we get

(F̌ )̂(γ̄) = Mx(F̌ (x)γ̄(x))

= Mx(F (−x)γ(−x)) = Mx(F (x)γ(x))

= F̂ (γ) 6= 0.

Repeating the adequate part of the proof of Theorem 1 for equation (18) we
derive the form of f̌

f̌(x) =
1

N

N−1∑
n=0

ι(kn)γ̄(kn · x), x ∈ G,

with some function ι : K → C, which means that

f(x) =
1

N

N−1∑
n=0

ι(kn)γ(kn · x), x ∈ G,

and ends the proof of Proposition 1. ¤

As a deduction from this proposition we obtain

Corollary 2. Let χ ∈ K̂ and let f, g ∈ Ac(G) \ {0G} satisfy equation (14).

Then there exist a character γ ∈ Ĝ and functions ι, κ : K → C such that

f(x) =
1

N

N−1∑
n=0

ι(kn)γ(kn · x), x ∈ G,

and

g(x) =
1

N

N−1∑
n=0

κ(kn)γ(kn · x), x ∈ G.

and

Corollary 3. Let χ ∈ K̂ and let f, g ∈ Ac(G) \ {0G} satisfy equation (15).

Then there exist a character γ ∈ Ĝ and functions ι, κ : K → C such that

f(x) =
1

N

N−1∑
n=0

ι(kn)γ(kn · x), x ∈ G,

and

g(x) =
1

N

N−1∑
n=0

κ(kn)γ(kn · x), x ∈ G.
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5. The case of a Compact Group K

In this section we assume that K is a compact subgroup of the group Aut(G)
of all automorphisms of G onto G with the normalized Haar measure µ (see also
[7]). So K needs no longer be finite. The functional equation (1) generalizes to∫

K

g(x + k · y)dµ(k) = g(x)f(y), x, y ∈ G. (19)

If g is a non-zero continuous function, then a non-zero solution f of this func-
tional equation is called a K-spherical function and then we say that the function
g is associated with the function f (see [12]).

Theorem 2. Let (G, +) be a locally compact Abelian group and let K be
a compact subgroup of the group Aut(G) with the normalized Haar measure µ.
Moreover, suppose that f ∈ Bc(G)\{0G} and g : G → C is a function such that
for each x ∈ G the map

K ×G 3 (k, y) −→ g(x + k · y) ∈ C (20)

is a member of Ac(K ×G) \ {0G}.
If the functions f and g satisfy equation (19) then there exist a character

γ ∈ Ĝ and a continuous function κ : K → C such that

f(x) =

∫

K

γ(k · x)dµ(k), x ∈ G, (21)

and

g(x) =

∫

K

κ(k)γ(k · x)dµ(k), x ∈ G. (22)

Conversely, (f, g) given by (21) and (22) solves (19).

Proof. First we choose x0 ∈ G such that g(x0) 6= 0. Then

f(y) =
1

g(x0)

∫

K

g(x0 + k · y)dµ(k), y ∈ G. (23)

A standard calculation (see also [12], Corollary III.2) shows that the function
f satisfies the following functional equation:∫

K

f(x + k · y)dµ(k) = f(x)f(y), x, y ∈ G. (24)

The Fubini Theorem for invariant means on Ac(K×G) (see [9], Kapitel II, §12,
Satz 2) and identity (23) imply that f ∈ Ac(G) (because the functional

C(K) 3 ϕ →
∫

K

ϕ(k)dµ(k)

is an invariant mean on the space Ac(K) = C(K) of all continuous functions
on K).
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Since f 6= 0, one can find a character γ ∈ Ĝ such that

f̂(γ) 6= 0.

By (24), for each y ∈ G, we have

f(y)f̂(γ) = f(y)Mx(f(x)γ(x))

= Mx(f(x)f(y)γ(x))

= Mx(

∫

K

f(x + k · y)γ(x)dµ(k)).

Moreover, we may apply the Fubini Theorem for invariant means on Ac(K×G).
As a result we get

f(y)f̂(γ) =

∫

K

(Mx(f(x + k · y)γ(x))dµ(k)

=

∫

K

(Mx(f(x + k · y)γ(x + k · y − k · y))dµ(k)

=

∫

K

(Mx(f(x + k · y)γ(x + k · y)γ(k · y))dµ(k)

=

∫

K

(Mx(f(x)γ(x)γ(k · y))dµ(k)

=

∫

K

f̂(γ)γ(k · y)dµ(k)

= f̂(γ)

∫

K

γ(k · y)dµ(k),

for all y ∈ G. Dividing this equation by f̂(γ) we obtain the required formula
for f .

Next, using equation (19), assumption (20) and Fubini’s Theorem, for each
x ∈ G, we get

g(x)f̂(γ) = g(x)My(f(y)γ(y))

= My(g(x)f(y)γ(y))

= My(

∫

K

g(x + k · y)γ(y)dµ(k))

=

∫

K

(My(g(x + k · y)γ(y)))dµ(k)

=

∫

K

(My(g(k · (y + k−1 · x)γ(y + k−1 · x− k−1 · x)))dµ(k)
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=

∫

K

(My(g(k · y)γ(y)γ(k−1 · x)))dµ(k)

=

∫

K

(My(g(k · y)γ(y)))γ(k−1 · x)dµ(k).

Putting

κ(k−1) =
My(g(k · y)γ(y))

f̂(γ)
, k ∈ K,

and dividing the above equation by f̂(γ) we have the desired form of g, which
ends the proof. ¤

Arguments similar to those used in the proof of Corollary 1 lead to

Corollary 4. Let (f, g, h) be a solution of the functional equation∫

K

g(x + k · y)dµ(k) = h(x)f(y), x, y ∈ G, (25)

such that f, h ∈ Bc(G)\{0G} and g satisfies condition (20). Then there exist a

character γ ∈ Ĝ, a continuous function κ : K → C and a constant c ∈ C \ {0}
such that

f(x) = c

∫

K

γ(k · x)dµ(k), x ∈ G; (26)

g(x) =

∫

K

κ(k)γ(k · x)dµ(k), x ∈ G; (27)

h(x) =
1

c

∫

K

κ(k)γ(k · x)dµ(k), x ∈ G. (28)

Conversely, (f, g, h) given by (26), (27) and (28) solves (25).

This result was proved by Stetkær ([10], Theorem 3) under the assumption
that G is a compact group.
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