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PROBLEMS OF STATICS OF TWO-COMPONENT ELASTIC
MIXTURES
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Abstract. A general representation of solutions by six harmonic functions is
obtained for a system of homogeneous equations of statics of two-component
mixtures. The problems are investigated when the normal components of
partial displacement vectors and the tangent components of partial rotation
vectors are given on the boundary. Uniqueness theorems are proved. So-
lutions are obtained in terms of absolutely and uniformly convergent series.
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INTRODUCTION

The effective solution of various boundary value and contact problems of the
elasticity theory (of classical and and generalized models) is very important
from theoretical and practical standpoints. Unfortunately, exact solutions of
these problems can be constructed explicitly only for a rather limited number
of bodies of concrete geometrical form. Here an essential role is played by the
fact that a general solution of the system of complex differential equations that
correspond to a mechanical model can be represented by solutions of simpler
differential equations (of Laplace and Helmholtz). In the classical elasticity
theory, to this topic the well-known works are devoted by such authors as W.
Kelvin, J. Hadamard, J. Boussinesq, M. Pankovich, E. Trefftz, M. Slobodyanski,
N. Muskhelishvili, where the displacement vector is represented by harmonic
and biharmonic functions. Such a representation makes it possible to develop
the Fourier method of the partitioning of variables (with respect to the definite
system of coordinates) of the elasticity theory in the case of canonical media.

The present paper deals with the representation of solutions of a system of
differential equations of statics for elastic mixtures, with the construction of
explicit solutions of a nonclassical problem for a ball and a hollow sphere, and
with mathematical investigation of these solutions.

1. BASIC EQUATIONS AND FORMULATION OF THE BOUNDARY VALUE

PROBLEM

In the three-dimensional linear theory of elastic two-component mixtures, a
system of homogeneous differential equations of statics is written in the form
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(4], [7], [10])
a1 Au' + by grad divu’ + cAu” + dgrad divu” = 0,
cAu' + dgrad divu’ + asAu” + by grad divu” = 0,

(1.1)

"

where v/ = (u}, u), ub), u” = (uf,ul,us) are partial displacement vectors,

P2
b

a; = {1 — As, 51=M1+)\5+/\1—?04 ay = [l — As,

52=M2+>\2+)\5+%O/7 c=pz+ N5, o =X3— A\,

d:H3+)\3—)\5—%O/, p = p1+pa,

p1, po are partial densities of the mixture; Ay, Ao, ..., A5, 1, t2, i3 are the elastic
moduli characterizing the mechanical properties of the mixture, which satisfy
the conditions [7]

2
py >0, papp —pi >0, A5 <0, )\1+§u1—%a’>0,
2 2 2 ?
)\14——,&1—@0/ /\2+—[L2+&O/ > )\34——#3—&&/ .
3 p 3 p 3 p

From these inequalities it follows that [7]
dl = ((11 + bl)(a2 + bQ) — (C+ d)Q > 0, dg = a1as — 62 > 0. (1.2)
Denote by Q71 the ball bounded by the spherical surface 92 with center at
the origin and radius R, i.e. QF = {z:2 € R® |2| < R}, 00 = {z : z € R®,
lz| = R}, O~ = R*\ Q.
Problem (N). Find, in the domain QF (), a regular solution U(x) of
system (1.1) that satisfies the following conditions on the boundary 0€:

n(z) ' (2)]" = £V (2), [n(z) - u"(2)]" = f2(2),
n(z) x rot /()" = fV(2), [n(z) x rotu”(2)]* = f@(2),
where U = (v, "), f9(2) = (f7(2), £ (2), £(2)), 5 = 1,2, {(2), 5 = 1,2,

k =1,2,3,4, are the functions given on 0f2, n(z) is the outward normal vector
with respect to Q7 at a point z € 9.

Denote by (N)* the internal problem, and by (N)~ the external one.
In the case of problem (IV)~, the vector U(x) near the point at infinity should
satisfy the following conditions:

(1.3)

uj(x) = Ol ), uj(x) = O(lz| ™), (1.4)
ou(x) Ouj(x) _ 4y
“on o(lz| ™), S o(lz|™), 4,k=1,2,3. (1.5)

Note that estimates (1.5) follow from estimates (1.4) (see [1]).

Definition 1.1. The vector U = (u/,u") defined in the domain OF is called
regular if u}, vy € C*(QF)NCYO*), k=1,2,3.
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2. THE UNIQUENESS THEOREM

Theorem 2.1. If 00 € Ai(a), 0 < a < 1, then the homogeneous problem
(N)E has only a trivial solution in the class of reqular vectors.

Proof. Let us introduce the matrix differential operator A(0x):

AB)(9z) 1 AW ()
AD(9z) = [A,(j}(aa:)] Ci=1,2,3.4,

3x3
2

A%) = aléij + b1

0x0x;
AY = 5 A+ d o i=2,3
kj — kj 833]@81’]’ — 4y
o2

(4) _
Akj - a25/€jA + b2 aﬂfkal’] )

where 0, is the Kronecker’s symbol and A is the Laplace operator.
Using these notations, we rewrite system (1.1) as A(0z)U(x) = 0.
Let us consider the scalar derivative

U-A(0z)U = (ayu + cu”) - Au' + (cu’ + agu”) - Au”
+ (byu' + du”) - grad divu' + (du’ + bu”) - grad divu”.  (2.1)

Assume that u = (uy, us, usg) and v = (vq, v9, v3) are three-component vectors.
Then, after performing some transformations, we obtain

u - Av = div(udive) — divu dive + div[u X rot v] — rot u - rot v,
u - grad dive = div(udive) — divu divo.
Substituting these equalities into (2.1), we have
U-A(02)U = div [ (a1 + bi)u' + (c+ d)u”) dive’ + ((c+ d)u

+ (az + bo)u"] dive” + a1 (v’ X rot u') + c(u’ X rot u”)

+ c(u” x rotu') + as(u” x rotu”)] — E(U,U), (2.2)
where
B(U,U) = i - (e b dive + (e dydivay + dy(div a2
+ all [(ay rot ' + crotu”)?* + da(rotu”)?] . (2.3)

Applying the Gauss—Ostrogradski theorem, from (2.2) we obtain

/U - A(0x)U dx = /[U(z)]+ A [P(0z,n)U(2)]Tds — /E(U, U)dz, (2.4)

Qt+ 00 Qt
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where
U-P(0z,n)U = (n-u')[(a1 + by) dive' + (¢ + d) div "]
+ (n-u")[(c+ d)divu’ + (ag + by) divu] —
— (ayu' + cu) - [n x rotu'] — (cu’ 4+ axu”) - [n x rotu”]. (2.5)
Here we have used the identity
n-u X rotv] = —u - [n X rotv].

Quite analogously, considering the domain 2~ and taking into account that
the vector U = (v, u”) satisfies condition (1.4)—(1.5), we obtain

/U -A(0x)U dr = — /[U(z)]_ -[P(0z,n)U(z)] ds — /E(U, U)dzx. (2.6)
Q- o9 Q-
Let us consider the homogeneous problem (N)E (f(z) = 0, f9(z) = 0,

j =1,2). Applying the boundary conditions of problem (N)F to formula (2.5),
we obtain

[U(2))F - [P(0z,n)U(2)]F =0, =z¢€ .
Using this equality in (2.4) and (2.6), we have

/U - A(0x)U dx = —/E(U, U)dz.
0 O
Since (1.1) implies that A(9z)U(z) =0, x € Q*, the latter equality yields

/ B(U,U) dz = 0. 2.7)
O+
Taking into account that a; > 0, a; +b; > 0, d; > 0, do > 0, from (2.3) it
follows that E(U,U) > 0. By virtue of this fact, (2.7) implies
E(UU)=0, z¢cQF
Hence, taking into account (2.3) we obtain
dive/(z) =0, divu’(z) =0, rotu/(r) =0, rotu” =0, xcQ*
A solution of this system has the form
u'(z) = grad U (z), o' (z) =gradUy(z), z€QF, (2.8)
where W;(x), j = 1,2, is an arbitrary harmonic function.
Since [n(z) - u/(z)]* = 0, [n(z) - v”(2)]* = 0, the harmonic functions ¥;(x),
j = 1,2, satisfy, on the boundary 0f2, the Neumann condition
U,(2)]"
0V;(x) =0, ze€0d.
on(z)

As is known, the homogeneous Neumann problem has the solution ¥;(z) =
C; = const, j = 1,2, x € QF. Substituting this value of ¥;(z) into (2.8), we
obtain u/(z) = 0, v"(z) = 0, x € QF.
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Thus the homogeneous problem (N)Z has only a trivial solution. Hence it
follows that problem (N)* admits no more than one regular solution. U

3. REPRESENTATION OF A SOLUTION OF SYSTEM (1.1)

Theorem 3.1. For the vector U = (u',u") to be a solution of the system of
differential equations (1.1) in the domain ) C R3, it is necessary and sufficient
that it be represented in the form

or
+ 1ot rot (xr* @y (7)) + rot(x®5 (7)),

u/'(r) = grad @, (x) + grad r? (r 9 - 1) [a1Dy(x) + F1P3(7)]

(3.1)
0
u"(z) = grad ®4(z) + grad r* (r 5 T 1) [B2®2(x) + aPs ()]
r
+ 1ot rot (xr?®3(x)) + rot(xdg(x)),
where ®;(x), 7 = 1,2,...,6, are scalar harmonic functions, x = (1,22, x3),

r=lz|, rZ =z grad, oy = i [clc+d) — ai(az + b2)], B = d—ll (asd — cby),
By = % (ard — cby), ay = % [c(c+d) — as(ay + by)].

Proof. Applying the operation div to both equations of system (1.1), we obtain
(a1 +b1)AY + (¢ + d)A0" =0,
(c+ d)AY + (az + b)) AG" = 0,

where we have introduced the notations
dive' =6, divu”" =6". (3.3)
Since d; = (a; + b1)(ag + be) — (¢ + d)? > 0, from (3.2) we obtain A§’ = 0,

AG" = 0.
Rewrite system (1.1) as

a1 Au' + cAu” = —b; grad 0’ — dgrad §”,
cAu' + asAu" = —d grad ' — by grad 0"

(3.2)

Having solved this system, we obtain

1

Au' = = [(cd — bras) grad 0 + (cby — aad) grad 6”],
2
1

Au’ = - [(cby — ard) grad 6 + (cd — a1by) grad 6”].
2

Hence we have
u'(z) = (010 + 090") + W' (),

u'(z) = x(030 + 040") + V' (),

where W'(z), W"(z) are arbitrary harmonic vectors,

(3.4)

1
[ 2—d2(cd—b1a2), 09 = 2—d2(cb2—a2d),
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624
! (cby — a1d), ! (cd — arby).
03 = 2d2 1 1 04 = 2d2 102
The substitution of the vectors «'(x) and «”(z) from (3.4) into (3.3) gives
0 0
o (r=—+3) =10 +oy|r—+3|0"=—divV,
or or
(3.5)

(9 , a "o . "

The following statement is true [3].

Theorem 3.2. For the vector W(z) to be harmonic in the domain Q C R3,
it is necessary and sufficient that it be represented in the form

U(z) = grad ¥y (z) + grad r? Wy (z) — (27’ % + 3) Uy () + rot(zWs(x)),

where V;(x), j = 1,2,3, are harmonic scalar functions, i.e., AV;(x) = 0,

j=1,2,3, v = (x1, 29, 23), r% =z -grad, r = |x|.

Taking this theorem into account, we can write

U (z) =grad @, (z)+grad r’V)(z) -z ( T % + 3) U (x)+rot(x®s(x)),
(3.6)
U (x) =grad ®,(z)+grad r* ¥} (z) —z <2r % + 3) Uy (x)+rot(zPe(x)),

where A®;(z) =0, AV, (z) =0, AV (z) =0, j = 1,4,5,6.
From (3.6) we have

div ' (z) = (27“ — + 3) ( ) (z),
div ¥ (z) = — (27«—+3) ( )xp x).

Using these equalities in (3.5), we obtain
o1 7“2—1—3 —1| 0 +o0, 1”2—1—3 "= 2r 2+3 0 —+1 )W,
or or or " or
0 0 0 0 (3.7)
v ' v B "_ v v "
o3 <T 3r+3> o'+ [04 (r 8r+3> 1] 0 (2 8r+3) (7‘ 8T+1) 5.
Equalities (3.7) are fulfilled if the functions ¢, 6", W}, W) are chosen as
0 0
/ . !/
0'(x) = (27’ o + 3) < o + 1) oy (),
/! 6 8 /
e<x>=( P +3) (rg 1) e

= {01 r— ) - ] Dy (z) + 09 (7“% +3) @3 (),

follows:
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0 0
Ui(z) = o3 (r . + 3) P, (x) + l04 (r 5 + 3) - 1} L (x),
where A®’(z) =0, j = 2,3.
Substituting these values of the functions ¢, 8", W), W} into (3.6) and (3.4),
we obtain

u'(r) = grad ®y(z) — x (27“ % - 3) (201 — 1)@, (z) + 202D ()]
+ % grad r® (7" % + 3> (201 — 1)®4(2) + 2095 ()]

+ L grad r® ('r 82 + 1) () + rot(zPs(x)),
r

2
5 (3.8)
u'(z) = grad y(z) — x (27" o + 3) [203P5(x) 4 (204 — 1)P5(2)]
r
1 0
+ 3 grad r? (r 5 + 3) [203P5(x) 4+ (204 — 1)P5(x)]
1 2 9 !
+ —gradr® (r— + 1) &5(x) + rot(xPg(x)).
2 or
Let us introduce the notations
(201 — 1)P5(x) + 209P5 () = 204 (z),
20394 (2) + (204 — 1)®5(z) = 2P3(x)
A solution of this system has the form
Py (x) = 201 Pa(x) + 26:03(2), (39)

(I)g(.%’) = Qﬁgq)g(ﬂf) + 20(2(133(1'),

where

1 1
ar = —[clc+d) —ai(ag + b2)], B1 = — (azd — cby),
dl dl

8, = di1<a1d — b)), as = [e(c+d) — aglar + b)),

®y(x), P3(x) are scalar harmonic functions.
Substituting the values of ®,(z) and ®4(z) from (3.9) into (3.8), we obtain

u'(z) = grad @, (v) + grad r* <r % + 1) (a1 Py + 31 D3(x)]

+ rot rot(21r?®y(z)) + rot(z®5(x)),
u"(x) = grad ®4(x) + grad 1 (7" % + 1) [Ba®s + aa®3(x)]

+ rot rot (xr’®3(x)) + rot(xdg(x)).
The proof of the first parts of the theorem is thereby completed.
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The second part is proved by a direct verification, using the following identi-
ties:

(a1 + b)) + (c+d)f2 = —ay,
(a1 4+b01)61 + (c+ d)ag = —
(c+d)ay + (az + by) By = —
(c+d)B1+ (ag + ba)ay = —

This completes the proof of Theorem 3.1. U
In proving Theorem 3.1, we have used the following fact [7].

Theorem 3.3. A regular solution of system (1.1) has continuous partial
derivatives of any order at an arbitrary point not belonging to 0S).

4. SOLUTION OF PROBLEM (N)*

A solution of this problem will be sought for in form (3.1), where the harmonic

functions ®;(z), j =1,...,6, are presented in the form [§]
Y Y (B V0%, G-1e6 @
k=0 m=—k

where Aiﬁg are the constants we seek for, (r,1, ) are the spherical coordinates
of a point x € Q7

m 2k+1 (E—m)! o .
Yk( )(19790):\/ e '(k+m)!P'§ )<COS’19)6 e

P,gm) (cos ) is the adjoint Legendre function of k-th kind and m-th order.
We require of the harmonic functions ®;(z), j = 1,4,5,6, to satisfy the
condition

/<I>j(ac) ds=0, j=1,4,5,6, (4.2)
o

where 02 is the sphere with center at the origin and radius R; (0 < Ry < R).
Putting the values of the function ®;(z), j = 1,4,5,6, from (4.1) into (4.2)
and taking into account the equalities

2 _ _
/Yk(m)(v,@ds:{QﬁR“ k=m=0,

0 for other values of k£ and m,
o

we obtain AY) =0, j =1,4,5,6.
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The substitution of the values of the function ®;(x), j =1,...,6, from (4.1)
into (3.1) gives

W(@) =3 {ub () X (9, 0) + V/E(E + 1) [0, (1) Yiur (9, )

k=0 m=—k
1)
+ wmk(T)ka(ﬁu ()0)} }7
o (4.3)
(@)= D L () X (0,9) + VEE + D [ (1) Y (9, 9)
k=0 m=—
+ Wk (1) Zi (9, 0)] }
where ([2], [6], [9])
Xk (0, 0) = eTYk(m)(ﬁ, ©), k>0,
1 8 e, O
Yo (¥, ) = ——— — ? Y v E>1
0.9) = s (g + 55 5 J 00, k21
1 €y 0 0 (m)
Zm 797 . a — 1Y 19, ) k 2 ]-7
W0 = T (Smﬁ op f%‘) )
im| <k, e,, ey, e, are the unit orthogonal vectors:
= (cos @sin ¥, sin @ sin ¥, cos V),
ey = (cosp cosd, sin g cos v, —sin ),
e, = (—sin go,cos ©,0),
() k(e (3-2) AR LG
ufhr) = & (}—2) AP+ RE+D [k +2)(05+1) —2) (5) AU

+ B R(k+ 1)(k +2) (%)k AU >0,

WO = <}%)k CACID LRk 1)(0y + 1) + 2 (R)W AU
+ B;R(k+ 1) (%)k“ AGD >,

W) = () A% k=1, =12

Since n(x) = e, we obtain

n(x) - X9, @) = Y0, 0),  n(z) - Y0, ) =0,
n(z) - Znk(9,p) = 0.
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Taking this into account, from (4.3) we obtain

n(@) (@)=Y > ul 9,9),
’“:f m==k (4.4)
n(@) (@) =D Y u (N0, ).

Applying the operation rot to both sides of each equation of system (4.3), we
obtain

n(zx) x rotu'( )

- Z Z v k+ 1 mk 19 (P) ~(1)< )ka(ﬁﬂD)]a

n(x) x rom_/'( ) (4:5)

—Z Z VEGE A+ D [T Yok (9, 0) + BT Zoni (9, 0)]

k=1 m=—k
where
~(j) T\F LG
(i k+1 k-1
B0 =" (§) ALY k=1 -2

Since on the sphere ¥; the sets {Yk(m)(ﬂ,gp)}‘m‘gk’k:@ and { X, (Y, @),
Yo (0, 0), Zmi (U, ) Fymj<k, k=v5c form a complete orthonormal system in the
space Lo and using the sufficient condition of smoothness, we can represent the

function f(z) and the vector f@(z) as Fourier series

V(2 Z Z ¥ ,9), (4.6)

k=0 m=—k
[e's) k

=33 {ANX (0, 9) + VE(E+ 1) [Bi) Y0, )
k=0 m=—k

AN Zi (9, 0)] Y, G=1,2, (4.7)
~(7) (J) () ()

where a,)2, ), 875, 7,7, are Fourier coefficients. Taking into account that
n(z)- fU(z) =0, j = 1,2, from (4.7) we obtain

FO(z Z Z VE(k+ 1) [0 Yk(0,0) + 19 Zoui(0, )], 5 =1,2. (4.8)

k=1 m=—k

Passing on both sides of equalities (4.4) and (4.5) to the limit as z — z € 09
and taking into account the boundary condition of Problem (N)* and also
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formulas (4.6) and (4.8), for the unknown constants Amk, Jj=1,...,6, we
obtain the following systems of algebraic equations:
1
0411400 + 5114 =5k at()lo),
1 (4.9)
2 2
ﬁzA(()o) + O‘QA(()O T 9R a(()o)a
k
7 Ak T RO+ D[k +2)(00 +1) =247

+ BiR(k + 1)(k +2)A%) = ol
k
7 AY L B R(k +1)(k +2)AP)

+ ROk + 1)[(k+2)(az + 1) — 2]A%) = o)

(4.10)
2(2k 4+ 3)A%) = —g\)

22k + 3) AR, = —Bin
k+1 ) (1)
S| O

R mk mk?

E+1
A= k2

AR = 5o (caalf) — afd)

AR = 5 (walf) - mal?)

AR = sy ok A% = s A

A=~ A=~

A0 = T+ S (0 200+ 1) - 20+ 50+ 253
A% = Tt DR (5042000 + (6 + 2002+ 1) - 2033)

The substitution of these values of the constants Amk, j=1,...,6,into (4.3),
(4.4) and (4.5) gives

0o k

=33 (5) " {0 + VG T [l

k=0 m=—k

n ((k + D — KB + Byl + 1)5532)]%(19,@0)

k(2K + 3)
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R2

N R?—ﬂi z’“: (5) kX0, )

R3 k=1 m=—k R
k(k+ 1) Yo (0, )] A, (4.11)
Z Z ( >k+1{ o X0, ) + VR T )H a2
k=0 m=—k
R
+ “(2k+3) (Balk + 1)BOL + ((k + Daz — k)3 )} Yok (0, 0)

R2
—Vk(k+1) r(k ) VA Z (9, so)}

o Z Z () FX(o.9)

k(k + 1) Yo (0, 0)] A,

i Ya" (0, ¢)

=
2
:\
=
I
g
g
—
=
—
I
o

k=0 m=—k

R2_ 2 > K .
L L k(R) e

k=1 m=—
(4.12)
o) k
n(z) U"(f)zkz:%m; <%>k+l a2y ™ (9, o)

R2_,p2 2 k=1

R ;m; () YM@eAL,

=3 3 VR D (5) [0t + 2oz, )

=1 m=— - (4.13)

_ i S VARG (L)' 5,9, 0) + Evmkzmk(ﬁ %0>--
R

The following statement is true [2]
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Theorem 4.1. The vectors X,k (9, @), Yor(D, ), Zuk(0,¢) admit the fol-
lowing estimates for any k > 0:

2k+1
Xk (0,
[ Xt (9, )] 4m
2k(k+1
—_ >1 4.14
ok (k + 1)
Zmie(V, 7 k=21
Zusl00) <\ T b

Moreover, as is known [8],

2%+ 1
YV, (9, 0)| < 4/ + k> 0. (4.15)

By virtue of these estimates, series (4.11)—(4.13) will be absolutely and uni-
formly convergent in the domain Q7 if we prove the convergence of the majoriz-
ing series

1) .
o 30k [l + KIS + BRG] F-12 (@19
k=ko
where « is a positive constant not depending on k.
Series (4.16) converges if we require of the coefficients ozfni, r(i,)g, 77(:,1) ,j=1,2,

to have order
V) =0k, BY) =0k, Y =0k, j=1,2 (4.17)

mk — mk —

The following theorem is true [2].

Theorem 4.2. If fU)(z) € CY(09Q), j = 1,2, then the coefficients "), 8Y)

mk’ Mmk>’

’yffl,)c admit the following estimates:

Gl =00, B =0%7, A =0T, 1=1. (418)
Analogously, if f7(z) € C1(09), j = 1,2, then the estimate
oY =0k, j=1,2 (4.19)

is valid [5].
With these properties of Fourier coefficients taken into account, we conclude
that the coefficients a?) ffll)c, 'y,(,fb,)f, j = 1,2, admit estimates (4.17) if the

mk?
boundary vector functions satisfy the following sufficient conditions:

1(2) € C309), f9(z) e C*09), j=1,2.

Passing on both sides of equalities (4.12) and (4.13) to the limit as © — z €
0 (r — R), we obtain

00 k

n(z) - w'(2)]" =3 > aln i W, e) = £iV(2),

k=0 m=—k
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[n(2) Z Z a2y W, 0) = £7(2),

[n(z )XrotU’( N

Y Y VRETD [0, + 1 (0.0)] = £,

k=1 m=—k

[n(z) x rot u"( N

—Z Z Vk(k+1) [ Y (W0, 0) + Yoy Zni (0, go)} fA(2).

k=1 m=—k

Thus, if £7(z) € C3(09), f9)(2) € C3(8Q), j = 1,2, then the vector U =

(u',u") represented by (4.11) is a regular solution of Problem (N)*.

5. SOLUTION OF PROBLEM (V)™

A solution of this problem will be sought for in form (3.1), where the harmonic
functions ®;(z), j =1,...,6, are presented in the form [§]

- i Zk: (?)k+1 M, 0) AN, j=1,....6, (5.1)

k=0 m=—k

where Affli are the constants we seek for.
We assume that these harmonic functions satisfy the conditions

Qi(2)ds =0, j=2,3,5,6, (5.2)
o

where 0€Y is the sphere with center at the origin and radius R; (R < Ry < +00).
Putting the values of the function ®;(x), j = 2,3,5,6, from (5.1) into (5.2),

we obtain AY) =0, j = 2,3,5,6.
The substitution of the Values of the function ®,(x), j =1,...,6, from (5.1)
into (3.1) enables us to represent the vectors u'(z) and u”(x) as series (4.3),

where
k+2
@ () = _FHL (RN 6i-2)
=202 (2) Al

R\"
+ RE[(k—1)(a; + 1) + 2] (7) AU
R\" :
+ B;k(k—1)R (7) AL >0,

' 1 k+2 4_ koo
W (r) = = (5) A% Rlk(a; +1) — 2] (?) AYFD (5.3)

R \r mk
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R\" 4
— B;kR (7) A k>

- )

_ R\ 1
wiii(r)z(—) AT k=1, j=1,2

mk

Calculating n(z) - v/(x), n(z) - v”(x), n(x) X rotu'(x), n(x) x rot u”(z) with
the aid of (4.3) and (5.3), we obtain equalities (4.4) and (4.5), where ugnzg(r)
Jj = 1,2, has form (5.3), and

' R\F
T (r) = 2(2k — 1) (—) AGHD

r mk
5.4
~(j) k(R e : o
U)mk('l") = E (?) Amk s k Z 1, ] = 1,2
By the boundary conditions of problem (N)~, for the constants Aff&, j =

1,...,6, we obtain the following system of algebraic equations:

1 1
Aéo) = _Raéo)a Aéo = _R ooa

kE+1
— = A+ BE[(k = Do + 1) + 20475 + Buk(k — DRAT, = 0y},
_k+ 1
5 A+ Bek(k = DRA + RE[(k — 1)(0n +1) + 2 A% = a3,
2(2k >A£ik = Bl 202k —1) AT} = By,
k 5 1 k 6 2
EAG=a0 Ean-an ke
A solution of this system has the form
1 1
40 _ M 46 _ @)
R 6 R @
Al = E%(n;)w Al = E%(m)w
I I RN ¢V
Rk ) G
k—1 1 2 -1
4 R 2
.

R%k . i
+2(k+1)(2k;_1) [Ba(k — )5( ) + ((k —1)(a2+1)+2)6( )]
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The substitution of the values of the constant Ag}g, j=1,...,6, from (5.5)
into (5.3), (5.4), (4.3)—(4.5) gives

0=3 3 (B) {altixuutv.) - VAT gl

k=0 m=—k

R(k(an —1) 1) (1) RE ()
Gt D2k —1) "m T s ek = 1) 5mk)} b0, 9)
k(k +1) %wﬁ,};zmkw, w)} it D D (5)

[ = (k+ )Xo (0, @) + VEK + 1) Yir (9, 0) | AL

(5.6)
e
;mzk( ) {8 Xut0.) - VAT | 7 ol
Rk’ﬁg (1) R(k:(a2 - 1 - 1
T D@ =D P T e %-1) }Ym’“
k(kﬂ)%ﬁizmkw} RMQZ 2 ( )
X [ = (k+ D)X (9,0) + VE(k + 1) Vi (0, go)}A( )
z z (5) i .
) 9 o0 k k+2
SEEE S St (B) vl
) o=t (5.7)
-3 (3 ) oo,
2_ 2 X k k+2
SEEEE S w0 (E) el
k=0 m=—k
n(z) x rotu'(z)
00 k k+1
=3 VEk+1) (g) [ﬁf,};ymkw,@)+§7,§1,1ka(19,¢)],
k=1 m=—k
n(z) x rotu”(z) (5-8)

g )

k=1m

R
SWosl0.9) + 28 20a(0.)
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Series (5.6)—(5.8) are absolutely and uniformly convergent when fij)(z) €
C3(09), fV(z) € C*(0Q), j = L,2.

Passing on both sides of equalities (5.7) and (5.8) to the limit as z — z € 09

and taking into account formulas (4.6) and (4.8), we obtain

[n(2) ()] = £i7(2), [n(2) (=) = £i7(2),
[n(z) x ot/ (2)]” = fY(2), [n(z) xrotu(2)]” = f@(z2), z €.
As r — oo, formulas (4.3) and (5.3) imply
W(x) = 00 ™), u'(x) = O,
ou'(x) _2 ou'(x) H B
o = 0(r 2), o —0(r?), k=123

Thus if f7(z) € C3(9), f9)(z) € C3(99), then the vector U = (u/,u")

represented by (5.6) is a solution of problem (N7).

1

10.
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