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WAVELET FRAMES FOR DISTRIBUTIONS IN
ANISOTROPIC BESOV SPACES

DOROTHEE D. HAROSKE AND ERIKA TAMÁSI

Abstract. This paper deals with wavelet frames in anisotropic Besov spaces
Bs,a

pq (Rn), s ∈ R, 0 < p, q ≤ ∞, and a = (a1, . . . , an) is an anisotropy, with
ai > 0, i = 1, . . . , n, a1 + · · · + an = n. We present sub-atomic and wavelet
decompositions for a large class of distributions. To some extent our results
can be regarded as anisotropic counterparts of those recently obtained in [38].
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Introduction

Let 1 < p < ∞ and (s1, . . . , sn) be an n-tuple of natural numbers, then

W s,a
p (Rn) =

{
f ∈ S ′(Rn) : ‖f |Lp(Rn)‖+

n∑

k=1

∥∥∥∥
∂skf

∂xsk
k

|Lp(Rn)

∥∥∥∥ < ∞
}

(0.1)

is the classical anisotropic Sobolev space on Rn. It is obvious that, unlike the
case of the usual (isotropic) Sobolev space (s1 = · · · = sn), the smoothness
properties of an element from W s,a

p (Rn) depend on a chosen direction in Rn.
The number s, defined by

1

s
=

1

n

(
1

s1

+ · · ·+ 1

sn

)
(0.2)

is usually called the mean smoothness, and a = (a1, . . . , an),

a1 =
s

s1

, . . . , an =
s

sn

(0.3)

characterizes the anisotropy. Similar to the isotropic situation, more general
anisotropic Bessel potential spaces (fractional Sobolev spaces) Hs,a

p (Rn), where
1 < p < ∞, s ∈ R and a = (a1, . . . , an) is a given anisotropy, fit in the scales
of anisotropic Besov spaces Bs,a

pq (Rn) and anisotropic Triebel–Lizorkin spaces
F s,a

pq (Rn), respectively. The theory of anisotropic spaces was developed parallel
to the theory for isotropic spaces; we refer in particular to the monographs [25]
and [4] (and the papers referred to therein). It is well known that this theory is
a more or less complete counterpart to the basic facts (definitions, description
via differences and derivatives, elementary properties, embeddings for different
metrics, interpolation) of isotropic spaces Bs

pq(Rn) and F s
pq(Rn). We shall use

the Fourier-analytical definition of Bs,a
pq (Rn), F s,a

pq (Rn), where any function f ∈
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S ′(Rn) is decomposed in a sum of entire analytic functions (ϕj f̂)∨ and this
decomposition, measured in `q and Lp(Rn), respectively, is used to introduce
these spaces. This concept goes back to [32] and [31], see [27, Chapter 4]. The
theory of isotropic spaces was studied systematically in [33], [34], [35], and,
more recently, in [36].

In the theory of isotropic function spaces it has turned out that other well-
known types of decompositions in simpler building blocks like atoms, quarks or
wavelets, are better adapted to some problems and applications connected with
the study of function spaces. In contrast to sub-atomic decompositions (based
on the so-called quarks) introduced not long ago in [35], see also [36], atomic
decompositions have a history of some twenty years and a historical report on
this topic is given in [34, 1.9], cf. also [1]. We only want to recall that (smooth)
atoms in isotropic spaces Bs

pq(Rn) and F s
pq(Rn) as defined in [14], [15] (cf. also

[16]) proved to be a powerful tool in the theory of function spaces.
In the last years several authors have been concerned with the problem of

obtaining useful decompositions of anisotropic function spaces, too. A con-
struction of unconditional bases in spaces Bs,a

pq (Rn) and F s,a
pq (Rn) using Meyer

wavelets was obtained in [2], [3]; see, more recent works [18], [17], [19]; a differ-
ent approach, involving the ϕ-transform of Frazier and Jawerth (see [15], [16])
was developed in [9], [10], see also [28]. The most recent contributions we know
are made in [7], [21], [22]; see also [5], [6].

Our main aim in the present paper is to prove an anisotropic counterpart
of some recent results on wavelet frames parallel to the isotropic case in [38].
Essential ingredients in our approach are representations by local means, atomic
and sub-atomic decompositions according to [13], [12]; see also [8], [41], [42].
More precisely, let a = (a1, . . . , an) be a given anisotropy, | · |a an anisotropic
distance, and k be a non-negative C∞-function in Rn such that supp k ⊂ {y ∈
Rn : |y|a < 2J , yj > 0, j = 1, . . . , n} for some J ∈ N, with

∑

m∈Zn

k(x−m) = 1, x ∈ Rn.

For β ∈ Nn
0 and x ∈ Rn, put kβ(x) = (2−Jax)βk(x), and let for f ∈ S ′(Rn),

kβ(t, f)(x) =

∫

Rn

kβ(y) f(x + tay) d y, t > 0, x ∈ Rn, (0.4)

be the corresponding (anisotropic) local means (see [34, 2.4.6/1] for the isotropic
version and [13] for its anisotropic counterpart). Let ω ∈ S(Rn) with supp ω ⊂
(−π, π)n, ω(x) = 1 if |x|a ≤ 2. Parallel to the isotropic case we introduce

ωβ(x) =
i|β|2Jaβ

(2π)nβ!
xβω(x) and Ωβ(x) =

∑

m∈Zn

(ωβ)∨(m)e−imx,

where x ∈ Rn, β ∈ Nn
0 . Assume that ϕ0 is some C∞-function on Rn with ϕ0(x) =

1 if |x|a ≤ 1, and ϕ0(x) = 0 if |x|a ≥ 3
2
; put ϕ(x) = ϕ0(x) − ϕ0(2

ax). For

β ∈ Nn
0 we introduce (anisotropic) father wavelets Φβ

F (x) and mother wavelets
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Φβ
M(x) by

(
Φβ

F

)∨
(ξ) = ϕ0(ξ)Ω

β(ξ),
(
Φβ

M

)∨
(ξ) = ϕ(ξ)Ωβ(ξ), ξ ∈ Rn,

and use the abbreviation

Φβ
jm(x) =

{
Φβ

F (x−m), if j = 0,

Φβ
M(2jax−m), if j ∈ N,

(0.5)

β ∈ Nn
0 , j ∈ N0, m ∈ Zn. Our first main result now establishes a quarko-

nial (sub-atomic) decomposition in the sense that for given 0 < p ≤ ∞,

s > n max
(

1
p
− 1, 0

)
, % ≥ 0, and an anisotropy a, f ∈ S ′(Rn) is an element of

Bs,a
pp (Rn) if and only if it can be represented as

f =
∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

λβ
jm kβ(2jax−m), x ∈ Rn, (0.6)

the series being absolutely convergent in Lmax(p,1)(Rn), with
( ∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

2%aβp+j(s−n/p)p
∣∣∣λβ

jm

∣∣∣
p
)1/p

< ∞.

Moreover, for f ∈ Bs,a
pp (Rn), (0.6) with λβ

jm replaced by λβ
jm(f) = 2jn(f, Φβ

jm),
β ∈ Nn

0 , j ∈ N0, m ∈ Zn, is an optimal representation, i.e.,

‖f |Bs,a
pp (Rn)‖ ∼

( ∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

2%aβp+j(s−n/p)p
∣∣∣λβ

jm(f)
∣∣∣
p
)1/p

.

In the case of negative s we have a parallel “dual” result, namely that for
1 < p ≤ ∞, s < 0, and a given anisotropy a, f ∈ S ′(Rn) is an element of
Bs,a

pp (Rn) if and only if it can be represented as

f =
∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

λβ
jmΦβ

jm, x ∈ Rn, (0.7)

the series being unconditionally convergent in S ′(Rn), with
( ∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

2j(s−n/p)p
∣∣∣λβ

jm

∣∣∣
p
)1/p

< ∞.

Again, we have an optimal representation for f ∈ Bs,a
pp (Rn) if in (0.7) we replace

the coefficients λβ
jm by kβ

jm(f) = kβ(2−j, f)(2−jam), j ∈ N0, m ∈ Zn, β ∈ Nn
0 ,

see (0.4).
The paper is organized as follows. In Section 1 we collect fundamentals about

anisotropic Besov spaces and recall the atomic decomposition in such spaces.
Our main results are presented in Section 2, whereas all the proofs (and some
auxiliary assertions) are given in Section 3.
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1. Preliminaries

1.1. General notation. As usual, Rn denotes the n-dimensional real Euclidean
space, N the collection of all natural numbers, N0 = N∪{0}, C stands for com-
plex numbers, and Zn means the lattice of all points in Rn with integer-valued
components. We use the equivalence “∼” in ϕ(x) ∼ ψ(x) always to mean that
there are two positive numbers c1 and c2 such that

c1 ϕ(x) ≤ ψ(x) ≤ c2 ϕ(x)

for all admitted values of x, where ϕ, ψ are non-negative functions. If a ∈ R,
then a+ := max(a, 0). Let α = (α1, . . . , αn) ∈ Nn

0 be a multi-index, then

|α| = α1 + · · ·+ αn, α! = α1! · · ·αn!, α ∈ Nn
0 , (1.1)

the derivatives Dα have the usual meaning, xα means xα = xα1
1 · · · xαn

n for
x = (x1, . . . , xn) ∈ Rn, and αγ = α1γ1 + · · · + αnγn, γ ∈ Rn, stands for the
scalar product in Rn.

Given two quasi-Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the
natural embedding of X in Y is continuous. All unimportant positive constants
will be denoted by c, occasionally with additional subscripts within the same
formula. We shall always deal with function spaces on Rn; so for convenience
we shall usually omit the “Rn” in their notation.

1.2. Anisotropic function spaces. Let a = (a1, . . . , an) be a fixed n-tuple
of positive numbers with a1 + · · · + an = n, then we call a an anisotropy . We
denote amin = min{ai : 1 ≤ i ≤ n} and amax = max{ai : 1 ≤ i ≤ n}. If
a = (1, . . . , 1) we speak about the “isotropic case”.

The action of t ∈ [0,∞) on x ∈ Rn is defined by the formula

tax = (ta1x1, . . . , t
anxn). (1.2)

For t > 0 and s ∈ R we put tsax = (ts)ax. In particular we write t−ax = (t−1)ax
and 2−jax = (2−j)ax.

Definition 1.1. An anisotropic distance function is a continuous function
u : Rn → R with the properties u(x) > 0 if x 6= 0 and u(tax) = tu(x) for all
t > 0 and all x ∈ Rn.

Remark 1.2. It is easy to see that uλ : Rn → R defined by

uλ(x) =

( n∑
i=1

|xi|
λ
ai

)1/λ

(1.3)

is an anisotropic distance function for every 0 < λ < ∞, u2 is usually called an
anisotropic distance from x to the origin, see [27, 4.2.1]. It is well known, see
[10, 1.2.3] and [41, 1.4], that any two anisotropic distance functions u and u′ are
equivalent (in the sense that there exist constants c, c′ > 0 such that cu(x) ≤
u′(x) ≤ c′u(x) for all x ∈ Rn) and that if u is an anisotropic distance function
there exists a constant c > 0 such that u(x+y) ≤ c(u(x)+u(y)) for all x, y ∈ Rn.
We are interested in using smooth anisotropic distance functions. Note that for
appropriate values of λ one can obtain arbitrary (finite) smoothness of the
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function uλ from (1.3), cf. [10, 1.2.4]. A standard method concerning the
construction of anisotropic distance functions in C∞(Rn\{0}) is given in [30].

For x = (x1, . . . , xn) ∈ Rn, x 6= 0, let |x|a be a unique positive number t such
that

x2
1

t2a1
+ · · ·+ x2

n

t2an
= 1 (1.4)

and let |0|a = 0; then | · |a is an anisotropic distance function in C∞(Rn\{0}),
see [41, 1.4/3,8]. Plainly, in the isotropic case |x|a is the Euclidean distance
from x to the origin.

Before introducing the function spaces to be considered we need to recall some
notation. By S we denote the Schwartz space of all complex-valued, infinitely
differentiable and rapidly decreasing functions on Rn and by S ′ the dual space
of all tempered distributions on Rn. Furthermore, Lp with 0 < p ≤ ∞, stands
for the usual quasi-Banach space with respect to the Lebesgue measure quasi-
normed by

‖f | Lp‖ :=

( ∫

Rn

|f(x)|p d x

)1/p

,

with the obvious modification if p = ∞. If ϕ ∈ S, then

ϕ̂(ξ) ≡ (Fϕ)(ξ) := (2π)−n/2

∫

Rn

e−ixξϕ(x) d x, x ∈ Rn, (1.5)

denotes the Fourier transform of ϕ. As usual, F−1ϕ or ϕ∨ stands for the inverse
Fourier transform given by the right-hand side of (1.5) with i in place of −i.
Here xξ denotes the scalar product in Rn. Both F and F−1 are extended to S ′
in standard manner. Let ϕ0 ∈ S be such that

ϕ0(x) = 1 if |x|a ≤ 1 and supp ϕ0 ⊂ {x ∈ Rn : |x|a ≤ 2}, (1.6)

and for each j ∈ N let

ϕa
j (x) := ϕ0(2

−jax)− ϕ0(2
(−j+1)ax), x ∈ Rn. (1.7)

Then the sequence (ϕa
j )
∞
j=0 forms a smooth anisotropic dyadic resolution of

unity, cf. [27, 4.2]. Let f ∈ S ′, then the compact support of ϕa
j f̂ implies by

the Paley–Wiener–Schwartz theorem that (ϕa
j f̂)∨ is an entire analytic function

on Rn.

Definition 1.3. Assume 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, a be an anisotropy,
and (ϕa

j )
∞
j=0 a smooth anisotropic dyadic resolution of unity. Then

Bs,a
pq =

{
f ∈ S ′ :

∥∥f | Bs,a
pq

∥∥
ϕ

=

( ∞∑
j=0

2jsq‖(ϕa
j f̂)∨|Lp‖q

)1/q

< ∞
}

(1.8)

(with the usual modification if q = ∞).
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Note that there is a parallel definition for spaces of type F s,a
pq , 0 < p < ∞,

0 < q ≤ ∞, s ∈ R, a an anisotropy, when interchanging the order of `q- and
Lp- quasi-norms in (1.8). It is obvious, that the quasi-norm (1.8) depends on
the chosen system (ϕa

j )j∈N0 , but not the space Bs,a
pq (in the sense of equivalent

quasi-norms); therefore in the sequel we omit the subscript ϕ in our notation.
It is well known that Bs,a

pq are quasi-Banach spaces (Banach spaces if p ≥ 1 and
q ≥ 1), and, as in the isotropic case, S ↪→ Bs,a

pq ↪→ S ′ for all admissible values
of p, q, s, see [33, 2.3.3]. If s ∈ R and 0 < p < ∞, 0 < q < ∞, then S is dense
in Bs,a

pq , see [41, 3.5] and [10, 1.2.10]. Note that we have indicated the only
(formal) difference from the isotropic counterparts of (1.8) by the additional
superscript at the smooth anisotropic dyadic resolution of unity (ϕa

j )
∞
j=0.

Remark 1.4. A systematic treatment of the theory of (isotropic) Bs
pq (and

F s
pq) spaces can be found in the monographs [33], [34], [35] and [36]; see also [11]

and [26]. A survey on the basic results for the (anisotropic) spaces Bs,a
pq (and

F s,a
pq ) is given in [27, 4.2.1–4.2.4] and [20, 2.1–2.2]. In addition to the literature

mentioned in our introduction, in the sequel we essentially rely on [13] and [12].

For convenience, in the case of p = q we shall stick to the notation

Bs,a
p = Bs,a

pp where 0 < p ≤ ∞, s ∈ R, (1.9)

in the sequel.
To prove our main theorems, we need the following proposition, which is

interesting in itself; thus we state it here separately.

Proposition 1.5. Let 0 < p ≤ ∞, s ∈ R, a be an anisotropy, and (ϕa
j )
∞
j=0 a

smooth anisotropic dyadic resolution of unity. Then for each f ∈ Bs,a
p ,

( ∞∑
j=0

∑

m∈Zn

2j(s−n/p)p|(ϕa
j f̂)∨(2−jam)|p

)1/p

∼ ‖f |Bs,a
p ‖ (1.10)

(with the usual modification if p = ∞), where the equivalence constants are
independent of s and f .

1.3. Decomposition of anisotropic function spaces. Our main results for-
mulated in Section 2 concern sub-atomic and wavelet representations of aniso-
tropic spaces. The arguments given there are essentially based on the (known)
corresponding atomic decompositions. Thus we recall some basic facts about
anisotropic atoms and mainly rely on [13] in that context; see also [12].

Let a = (a1, . . . , an), ν ∈ N0, and m = (m1, . . . , mn) ∈ Zn, then we denote
by Ra

νm the rectangle in Rn centered at 2−νam = (2−νa1m1, . . . , 2
−νanmn) which

has the sides parallel to the axes and side lengths 2−νa1 , . . . , 2−νan , respectively.
Note that Ra

0m is the cube with side length 1. If Ra
νm is such a rectangle in Rn

and c > 0, then cRa
νm is the rectangle in Rn concentric with Ra

νm and with side
lengths c2−νa1 , . . . , c2−νan , respectively.
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Definition 1.6.

(i) Let K ∈ R, c > 1. A function % : Rn → C for which there exist all
derivatives Dγ% if aγ ≤ K (continuous if K ≤ 0) is called an anisotropic
1K-atom if

supp % ⊂ cRa
0m for some m ∈ Zn, (1.11)

|Dγ%(x)| ≤ 1 if aγ ≤ K, γ ∈ Nn
0 , x ∈ Rn. (1.12)

(ii) Let s ∈ R, 0 < p ≤ ∞, K, L ∈ R. A function % : Rn → C for which
there exist all derivatives Dγ% if aγ ≤ K (continuous if K ≤ 0) is called
an anisotropic (s, p)K,L-atom if

supp % ⊂ cRa
νm for some ν ∈ N, m ∈ Zn, (1.13)

|Dγ%(x)| ≤ 2−ν(s−n
p
)+νaγ if aγ ≤ K, γ ∈ Nn

0 , x ∈ Rn, (1.14)∫

Rn

xβ%(x) d x = 0 if aβ ≤ L, β ∈ Nn
0 . (1.15)

If the atom % is located at Ra
νm (that means supp % ⊂ cRa

νm with ν ∈ N0 ,
m ∈ Zn, c > 1), then we denote it by %a

νm.

Remark 1.7. The value of c > 1 in (1.11) and (1.13) is unimportant; it only
indicates that at level ν some controlled overlapping of the supports of %a

νm has
to be allowed. The moment conditions (1.15) can be rewritten as

Dβ%̂(0) = 0 if aβ ≤ L,

which shows that a sufficiently strong decay of %̂ at the origin is required. If
L < 0 then (1.15) should be interpreted in the sense that there are no moment
conditions. The normalizing factors in (1.12), (1.14) imply that there exists
a constant c > 0 such that for all these atoms we have ‖% |Bs,a

pq ‖ ≤ c, see
Theorem 1.9 below. Hence, as in the isotropic case, atoms are normalized
building blocks satisfying certain moment conditions.

This construction generalizes isotropic atoms (cf. [14], [15] and the survey
[16]). It is also slightly related to the concept of anisotropic building blocks
(compactly supported and satisfying some norming and some moment condi-
tions) used in [29] to define anisotropic Hardy spaces and to study the relation
of these spaces to anisotropic Lipschitz and Campanato–Morrey spaces. As al-
ready mentioned, we use the presentation from [13], which itself was motivated
by the isotropic counterparts in [34], [35].

Suitable anisotropic sequence spaces can be introduced as follows.

Definition 1.8. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and a be an anisotropy. Then
bpq is the collection of all sequences λ = {λνm ∈ C : ν ∈ N0, m ∈ Zn} such
that

‖λ|bpq‖ =

( ∞∑
ν=0

( ∑

m∈Zn

|λνm|p
)q/p)1/q

(1.16)

(with the usual modification if p = ∞ and/or q = ∞) is finite.
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Again, note that there is a counterpart for spaces of type F s,a
pq ; the corre-

sponding sequence spaces fa
pq can be introduced similarly, but we do not need

them in the sequel. One can easily check that bpq are quasi-Banach spaces. For
0 < p ≤ ∞ we introduce the abbreviation

σp = n

(
1

p
− 1

)

+

. (1.17)

Theorem 1.9. Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R and let K,L ∈ R be such
that

K ≥ amax + s if s ≥ 0, (1.18)

L ≥ σp − s. (1.19)

Then g ∈ S ′ belongs to Bs,a
pq if and only if it can be represented as

g =
∞∑

ν=0

∑

m∈Zn

λνm%a
νm, (1.20)

the series being unconditionally convergent in S ′, where %a
νm are anisotropic

1K-atoms (ν = 0) or anisotropic (s, p)K,L-atoms (ν ∈ N) and λ ∈ bpq with
λ = {λνm : ν ∈ N0, m ∈ Zn}. Moreover,

inf ‖λ|bpq‖,
where the infimum is taken over all admissible representations (1.20), is an
equivalent quasi-norm in Bs,a

pq .

Remark 1.10. The proof of this theorem – and of its counterpart for spaces
F s,a

pq – is given in [13, Section 5.1]. The convergence in S ′ can be obtained as a
by-product of the proof using the same method as for its isotropic counterpart
in [35, 13.9]. As already mentioned, it generalizes atomic decomposition results
in [14], [15], [35] to anisotropic function spaces.

Our main object is to study the anisotropic counterpart of the results from
[38]; hence we closely follow that presentation, adapting it to our context when
necessary, and keeping similar notation if possible. Let

Rn
++ = {y ∈ Rn : y = (y1, . . . , yn), yj > 0 for all j} (1.21)

and let k be a non-negative C∞-function in Rn with

supp k ⊂ {y ∈ Rn : |y|a < 2J} ∩ Rn
++, (1.22)

for some J ∈ N, and ∑

m∈Zn

k(x−m) = 1, x ∈ Rn. (1.23)

Recall that xβ = xβ1

1 · · · xβn
n where x = (x1, . . . , xn) ∈ Rn and β ∈ Nn

0 , and put

kβ(x) = (2−Jax)βk(x) ≥ 0, x ∈ Rn, β ∈ Nn
0 . (1.24)

Let

λ = {λβ
jm ∈ C : j ∈ N0, m ∈ Zn, β ∈ Nn

0}. (1.25)
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For s ∈ R, 0 < p ≤ ∞, and % ≥ 0, we introduce bs,%
p by

‖λ|bs,%
p ‖ =

( ∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

2%aβp+j(s−n/p)p|λβ
jm|p

)1/p

. (1.26)

Let

ω ∈ S, supp ω ⊂ (−π, π)n, ω(x) = 1 if |x|a ≤ 2, (1.27)

and, taking into account (1.1), let

ωβ(x) =
i|β|2Jaβ

(2π)nβ!
xβω(x) for x ∈ Rn, β ∈ Nn

0 . (1.28)

Finally, let

Ωβ(x) =
∑

m∈Zn

(ωβ)∨(m)e−imx, x ∈ Rn, β ∈ Nn
0 . (1.29)

Definition 1.11. Let ϕ0 be a C∞-function in Rn with

ϕ0(x) = 1 if |x|a ≤ 1, and ϕ0(x) = 0 if |x|a ≥ 3

2
, (1.30)

and let ϕ(x) = ϕ0(x)−ϕ0(2
ax) and β ∈ Nn

0 . Father wavelets Φβ
F (x) and mother

wavelets Φβ
M(x) are given by

(
Φβ

F

)∨
(ξ) = ϕ0(ξ)Ω

β(ξ), ξ ∈ Rn, (1.31)
(
Φβ

M

)∨
(ξ) = ϕ(ξ)Ωβ(ξ), ξ ∈ Rn. (1.32)

Remark 1.12. Our assumption ωβ ∈ S implies that
(
Φβ

F

)∨
,
(
Φβ

M

)∨
, and hence

Φβ
F , Φβ

M , too, are elements of S. Moreover, Φβ
F and Φβ

M are entire analytic func-

tions with vanishing moments of arbitrary order for Φβ
M because (1.30) implies

supp ϕ ⊂ {x ∈ Rn : 1
2
≤ |x|a ≤ 3

2
}, and thus (1.32) yields Dα

(
Φβ

M

)∨
(0) = 0,

α ∈ Nn
0 , which can be rewritten as

∫

Rn

Φβ
M(ξ)ξα d ξ = 0, α ∈ Nn

0 . (1.33)

By construction, we have

Φβ
F (x) =

∑

m∈Zn

(ωβ)∨(m)ϕ̂0(x + m), x ∈ Rn, (1.34)

Φβ
M(x) =

∑

m∈Zn

(ωβ)∨(m)ϕ̂(x + m), x ∈ Rn. (1.35)

For fundamentals about wavelets we refer, for instance, to [24] and [40].
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2. Main results

Let Φβ
F and Φβ

M , β ∈ Nn
0 , be given by Definition 1.11, and introduce for

j ∈ N0, m ∈ Zn, the wavelets

Φβ
jm(x) =

{
Φβ

F (x−m), if j = 0,

Φβ
M(2jax−m), if j ∈ N.

(2.1)

According to the dual pairing (S,S ′) we put, for given f ∈ S ′,
λβ

jm(f) = 2jn(Φβ
jm, f), j ∈ N0, m ∈ Zn, β ∈ Nn

0 . (2.2)

Finally, let

B+,a
p =

⋃
s>0

Bs,a
p , 0 < p ≤ ∞.

Recall our notation (1.17) and (1.9).

Theorem 2.1. Let 0 < p ≤ ∞, s > σp, % ≥ 0, and a be an anisotropy.

(i) Then f ∈ S ′ is an element of Bs,a
p if and only if it can be represented as

f =
∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

λβ
jm kβ(2jax−m), x ∈ Rn, (2.3)

with ‖λ|bs,%
p ‖ < ∞, the series being absolutely convergent in Lmax(1,p).

Moreover,
‖f |Bs,a

p ‖ ∼ inf ‖λ|bs,%
p ‖, (2.4)

where the infimum is taken over all admissible representations (2.3).

(ii) Let λβ
jm(f) be given by (2.2). Then f ∈ B+,a

p can be represented as

f =
∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

λβ
jm(f) kβ(2jax−m), (2.5)

the series being absolutely convergent in Lmax(1,p), and, in addition, f ∈
Bs,a

p if and only if ‖λ(f)|bs,%
p ‖ < ∞.

(iii) Let f ∈ Bs,a
p , then (2.5) is an optimal representation, i.e.,

‖f |Bs,a
p ‖ ∼ ‖λ(f)|bs,%

p ‖, (2.6)

where the equivalence constants are independent of f .

Remark 2.2. The isotropic version of this result can be found in [38] which
in turn is a specification and modification of [36, Theorem 2.9], where further
references and approaches are discussed. Note that (i) represents the so-called
sub-atomic (or quarkonial) decomposition in Bs,a

p ; we refer also to [13, Theo-
rem 3.7].

As already mentioned in the introduction, we study the “dual” situation, i.e.,
spaces Bs,a

p with s < 0, too. For that purpose, denote the counterpart of B+,a
p

by

B−,a
p =

⋃
s<0

Bs,a
p , 0 < p ≤ ∞. (2.7)
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Let k and kβ be given by (1.23) and (1.24), and consider the corresponding
local means,

kβ(t, f)(x) =

∫

Rn

kβ(y)f(x + tay) d y, t > 0, x ∈ Rn, (2.8)

where x + tay = (x1 + ta1y1, . . . , xn + tanyn), and put

kβ
jm(f) = kβ(2−j, f)(2−jam), j ∈ N0, m ∈ Zn. (2.9)

We use the norm given by (1.26) with % = 0, denoted simply by bs
p = bs,0

p for

convenience. Let k(f) = {kβ
jm(f) : j ∈ N0, m ∈ Zn, β ∈ Nn

0}, hence

‖k(f)|bs
p‖ =

( ∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

2j(s−n/p)p|kβ
jm(f)|p

) 1
p

. (2.10)

Recall our notation (2.1).

Theorem 2.3. Let 1 < p ≤ ∞, s < 0.

(i) Then f ∈ S ′ is an element of Bs,a
p if and only if it can be represented as

f =
∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

λβ
jmΦβ

jm, x ∈ Rn, (2.11)

with ‖λ|bs
p‖ < ∞, the series being unconditionally convergent in S ′.

Moreover,

‖f |Bs,a
p ‖ ∼ inf ‖λ|bs

p‖, (2.12)

where the infimum is taken over all admissible representations (2.11).
(ii) Any f ∈ B−,a

p can be represented as

f =
∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

kβ
jm(f) Φβ

jm, (2.13)

the series being unconditionally convergent in S ′, and, in addition, f ∈
Bs,a

p if and only if ‖k(f)|bs
p‖ < ∞.

(iii) Let f ∈ Bs,a
p , then (2.13) is an optimal representation, i.e.,

‖f |Bs,a
p ‖ ∼ ‖k(f)|bs

p‖, (2.14)

where the equivalence constants are independent of f .

Remark 2.4. Parallel to Remark 2.2 we refer to the isotropic version of the
above result in [38] with further discussions (about local means) in [34] and [36].
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3. Proofs

We now collect all proofs and make use of the notation and concepts intro-
duced before.

Proof of Proposition 1.5. We want to show that
( ∞∑

j=0

∑

m∈Zn

2j(s−n/p)p|(ϕa
j f̂)∨(2−jam)|p

)1/p

∼ ‖f |Bs,a
p ‖. (3.1)

Taking into account definition (1.8),

‖f |Bs,a
p ‖ =

( ∞∑
j=0

2jsp‖(ϕa
j f̂)∨|Lp‖p

)1/p

, (3.2)

the assertion reduces to
∑

m∈Zn

|(ϕa
j f̂)∨(2−jam)|p ∼ 2jn

∥∥∥(ϕa
j f̂)∨|Lp

∥∥∥
p

(3.3)

with equivalence constants independent of j ∈ N0 and f ∈ S ′. Here we use
an isotropic result given in [33, Section 1.3.3]: adapted to our above notation,
it states that for 0 < p ≤ ∞ there exist some numbers ν0 > 0 and c2 > c1 > 0
such that for all ν ≥ ν0, and all ϕ ∈ S with suppFϕ ⊂ Ω there holds

c1

∑

m∈Zn

∣∣ϕ (
2−νm

)∣∣p ≤ 2νn ‖ϕ|Lp‖p ≤ c2

∑

m∈Zn

∣∣ϕ (
2−νm

)∣∣p , (3.4)

where Ω ⊂ Rn is compact. (This should be properly modified when p = ∞.)
In addition, it is known, cf. [33, Remark 1.3.3] or [32, 1.3.5], that if for some
suitably chosen y0 ∈ Rn and b > 0,

Ω ⊂ {
y ∈ Rn : |yj − y0

j | ≤ b, j = 1, . . . , n
}

, (3.5)

then ν0 can be taken such that 2ν0 ∼ b. Thus, with ϕ = (ϕj f̂)∨ this implies

b ∼ 2j in the isotropic case, i.e., (3.4) with ϕ = (ϕj f̂)∨ and ν = j yields the
desired (isotropic) result. In order to prove (3.3) we slightly modify the above
argument: let ψ ∈ S with

suppFψ ⊂ Ωa ⊂ {
y ∈ Rn : |yj − y1

j | ≤ baj , j = 1, . . . , n
}

,

for suitably chosen y1 ∈ Rn and b > 0, then we define

ϕ(tx) := ψ (tax) , t > 0, x ∈ Rn. (3.6)

Obviously, ϕ ∈ S, Fϕ(tξ) = Fψ (taξ), t > 0, ξ ∈ Rn, and consequently

suppFϕ ⊂ {
y ∈ Rn : |yj − y0

j | ≤ b, j = 1, . . . , n
}

(with y0 = b1−ay1). Hence the application of (3.4) and (3.6) leads to

c1

∑

m∈Zn

∣∣ψ (
2−νam

)∣∣p ≤ 2νn ‖ϕ|Lp‖p ≤ c2

∑

m∈Zn

∣∣ψ (
2−νam

)∣∣p . (3.7)
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On the other hand, with a1 + · · ·+ an = n,

‖ϕ|Lp‖p =

∫

Rn

|ϕ(x)|p d x = tn
∫

Rn

|ϕ(ty)|p d y

= tn
∫

Rn

|ψ(tay)|p d y =

∫

Rn

|ψ(z)|p d z = ‖ψ|Lp‖p . (3.8)

Finally, (3.7) and (3.8) with ψ = (ϕa
j f̂)∨, b ∼ 2j and ν = j finish the proof. ¤

Proof of Theorem 2.1.
Step 1. We assume that f is given by (2.3) with ‖λ|bs,%

p ‖ < ∞ for some
% ≥ 0. We want to show that f ∈ Bs,a

p and that there exists a constant c > 0
such that

‖f |Bs,a
p ‖ ≤ c‖λ|bs,%

p ‖. (3.9)

We rewrite (2.3) as

f =
∑

β

fβ with fβ =
∑
j,m

λβ
j,mkβ(2jax−m). (3.10)

By definition (1.22), the support of k is contained in an open ball centered at
the origin and of radius 2J−ε for some ε > 0. Using the atomic decomposition
for the spaces Bs,a

p with 0 < p ≤ ∞ and s > σp described in Theorem 1.9, we
find by Definition 1.6 that

{2εaβ2−j(s−n/p)kβ(2jax−m) : j ∈ N0, m ∈ Zn}, β ∈ Nn
0 , (3.11)

are admissible systems of anisotropic atoms, and hence fβ ∈ Bs,a
p for all β ∈ Nn

0 ,
with

∥∥fβ|Bs,a
p

∥∥ ≤ c 2−εaβ

( ∞∑
j=0

∑

m∈Zn

2j(s−n/p)p|λβ
jm|p

)1/p

, (3.12)

and c independent of β ∈ Nn
0 . Summation over β proves f ∈ Bs,a

p and (3.9).
The absolute convergence follows in the same way as discussed in [38] and [36,
1.4, 2.7].

Step 2. Let f ∈ Bs,a
p with 0 < p ≤ ∞ and s > σp; we shall show that we

can decompose it as (2.5). Note that this covers then (i) as well.
Let Ra

j , j ∈ N0, be a rectangle in Rn centered at the origin with side-length

2π2ja where 2ja = (2ja1 , . . . , 2jan). Let ϕa
j be given by (1.7), that is, with

supp ϕa
j ⊂ Ra

j . Now we can write that

f̂(x) =
∞∑

j=0

ϕa
j (x)f̂(x), x ∈ Rn,

and expand ϕa
j f̂ in Ra

j into a Fourier series,

(ϕa
j f̂)(ξ) =

∑

m∈Zn

bjm exp(−i2−jamξ), ξ ∈ Ra
j . (3.13)
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We calculate bjm, j ∈ N0, m ∈ Zn, by

(ϕa
j f̂)∨(2−jam) = (2π)−

n
2

∫

Ra
j

(ϕa
j f̂)(y) exp(i2−jamy) d y

= (2π)−
n
2

∑

k∈Zn

bjk

∫

Ra
j

exp
(
i2−ja(m− k)y

)
d y

= (2π)−
n
2

∑

k∈Zn

bjk

∫

Ra
j

exp

(
i

n∑

l=1

2−jal(ml − kl)yl

)
d y.

Substitute in the last formula ξl = 2−jalyl, then d ξ = 2−j(a1+···+an) d y =
2−jn d y, and we arrive at

(ϕa
j f̂)∨(2−jam) = 2jn (2π)−

n
2

∑

k∈Zn

bjk

∫

Qπ

ei(m−k)ξ d ξ, (3.14)

where Qπ is the cube of side-length 2π in each direction. For the last term in
(3.14) we thus have

∫

Qπ

ei(m−k)ξ d ξ =

{
(2π)n, m = k,

0, m 6= k,

which by (3.14) finally leads to

bjm = (2π)−
n
2 2−jn (ϕa

j f̂)∨(2−jam)

= (2π)−n 2−jn

∫

Ra
j

(ϕa
j f̂)(ξ) exp(i2−jamξ) d ξ. (3.15)

By Proposition 1.5 and (3.15) we thus have for 0 < p ≤ ∞,

‖f |Bs,a
p ‖ ∼

( ∞∑
j=0

2j(s−n/p)p 2jnp
∑

m∈Zn

|bjm|p
)1/p

, (3.16)

(with the usual modification if p =∞). Let ω be given by (1.27) and ωj(x) =
ω(2−jax); then ωj has a compact support in Ra

j and it follows by (3.13) that

(ϕa
j f̂)∨(x) =

∑

m∈Zn

bjm ω∨j (x− 2−jam)

= 2jn
∑

m∈Zn

bjm ω∨(2jax−m), x ∈ Rn. (3.17)

Let k be given by (1.22), (1.23). We expand the analytic function ω∨(2jax−m)
at 2−jal, l ∈ Zn, and obtain

k(2jax− l)ω∨(2jax−m) =
∑

β∈Nn
0

2jaβ

β!
(Dβω∨)(l −m)(x− 2−jal)βk(2jax− l)
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=
∑

β∈Nn
0

2jaβ

β!
(Dβω∨)(l −m)2−jaβ(2jax− l)βk(2jax− l)

=
∑

β∈Nn
0

2Jaβ

β!
(Dβω∨)(l −m)kβ(2jax− l), (3.18)

where we applied (1.24) to the last line. By (1.23), (3.17) and (3.18) we obtain

(ϕa
j f̂)∨(x) =

∑

m∈Zn

2jnbjm

∑

l∈Zn

k(2jax− l)ω∨(2jax−m)

=
∑

β∈Nn
0

∑

l∈Zn

kβ(2jax− l)
∑

m∈Zn

2jnbjm
2Jaβ

β!
(Dβω∨)(l −m).

Hence, as
(
ϕa

j

)
j∈N0

is a resolution of unity,

f =
∞∑

j=0

∑

β∈Nn
0

∑

l∈Zn

kβ(2jax− l) λβ
jl (3.19)

with

λβ
jl =

∑

m∈Zn

2jn bjm
2Jaβ

β!
(Dβω∨)(l −m). (3.20)

We first check that λβ
jl are optimal coefficients, and verify their representation

(2.2) afterwards. We thus claim that for % ≥ 0 we can find a constant c such

that with λ = {λβ
jl : β ∈ Nn

0 , j ∈ N0, l ∈ Zn} given by (3.20),

‖λ|bs,%
p ‖ ≤ c‖f |Bs,a

p ‖ for all f ∈ Bs,a
p . (3.21)

We use an isotropic result [37, 3.1.1], which states that for any ε > 0 there are
constants c > 0 and cε > 0 such that

|Dβω∨(x)| ≤ cε 2c|β| (1 + |x|2)−ε for x ∈ Rn, β ∈ Nn
0 , (3.22)

where c is independent of x, ε, and β, and cε independent of x, β. Furthermore,
note that there are constants c2 > c1 > 0 such that for all ξ ∈ Rn,

c1 (1 + |ξ|)1/amax ≤ 1 + |ξ|a ≤ c2 (1 + |ξ|)1/amin ,

cf. [23]. On the other hand, we have amin|β| ≤ aβ ≤ amax|β|, thus (3.22) implies

|Dβω∨(x)| ≤ c′ε 2c′aβ (1 + |x|a)−ε for x ∈ Rn, β ∈ Nn
0 . (3.23)

Let p ≥ 1. We interpret λβ
jl as a convolution in `p: let l ∈ Zn and

al =
∑

m∈Zn

cmdl−m,

then ‖al|`p‖ ≤ ‖dk|`1‖‖cm|`p‖. Put dk =
2Jaβ

β!
(Dβω∨)(k), then (3.23) leads to

‖dk|`1‖ ≤ Cε
2(J+c′)aβ

β!
≤ c(%) 2−(%+1)aβ,
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if ε > 0 is chosen appropriately. The last inequality results from an estimate
of β! = β1! · · · βn! by Stirling’s formula, n! = Γ(n + 1) ∼ √

n
(

n
e

)n
, n ∈ N.

Consequently, (3.20) with al = λβ
jl and cm = 2jn bjm implies, that for % ≥ 0

there is a constant c(%) such that
( ∑

l∈Zn

|λβ
jl|p

)1/p

≤ c(%)2−(%+1)aβ

( ∑

l∈Zn

|2jnbjl|p
)1/p

. (3.24)

If p < 1, then one uses the p-triangle inequality. Now (3.21) follows from (3.24)
and (3.16).

Step 3. We need to prove that λβ
jl can be represented as (2.2). By (3.15)

and the properties of the Fourier transform we have

2jnbjm = (2π)−n

∫

Rn

(ϕa
j )
∨(2−jam− y)f(y) d y, j ∈ N0, (3.25)

where ϕ is given by Definition 1.11. Now ϕa
j (x) = ϕ(2−jax) leads to

2jnbjm = (2π)−n2jn

∫

Rn

ϕ∨(m− 2−jay)f(y) d y, j ∈ N. (3.26)

Recall that (Dβω∨)(ξ) = i|β|(xβω(x))∨(ξ). Thus (1.28) implies for j ∈ N,

λβ
jl =

∑

m∈Zn

2jnbjm
2Jaβ

β!
(Dβω∨)(l −m)

=
∑

m∈Zn

2jn bjm
2Jaβ

β!
i|β| (xβω(x))∨(l −m)

=
∑

m∈Zn

2jn bjm
2Jaβ

β!
i|β|

(2π)n · β!

i|β|2Jaβ
(ωβ)∨(l −m)

= 2jn

∫

Rn

f(y)
∑

m∈Zn

(ωβ)∨(l −m) ϕ∨(m− 2jay) d y. (3.27)

Replacing l −m by m and using ϕ∨(z) = ϕ̂(−z) we get

λβ
jl = 2jn

∫

Rn

f(y)
∑

m∈Zn

(ωβ)∨(m)ϕ̂(2jay − l + m) d y=2jn(Φβ
jl, f), j∈N, (3.28)

where we used (1.35) and (2.1). The argument for j = 0 works analogously, so
the proof is finished. ¤

We begin the proof of Theorem 2.3 with some preparation. Let l ∈ Zn,
K, L ∈ R, and al ∈ CK be anisotropic atoms given by Definition 1.6 with
supp al ⊂ {y ∈ Rn : |y|a ≤ c} for some appropriate c > 0. We know by (1.15)
that ∫

Rn

xβal(x) d x = 0 if aβ ≤ L. (3.29)
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Let µ = (µl)l∈Zn denote the decay factors,

|Dγal(x)| ≤ µl, aγ ≤ K, x ∈ Rn. (3.30)

We define now (special) anisotropic molecules

b(x) =
∑

l∈Zn

al(x− l), x ∈ Rn, (3.31)

and

bj,m(x) = 2−j(s−n
p
) b(2jax−m), j ∈ N0, m ∈ Zn, x ∈ Rn. (3.32)

Remark 3.1. The normalized (isotropic) molecules share the decay proper-
ties and moment conditions with the normalized (isotropic) atoms, but lack the
assumption concerning a compact support, see (the isotropic counterparts of)
(1.11), (1.13). This assumption is replaced by sufficiently strong decay assump-
tion. In the isotropic case the counterpart of Theorem 1.9 remains valid if one
uses molecular decompositions instead of atomic ones, cf. [16, Section 5]. There
are also anisotropic versions of that result in the literature, see [7]. However,
because of the special property of building blocks we shall use, we do not need
this assertion in its full generality, but only a special case which is simpler to
prove. Hence we consider this case below separately and give its direct proof.

Proposition 3.2. Let s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞, and µ = (µl)l∈Zn ∈
`min(1,p). Let f ∈ S ′ be given by

f =
∞∑

j=0

∑

m∈Zn

λj,m bj,m, (3.33)

where λ = {λj,m ∈ C : j ∈ N0, m ∈ Zn}, λ ∈ bpq, and bj,m, j ∈ N0, m ∈ Zn,
are given by (3.32). Then

‖f |Bs,a
pq ‖ ≤ c ‖λ|bpq‖. (3.34)

Proof. We owe the idea of this proof to some discussions with Prof. H. Triebel.
By definition and (3.31), (3.32),

f =
∞∑

j=0

∑

m∈Zn

λj,m bj,m

=
∞∑

j=0

2−j(s−n
p
)

∑

m∈Zn

λj,m b(2jax−m)

=
∞∑

j=0

2−j(s−n
p
)

∑

m∈Zn

λj,m

∑

l∈Zn

al(2
jax−m− l)

=
∞∑

j=0

2−j(s−n
p
)
∑

k∈Zn

∑

l∈Zn

λj,k−l al(2
jax− k)

=
∞∑

j=0

2−j(s−n
p
)
∑

k∈Zn

γj,k dj,k(x), (3.35)
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where we have put

γj,k =
∑

l∈Zn

µl|λj,k−l| > 0, j ∈ N0, k ∈ Zn,

and

dj,k(x) = γ−1
j,k

∑

l∈Zn

λj,k−l al(2
jax− k), j ∈ N0, k ∈ Zn, x ∈ Rn. (3.36)

We claim that 2−j(s−n
p
) dj,k are anisotropic atoms according to Definition 1.6.

Assume first j = 0, then

|d0,k(x)| ≤ γ−1
0,k

∑

l∈Zn

|λ0,k−l| · µl = 1,

and likewise for all derivatives Dγd0,k, γ ∈ Nn
0 , aγ ≤ K, according to (3.30). In

the case of j ∈ N and γ ∈ Nn
0 we conclude similarly that∣∣∣Dγ

(
2−j(s−n

p
) dj,k(x)

)∣∣∣ ≤ 2−j(s−n
p
) γ−1

j,k

∑

l∈Zn

|λj,k−l|
∣∣(Dγal) (2jax− k)

∣∣ 2jaγ

≤ 2−j(s−n
p
)+jaγ γ−1

j,k

∑

l∈Zn

|λj,k−l| µl = 2−j(s−n
p
)+jaγ,

where aγ ≤ K. The corresponding moment conditions (1.15) are satisfied
by (3.29), and condition (1.13) is guaranteed by construction (3.36). Hence

2−j(s−n
p
) dj,k are anisotropic atoms and Theorem 1.9 gives the anisotropic atomic

decomposition

f =
∞∑

j=0

∑

k∈Zn

γj,k 2−j(s−n
p
) dj,k with

∥∥f |Bs,a
pq

∥∥ ≤ c ‖γ|bpq‖ .

It remains to estimate ‖γ|bpq‖ by ‖λ|bpq‖, where the assumption on the decay
factors, i.e., µ ∈ `min(p,1) is now involved. We first assume that p ≥ 1, then
interpret γj,k as a convolution in `p and obtain

( ∑

k∈Zn

|γj,k|p
) 1

p

≤
( ∑

l∈Zn

µl

) ( ∑

m∈Zn

|λj,m|p
) 1

p

= ‖µ|`1‖
( ∑

m∈Zn

|λj,m|p
) 1

p

.

If 0 < p < 1, we have by the p-triangle inequality∑

k∈Zn

|γj,k|p ≤
∑

k,l∈Zn

µp
l |λj,k−l|p ≤ ‖µ|`p‖p

∑

m∈Zn

|λj,m|p.

This results in
‖γ|bpq‖ ≤ c

∥∥µ|`min(1,p)

∥∥ ‖λ|bpq‖
as desired, i.e.,

∥∥f |Bs,a
pq

∥∥ ≤ c ‖γ|bpq‖ ≤ c′
∥∥µ|`min(1,p)

∥∥ ‖λ|bpq‖. ¤
Proof of Theorem 2.3.

Step 1. We assume that f is given by (2.11) with ‖λ|bs
p‖ < ∞. We want to

show that f ∈ Bs,a
p and that there exists a constant c > 0 such that

‖f |Bs,a
p ‖ ≤ c‖λ|bs

p‖. (3.37)
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Recall our particular construction (1.34), (1.35), (2.1) with ϕ ∈ S given by
Definition 1.11. Then for each β ∈ Nn

0 ,

{2εaβ2−j(s−n
p
)Φ̃β

jm : j ∈ N0, m ∈ Zn} (3.38)

where Φ̃β
jm =

∑
l∈Zn k(x− l)Φβ

jm, are admissible anisotropic special molecules in
Bs,a

p in the sense of (3.29)–(3.32), satisfying, in addition, the decay assumption
µ ∈ `min(p,1). Thus we can apply Proposition 3.2 with q = p and then (3.37)
follows in the same way as in Step 1 in the proof of Theorem 2.1. This covers
the unconditional convergence, too.

Step 2. Let k(f) = {kβ
jm(f) : β ∈ Nn

0 , j ∈ N0, m ∈ Zn} be given by (2.8),
(2.9), i.e.,

kβ
jm(f) = kβ

(
2−j, f

) (
2−jam

)
=

∫

Rn

kβ(y) f
(
2−jam + 2−jay

)
d y

= 2jn

∫

Rn

kβ(2jay −m)f(y) d y = 2jn
(
kβ(2ja · −m), f

)
. (3.39)

We are to show that there is some c > 0 such that for all f ∈ Bs,a
p ,

‖k(f)|bs
p‖ ≤ c

∥∥f |Bs,a
p

∥∥ . (3.40)

Using (2.10) with % = 0 (recall our convention bs
p = bs,0

p ), (3.39) can be rewritten
as

∥∥k(f)|bs
p

∥∥ =

∥∥∥∥
∑

β,j,m

2j(s−n
p
)kβ

jm

∣∣∣`p

∥∥∥∥

=

∥∥∥∥
∑

β,j,m

2j(s−n
p
)+jn

(
kβ(2ja · −m), f

) ∣∣∣`p

∥∥∥∥. (3.41)

By duality, `p = (`p′)
′ with 1

p
+ 1

p′ = 1 for 1 < p ≤ ∞. Taking additionally into

account that 2j(s−n
p
)+jn = 2

j(s+ n
p′ ), we are led to

∥∥k(f)|bs
p

∥∥ =

∥∥∥∥
∑

β,j,m

2
j(s+ n

p′ )
(
kβ(2ja · −m), f

) ∣∣∣`p

∥∥∥∥

= supλ|b−s
p′
≤1

∑

β,j,m

λβ
jm

(
kβ(2ja · −m), f

)
, (3.42)

where the supremum in (3.42) is taken over all sequences λ = {λβ
jm : β ∈

Nn
0 , j ∈ N0, m ∈ Zn} such that the right-hand side of (3.42) is non-negative,

and ‖λ|b−s
p′ ‖ ≤ 1. Consequently,

∥∥k(f)|bs
p

∥∥ ≤ supλ|b−s
p′
≤1

|(g, f)|, where g(x) =
∑

β,j,m

λβ
jmkβ(2jax−m). (3.43)
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Note that our assumptions s < 0 and 1 < p ≤ ∞ imply −s > 0 = σp′ such that
Theorem 2.1 can be applied to g ∈ B−s,a

p′ . Thus we arrive at
∥∥k(f)|bs

p

∥∥ ≤ sup
{|(g, f)| : g ∈ B−s,a

p′ , ‖g|B−s,a
p′ ‖ ≤ c

}
, (3.44)

where c > 0 is independent of g ∈ B−s,a
p′ . Now we use the duality

(B−σ,a
p′ (Rn))′ = Bσ,a

p (Rn), 1 ≤ p′ < ∞, σ ∈ R, (3.45)

see [39], and obtain ∥∥k(f)|bs
p

∥∥ ≤ c′
∥∥f |Bs,a

p

∥∥ . (3.46)

Step 3. Let 1 < p ≤ ∞, s < 0 and f ∈ Bs,a
p . It is sufficient to verify (2.13)

in order to complete the proof. Let ψ ∈ S be arbitrary, then Theorem 2.1, in
particular (2.5) with (2.2), yields

ψ =
∑

β,j,m

2jn(Φβ
jm, ψ) kβ(2jax−m) (3.47)

with unconditional convergence in any space Bσ,a
p′ with σ > 0. Hence, by (3.39),

(f, ψ) =

( ∑

β,j,m

2jn
(
f, kβ(2ja · −m)

)
Φβ

jm, ψ

)
=

( ∑

β,j,m

kβ
jm(f)Φβ

jm, ψ

)
, (3.48)

that is
f =

∑

β,j,m

kβ
jm(f) Φβ

jm

in S ′. By (i) and our preceding remarks it follows that (2.13) converges uncon-
ditionally in S ′. ¤
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