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Abstract. We extend the concept of R-subweakly commuting maps due to
Shahzad [21] to the case of non-starshaped domains and obtain common
fixed point results for this class of maps on non-starshaped domains in the
setup of Fréchet spaces. As applications, we establish Brosowski–Meinardus
type approximation theorems. Our results unify and extend the results of
Al-Thagafi, Dotson, Habiniak, Jungck and Sessa, Sahab, Khan and Sessa
and Shahzad.
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1. Introduction

Using fixed point theory, Brosowski [5], and Meinardus [13] established some
interesting results on invariant approximation in the setting of normed spaces.
Habiniak [8], Hicks and Humphries [9], Jungck and Sessa [11], Sahab et. al. [17],
Sahney et. al. [18] and Singh [23] also obtained some results in approximation
theory in the setting of normed spaces. Their work was extended, generalized
and unified by many authors; for example, see [1], [3], [12], [19]–[22]. For any
map I : M → X and u ∈ X, Al-Thagafi [1] introduced the following sets:

CI
M(u) = {x ∈ M : Ix ∈ PM(u)}, DI

M(u) = PM(u) ∩ CI
M(u),

where PM(u) = {x ∈ M : d(x, u) = d(u,M) = infy∈M d(u, y)}.
Theorem 1.1 ([1], Theorem 3.2). Let I and T be selfmaps of a normed

space E with u ∈ F (I)∩F (T ) and M ⊂ E with T (∂M ∩M) ⊂ M. Suppose that
D = D′

M(u) is closed and q-starshaped with q ∈ F (I). Let T be I-nonexpansive
on D ∪ {u} with cl(T (D)) compact, I be continuous, linear, ID = D, and I
commutes with T on D. Then PM(u) ∩ F (T ) ∩ F (I) 6= ∅.

Recently, Hussain and Khan [10] have proved the following more general
invariant approximation result for 1-subcommutative maps extending Theorem
1.1 to locally convex spaces.

Theorem 1.2 ([10], Theorem 3.3). Let T and I be selfmaps on a Hausdorff
locally convex space (X, τ), M a subset of X such that T (∂M) ⊆ M, and u ∈
F (T ) ∩ F (I). Suppose that D = D′

M(u) is nonempty and q-starshaped with
q ∈ F (I), T is I-nonexpansive on D ∪ {u}, I is nonexpansive on PM(u) ∪ {u}
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and affine on D. If I(D) = D and T and I are 1-subcommuting maps, then
PM(u) ∩ F (T ) ∩ F (I) 6= ∅ provided one of the following conditions holds:

(i) D is τ -sequentially compact;
(ii) T is a compact map;
(iii) D is weakly compact in (X, τ), I is weakly continuous and I − T is

demiclosed at 0;
(iv) D is weakly compact in an Opial space (X, τ) and I is weakly continuous.

The aim of this paper is to prove the results extending the above-mentioned
invariant approximation results. To do this, we introduce the concept of R-
subweakly commuting maps defined on a non-starshaped domain. Then we
establish general common fixed point theorems for R-subweakly commuting
maps on non-starshaped domains in Fréchet spaces. We apply the theorems to
derive some results on the existence of common fixed points from the set of best
approximations. Examples are presented, which show that certain hypotheses
of our results cannot be relaxed. Our results, on the one hand, unify the work
of Brosowski [5], Dotson [6], [7], Habiniak [8], Khan et. al. [12], Meinardus
[13] and, on the other hand, provide generalizations of the recent works of Al-
Thagafi [1], Baskaran and Subrahmanyam [3], Jungck and Sessa [11], Sahab,
Khan and Sessa [17], Sahney et. al. [18] and Shahzad [19]–[21].

2. Preliminaries

Let (X, d) be a metric linear space and M a nonempty subset of X. A metric d
on a linear space X is called translation invariant if d(x+z, y+z) = d(x, y) for all
x, y, z ∈ X or equivalently, d(x, y) = d(x− y, 0). Let I : M → X be a mapping.
A mapping T : M → X is called I-Lipschitz if, for any x, y ∈ M, there exists
k ≥ 0 such that d(Tx, Ty) ≤ kd(Ix, Iy). If k < 1 (respectively, k = 1), then T
is called I-contraction (respectively, I-nonexpansive). Two selfmaps I and T on
M are said to be R-weakly commuting [15], [20] if and only if d(ITx, TIx) ≤
Rd(Tx, Ix) for all x ∈ M and some R > 0. Suppose M is q-starshaped with
q ∈ F (I) and is both T - and I-invariant. Then following Shahzad [21], we say
that T and I are called R-subweakly commuting on M if there exists a real
number R > 0 such that d(ITx, TIx) ≤ Rd((kTx+(1−k)q), Ix) for all x ∈ M ,
k ∈ [0, 1]. If R = 1, then the maps are called 1-subweakly commuting. Clearly,
R-subweakly commuting maps are R-subcommuting. The class of R-subweakly
commuting maps contains properly the class of commuting maps [21].

Let M be a subset of a Fréchet space (X, d) and F = {fa}a∈M be a family of
functions from [0, 1] into M such that fx(1) = x for each x ∈ M. The family F
is said to be contractive [4], [7] if there exists a function φ : (0, 1) → (0, 1) such
that for all x, y ∈ M and all t ∈ (0, 1), we have d(fx(t), fy(t)) ≤ φ(t)d(x, y).
The family F is said to be jointly (weakly) continuous if t → t0 in [0, 1] and

x → x0 (x
ω→ x0) in M, then fx(t) → fx0(t0) (fx(t)

ω→ fx0(t0)) in M ; here →
and

ω→ denote strong and weak convergence, respectively. We observe that if M
is q-starshaped and fx(t) = (1− t)q + tx (x ∈ M ; t ∈ (0, 1)), then F = {fx}x∈M

is a contractive jointly continuous and a jointly weakly continuous family with
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φ(t) = t provided d is translation invariant and satisfies d(αx, αy) ≤ αd(x, y),
for each α with 0 < α < 1 and x, y ∈ X. Thus the class of subsets of X with the
property of contractiveness and joint continuity contains the class of starshaped
sets, which in turn contains the class of convex sets (see [2], [4], [7]).

Another extension of the concept of starshapedness was used by Naimpally
et. al. in the result [14, Theorem 1.8(i)].

If for a selfmap T on M, there exist q ∈ M and a fixed sequence of real
numbers kn (0 < kn < 1) converging to 1, such that (1 − kn)q + knTx ∈ M
for each x ∈ M and n ∈ N, then the set M is said to have property (N).
A mapping I is said to have property (C) on a set M with property (N) if
I((1 − kn)q + knTx) = (1 − kn)Iq + knITx for each x ∈ M and n ∈ N. Each
T -invariant q-starshaped set has property (N) but not conversely in general (see
Example 2.1). Each affine map on a q-starshaped set M satisfies condition (C).
We extend the concept of R-subweakly commuting maps to a non-starshaped
domain in the following way:

Let I and T be selfmaps of the set M and F be the family of functions as
defined above. Then I and T are said to be R-subweakly commuting maps
provided there exists a real number R > 0 such that

d(ITx, TIx)) ≤ Rd(fTx(k), Ix) (1)

for each k ∈ [0, 1] and x ∈ M.
Suppose that M is q-starshaped with q ∈ F (I), fx(k) = (1−k)q+kx, (x ∈ M ;

k ∈ [0, 1]), and M is both T - and I-invariant, then (1) reduces to the original
concept of R-subweak commutativity of T and I.

The maps I and T are called R-subweakly commuting maps on a set M
satisfying property (N) with q ∈ F (I) provided there exists a real number
R > 0 such that

d(ITx, TIx)) ≤ Rd((1− kn)q + knTx, Ix)

for each x ∈ M and the sequence {kn} is as in the definition of property (N)
of M.

Example 2.1. Consider X = <2 and M = {(0, y) : y ∈ [−1, 1]} ∪{(
1− 1

n+1
, 0

)
: n∈N

}∪{(1, 0)} with the metric induced by the norm ‖(x, y)‖ =
|x|+ |y|. Define T on M as follows:

T (0, y) = (0,−y), T

(
1− 1

n + 1
, 0

)
=

(
0, 1− 1

n + 1

)
, T (1, 0) = (0, 1).

Clearly, M is not starshaped [14] but M has the property (N) for q = (0, 0) and
kn = 1− 1

n+1
, ∀ n ∈ N.

Define I(0, y) = I
(
1− 1

n+1
, 0

)
= (0, 0), ∀ y ∈ [−1, 1] and n ∈ N and I(1, 0) =

(1, 0). Then |TIx − ITx| = 0 or 1. Thus |TIx − ITx| ≤ R|knTx − Ix| for all
x in M, for each R ≥ 1 and q = (0, 0) ∈ F (I). Thus I and T are R-subweakly
commuting but not commuting on M.
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A Fréchet space X satisfies Opial’s condition if for every sequence {xn} in X
weakly convergent to x ∈ X, the inequality

lim inf d(xn, x) < lim inf d(xn, y) holds for all y 6= x.

The map T : M → X is said to be (i) demiclosed at 0 if for every sequence
{xn} in M converging weakly to x and {Txn} converging strongly to 0, we have
Tx = 0 , (ii) condensing if T is continuous and for each nonempty bounded
subset B of M with α(B) > 0, T (B) is bounded and α(T (B)) < α(B), where
α(B) = {r > 0 : B can be covered by a finite number of sets of diameter ≤ r},
(iii) hemicompact if each sequence {xn} in M has a convergent subsequence
whenever d(xn, Txn) → 0 as n → ∞ (iv) demicompact if T is continuous and
every bounded sequence {xn} in M, such that {Txn − xn} is convergent in
X, has a convergent subsequence (v) completely continuous if {xn} converges
weakly to x implies that {Txn} converges to Tx.

3. Common Fixed Point Results

The following result is a consequence of Theorem 1 of Pant [15] which will be
needed in the sequel.

Theorem 3.1 ([20, Theorem 2.1]). Let (X, d) be a complete metric space
and T , I : X → X be R-weakly commuting mappings such that T (X) ⊆ I(X),
and T is I-contraction. If either T or I is continuous, then F (T ) ∩ F (I) is a
singleton.

Lemma 3.2 (cf. [10], Theorem 2.2). Let M be a nonempty weakly compact
subset of a Fréchet space X satisfying Opial’s condition. Let I : M → X be a
weakly continuous map and T : M → X an I-nonexpansive map. Then I − T
is demiclosed.

Using Theorem 3.1, we obtain a common fixed point generalization of Theo-
rems 1 and 2 of Dotson [7], and Theorem 4 of Habiniak [8].

Theorem 3.3. Let T, I be selfmaps on a subset M of a Fréchet space X.
Suppose that M has a contractive jointly continuous family F = {fx}x∈M such
that I(fx(α)) = fI(x)(α) for all x ∈ M and all α ∈ [0, 1]. Assume that T is I-
nonexpansive and M = IM. Suppose that T and I are R-subweakly commuting.
If T or I is continuous, then F (T ) ∩ F (I) 6= ∅ provided one of the following
conditions holds:

(i) M is closed and cl(T (M)) is compact;
(ii) M is compact;
(iii) M is closed, F (I) is bounded and T is a compact map;
(iv) M is bounded and closed and I is a demicompact map;
(v) M is weakly compact and T is completely continuous;
(vi) M is weakly compact, I and T are weakly continuous and the family

F = {fx}x∈M is jointly weak continuous instead of jointly continuous.
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Proof. For n ∈ N, let λn = n
n+1

. Then λn ∈ (0, 1). Define Tnx = fT (x)(λn),
x ∈ M. Each Tn is a well-defined selfmap of M. For any x, y in M, we get

d(Tnx, Tny) = d(fTx(λn), fTy(λn)) ≤ φ(λn)d(Tx, Ty) ≤ φ(λn)d(Ix, Iy). (2)

The continuity of T (if I is continuous, then T is also continuous) and (2) imply
that each Tn is continuous and I-contraction on M. As I(fx(α)) = fI(x)(α), it
follows from the property of F and (1) that for each x ∈ M,

d(TnIx, ITnx) = d(fTI(x)(λn), I(fT (x)(λn)))

= d(fTI(x)(λn), (fIT (x)(λn)))

≤ φ(λn)d(TIx, ITx)

≤ φ(λn)Rd(fTx(λn), Ix)

= φ(λn)Rd(Tnx, Ix).

Thus Tn and I are φ(λn)R-weakly commuting on M for each n and Tn(M) ⊆
M = I(M). By Theorem 3.1, for each n ≥ 1, there is a unique xn ∈ M such
that xn = Tnxn = Ixn.

(i) By the compactness of cl(T (M)), {Txn} has a subsequence {Txnj
} which

converges to z ∈ M as j → ∞. The joint continuity of F gives that xnj
=

Tnj
xnj

= fT (xnj )(λnj
) → fz(1) = z as j →∞. As T is continuous so Txnj

→ Tz

as j → ∞ and hence by the uniqueness of limit, Tz = z. As TM ⊆ IM, it
follows that z = Tz = Iy for some y ∈ M. Further, d(Txnj

, T y) ≤ d(Ixnj
, Iy) =

d(xnj
, z). Taking the limit as j →∞ yields Tz = Ty. Thus z = Tz = Ty = Iy.

Since T and I are R-subweakly commuting, it follows that (note fTy(1) = Ty)

d(Tz, Iz) = d(TIy, ITy) ≤ Rd(Ty, Iy) = 0.

Hence z ∈ F (T ) ∩ F (I).
(ii) It follows from (i) as T is continuous.
(iii) As T is compact and {xn} being in F (I) is bounded so {Txn} has a

subsequence {Txnj
} such that Txnj

→ x ∈ M as j →∞. By the joint continuity
of F we obtain xnj

= Tnj
xnj

= fT (xnj )(λnj
) → fx(1) = x. As T is continuous so

Txnj
→ Tx as j →∞ and hence Tx = x. The result now follows as in (i).

(iv) As in (i), there is a unique xn ∈ M such that xn = Tnxn = Ixn. Since
{xn} is bounded and {xn − Ixn} is a constant sequence converging strongly to
0 so by the demicompactness of I, {xn} has a subsequence {xnj

} converging
strongly to z ∈ M as j → ∞. Since T is continuous, Txnj

converges strongly
to Tz as j →∞. Also, xnj

= Tnj
xnj

= fT (xnj )(λnj
) → fT (z)(1) = Tz as j →∞.

By the uniqueness of limit, we get z = Tz. The result now follows as in (i).
(v) The sequence {xn} has a subsequence {xnj

} converging weakly to y ∈ M
as j → ∞. Since T is completely continuous, T converges strongly to Ty as
j → ∞. Also, xnj

= Tnj
xnj

= fT (xnj )(λnj
) → fT (y)(1) = Ty as j → ∞. Thus

Txnj
→ T 2y as j → ∞ and consequently T 2y = Ty implies that Tw = w,

where w = Ty. As in (i), we obtain w ∈ F (I).
(vi) The sequence {xn} has a subsequence {xnj

} converging weakly to y ∈ M
as j →∞ and as I is weakly continuous so Iy = y. As T is weakly continuous
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so Txnj

w→ Ty as j →∞ and hence by the joint weak continuity of the family,

we have xnj
= fT (xnj )(λnj

)
w→ fTy(1) = Ty as j →∞. Also xnj

w→ y as j →∞.

Thus Ty = y. ¤
Remark 3.4. The above result provides a common fixed point generalization

of Theorems 1 and 2 due to Anderson et. al. [2]. Theorem 3.3(i) extends recent
the results of Shahzad ([19, Theorem 6; 20, Theorem 2.2], [21, Lemma 2.2]) to
a non-starshaped domain in a Fréchet space. If I is an identity map on M and
X is a Banach space, then Theorem 3.3(ii & vi) reduces to the corresponding
results of Dotson [7].

For a set M with property (N), we have the following common fixed point
result which contains Theorems 2.1, 2.2 [3], Theorems 1, 2 [6], Theorem 2.2 [10]
and Theorem 6 [11].

Theorem 3.5. Let T, I be selfmaps on a subset M of a Fréchet space (X, d)
where d is translation invariant and d(αx, αy) ≤ αd(x, y) for each α with 0 <
α < 1 and x, y ∈ X. Assume that q ∈ F (I), M has property (N), I satisfies
condition (C), T is I-nonexpansive and TM ⊆ IM. Suppose that T and I are R-
subweakly commuting. If T or I is continuous, then F (T )∩ F (I) 6= ∅ provided
one of the following conditions holds:

(i) M is closed and cl(T (M)) is compact;
(ii) M is compact;
(iii) M is closed, F (I) is bounded and T is a compact map;
(iv) M is bounded and closed and I is a demicompact map;
(v) M is weakly compact and T is completely continuous;
(vi) M is weakly compact and I and T are weakly continuous;
(vii) M is weakly compact, I is weakly continuous and I − T is demiclosed

at 0,
(viii) M is weakly compact, I is weakly continuous and X satisfies Opial’s

condition;
(ix) M is closed bounded and T is a hemicompact map;
(x) M is closed bounded and T is a condensing map.

Proof. Define
Tn : M → M by Tn(x) = knTx + (1− kn)q (3)

for all x ∈ M and fixed sequence of real numbers kn (0 < kn < 1) converging to
1. Then each Tn is a well-defined continuous selfmap of M as M has property
(N). For any x, y in M we get

d(Tnx, Tny) = d(knTx + (1− kn)q, knTy + (1− kn)q)

≤ knd(Tx, Ty) ≤ knd(Ix, Iy). (4)

As I satisfies condition (C) and Iq = q, it follows that for each x ∈ M,

d(TnIx, ITnx) = d(knTIx + (1− kn)q, knITx + (1− kn)q)

≤ knd(TIx, ITx) ≤ knRd(knTx + (1− kn)q, Ix)

= knRd(Tnx, Ix).
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Thus Tn and I are knR-weakly commuting on M for each n and Tn(M) ⊆
I(M). By Theorem 3.1, for each n ≥ 1, there is a unique xn ∈ M such that
xn = Tnxn = Ixn.

(i) By the compactness of cl(T (M)), {Txn} has a subsequence {Txnj
} which

converges to z ∈ M as j → ∞. Since knj
→ 1, xnj

= Tnj
xnj

= knj
Txnj

+ (1 −
knj

)q → z as j → ∞. As T is continuous, Txnj
→ Tz as j → ∞ and hence

Tz = z. As TM ⊆ IM, it follows that z = Tz = Iy for some y ∈ M. Further,

d(Txnj
, T y) ≤ d(Ixnj

, Iy) = d(xnj
, z).

Taking the limit as j → ∞ yields Tz = Ty. Thus z = Tz = Ty = Iy. Since T
and I are R-subweakly commuting, it follows that

d(Tz, Iz) = d(TIy, ITy) ≤ Rd(Ty, Iy) = 0.

Hence z ∈ F (T ) ∩ F (I).
(ii)–(iv) These proofs follow the pattern of Theorem 3.3 (ii)–(iv).
(v) As in the proof of Theorem 3.3(v), we can find a subsequence {xnj

} of
{xn} in M converging weakly to y ∈ M as j → ∞. Since T is completely
continuous, Txnj

converges strongly to Ty as j → ∞. Since knj
→ 1, xnj

=
Tnj

xnj
= knj

Txnj
+ (1 − knj

)q → Ty as j → ∞. Thus Txnj
→ T 2y as j → ∞

and consequently T 2y = Ty implies that Tw = w, where w = Ty and the result
follows as in (i).

(vi) The sequence {xn} has a subsequence {xnj
} converging weakly to y ∈ M

as j → ∞ and as I is weakly continuous, Iy = y. As T is weakly continuous,
Txnj

w→ Ty as j →∞. Since knj
→ 1, xnj

= Tnj
xnj

= knj
Txnj

+(1−knj
)q

w→ Ty

as j →∞. Also xnj

w→ y as j →∞. Thus Ty = y.
(vii) The sequence {xn} has a subsequence {xnj

} converging weakly to y ∈ M
as j →∞ and as I is weakly continuous, Iy = y. As M is bounded,

(I − T )(xnj
) = xnj

− Txnj
= −(1/knj

)(Tnj
xnj

− (1− knj
)q)

= (1− knj
)(xnj

− q) → 0 as j →∞. (5)

Since I−T is demiclosed at 0, (I−T )y = 0 and hence Ty = Iy = y as required.
(viii) By Lemma 3.2, I − T is demiclosed at 0. The result follows from (vii).
(ix) The sequence {xnj

} is bounded and by (5) d(xnj
, Txnj

) → 0 as j →∞.
Since T is hemicompact, {xnj

} converges to some y ∈ M as j → ∞. By the
continuity of T , Txnj

converges to Ty and so by (3) xnj
converges to Ty as

j →∞. Hence y = Ty and the result follows as in (i).
(x) Every condensing map on a closed bounded subset of a complete metric

space is hemicompact by Lemma 2.1 [25]. Hence the result follows from (ix). ¤
Example 3.6. Let X = < and M =

{
0, 1, 1− 1

n+1
: n ∈ N

}
be endowed

with the usual metric.

(1) Define T (x) = 0 for each x ∈ M. Clearly, M has property (N) for
q = 0 and kn = 1 − 1

n+1
. Let I be defined by I(1) = 0 = I(0) and

I
(
1− 1

n+1

)
= 1, ∀n ∈ N. All the conditions of Theorem 3.5(ii) are

satisfied and consequently T and I have a common fixed point. However,
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it is interesting to note that the results of Al-Thagafi [1], Baskaran et.
al. [3] and Shahzad [19]–[22] cannot be applied, since the map I is
discontinuous and the underlying domain is not starshaped.

(2) Define T (1) = 0 and T (0) = T
(
1− 1

n+1

)
= 1, ∀n ∈ N. Clearly, M

has property (N) for q = 0 and kn = 1 − 1
n+1

, ∀n ∈ N. Let I be the
identity map on M. All of the conditions of Theorem 3.5(ii) are satisfied
except the I-nonexpansiveness of T (as T is not continuous). Note
F (T ) ∩ F (I) = ∅.

Example 3.7. (a) Let X = <2 be endowed with the norm ‖ · ‖ defined by
‖(a, b)‖ = |a|+ |b|, (a, b) ∈ <2.

(1) Let M = A ∪ B, where A = {(a, b) ∈ X : 0 ≤ a ≤ 1, 0 ≤ b ≤ 4} and
B = {(a, b) ∈ X : 2 ≤ a ≤ 3, 0 ≤ b ≤ 4}. Define T, I : M → M by

T (a, b) =

{
(2, b) if (a, b) ∈ A

(1, b) if (a, b) ∈ B

and I(x) = x, ∀x = (a, b) ∈ M. All of the conditions of Theorem 3.5
(ii) are satisfied except the condition that M has property (N). That is,
(1− kn)q + knT (M) 6⊂ M for any choice of q ∈ M and {kn}. Note that
F (T ) ∩ F (I) = ∅.

(2) If M = {(a, b) ∈ X : 0 ≤ a < ∞, 0 ≤ b ≤ 1} and T, I : M → M is
defined by

T (a, b) = (a + 1, b) and I(x) = x, ∀x = (a, b) ∈ M.

All of the conditions of Theorem 3.5 (i)–(ii) are satisfied except the
condition that M or cl(T (M)) is compact. Note that F (T )∩F (I) = ∅.
Notice that M is convex and T -invariant and so it has property (N) for
any choice of q and {kn}.

(b) Let X = < and M = {x : 0 ≤ x ≤ 1, x ∈ Q} be endowed with the
usual metric. Define T (x) = 0 for each x ∈ M. Clearly, M is not starshaped
but M has property (N) for q = 0 and kn = 1 − 1

n+1
. Let f be defined on M

by f(x) = 1− x, ∀x ∈ M. All of the conditions of Theorem 3.5 (i) are satisfied
except the condition that M is closed. Note that F (T ) ∩ F (I) = ∅.

4. Best Approximation Results

We establish generalizations of Theorems 1.1–1.2, Theorem 7 in [11], Theorem
2.6 in [12], Theorem 6 in [19] and Theorem 2 from [22] in the sense that the set of
best approximations need not be starshaped and the maps are noncommuting,
in the results to follow.

Theorem 4.1. Let T and I be selfmaps on a Fréchet space X and M a
subset of X such that T (M) ⊆ M , u ∈ F (T ) ∩ F (I). Suppose that D = DI

M(u)
is nonempty, D = ID, T is I-nonexpansive on D ∪ {u} and I is nonexpansive
on PM(u) ∪ {u}. Then D is T -invariant. Further if D has a contractive jointly
continuous family of functions F = {fx}x∈D such that I(fx(α)) = fI(x)(α) for
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all x ∈ D and all α ∈ [0, 1] and T and I are R-subweakly commuting on D,
then F (I) ∩ F (T ) ∩ PM(u) 6= ∅ provided one of the following conditions holds:

(i) D is closed and cl(T (D)) is compact;
(ii) D is compact;
(iii) D is closed, F (I) is bounded and T is a compact map;
(iv) D is bounded and closed and I is a demicompact map;
(v) D is separable weakly compact and T is completely continuous;
(vi) D is separable weakly compact, I and T are weakly continuous and the

family F = {fx}x∈D is jointly weakly continuous instead of jointly con-
tinuous.

Proof. Let y ∈ D. Then Iy ∈ D since I(D) = D. By the definition of D, y ∈ M
and since T (M) ⊆ M, it follows that Ty ∈ M. As T is I-nonexpansive on
D ∪ {u}, we have

d(Ty, u) = d(Ty, Tu) ≤ d(Iy, u). (6)

Since Ty ∈ M and Iy ∈ PM(u), (6) implies that Ty ∈ PM(u). As I is nonex-
pansive on PM(u) ∪ {u}, we obtain

d(ITy, u) = d(ITy, Iu) ≤ d(Ty, u) = d(Ty, Tu) ≤ d(Iy, Iu) = d(Iy, u).

Thus ITy ∈ PM(u). This implies that Ty ∈ CI
M(u) and hence Ty ∈ D. Thus

D is T -invariant. Now all the conditions of Theorem 3.3 are satisfied. Thus
F (I) ∩ F (T ) ∩ PM(u) 6= ∅ under each one of the conditions (i)–(vi). ¤

Theorem 4.2. Let T and I be selfmaps on a Fréchet space (X, d) where d is
translation invariant and d(αx, αy) ≤ αd(x, y), for each α with 0 < α < 1 and
x, y ∈ X, and M be a subset of X such that T (∂M∩M) ⊆ M , u ∈ F (T )∩F (I).
Suppose that D = DI

M(u) is nonempty, D = ID, T is I-nonexpansive on D∪{u}
and I is nonexpansive on PM(u) ∪ {u}. Then D is T -invariant. Further if D
has property (N) with Iq = q, I satisfies the condition (C) and T and I are
R-subweakly commuting on D, then F (I) ∩ F (T ) ∩ PM(u) 6= ∅ provided one of
the conditions (i)–(x) in Theorem 3.5 is satisfied by T, I with D in place of M.

Proof. Let y ∈ D. Then Iy ∈ D since I(D) = D. Note that for any k ∈ (0, 1),

d(ku + (1− k)y, u) = d(ku + (1− k)y − u, 0) = (1− k)d(y, u) < dist(u,M).

It follows that the line segment {ku + (1 − k)y : 0 < k < 1} and the set M
are disjoint. Thus y is not in the interior of M and so y ∈ ∂M ∩ M. Since
T (∂M ∩ M) ⊂ M , Ty must be in M. Now the rest of the proof is similar to
that of Theorem 4.1. Thus D is T -invariant. Now Theorem 3.5 guarantees that
F (I) ∩ F (T ) ∩ PM(u) 6= ∅ under each one of the conditions (i)–(x). ¤

Remark 4.3. If I(PM(u)) ⊆ PM(u), then PM(u) ⊆ CI
M(u). Hence DI

M(u) =
PM(u). Also, if I(CI

M(u)) ⊆ CI
M(u), then I(DI

M(u)) ⊆ I(CI
M(u)) ⊆ DI

M(u).
Thus Theorems 4.1 and 4.2 hold for D = PM(u) as well as for D = CI

M(u).
Hence Theorems 4.1-4.2 generalize several known results including those of Al-
Thagafi [1], Brosowski [5], Hicks and Humphries [9], Sahab, Khan and Sessa
[17], Sahney et. al. [18], Shahzad [19], [20] and Singh [23].
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