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ON AN APPROXIMATION ORDER OF THE OPTIMAL
STOPPING PROBLEM FOR n-DIMENSIONAL DIFFUSION
PROCESSES
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Abstract. An approximation order of the optimal stopping problem for mul-
tidimensional diffusion processes by the corresponding semidiscretization is
considered.
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1. PRELIMINARIES

Let (Q,F, P) be a probability space, and W, = (W},... W) be n-dimen-
sional standard Brownian motion defined on this space. Denote by FW =
(FV)i>0 the natural filtration of W; completed with respect to P.

On the time interval 7' = [0,00) let us consider the stochastic differential
equation
dX = b(X,)ds + o(Xs)dW,, Xo=x€R", (1)
where

A b(x) = (b"(x),...,b"(x)) and o(z) = (0%(z)), 4,5 = 1,...,n, are locally
Lipschitz functions from R™ into R™ and the space of n x n real matrices,

respectively, which satisfy the linear growth condition
[b(x)]] < k(L +[[z]]), [lo(@)] < k(1 + =)

with a constant k; here || - || stands for the Euclidean norm (Frobenius norm for
o(x)).

As is well known (see [2], Ch. VIII, § 2, Theorem 4), under condition
A the stochastic differential equation (1) has a unique strong solution X; =
(X}, ..., X}") which is a Markov diffusion process.

Let D be a bounded domain in the space R”, and D and 9D be its closure
and smooth boundary (say, of C?), respectively. Assume that ¢ = g(x) is a
Lipschitz function defined on D with the Lipschitz constant L, and ¢ = ¢(x) is
a continuous function defined on D.

Let us introduce the first moment at which the process X;, t € T, exits from
the domain D:

o(D)=inf(t>0: X, ¢ D),
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for which sup E,0(D) < oo and let us consider the optimal stopping problem
z€D
in the domain D:
TAo(D)

S(x) = sup Ey | g(Xrno(py)e "7 4 / o(X,)em dt], (2)

TEM

where P, is the probability measure corresponding to the initial condition X, =
x, E, is the sign of taking expectation w.r.t. P,, 91 is the class of all stopping
moments w.r.t. the filtration FW = (F/V);>0, and r > 0 is some constant.

Let X} D) — Xino(p) be the stopped process which is a solution of the follow-
ing stochastic differential equation:

dX7P) = p(XIP)) ds 4 7(XIPNdW,,

where b(z) = b(z)x,(z), 5(x) = o(z)x,(z) and x,(z) is the characteristic
function of D.

The optimal stopping problem (2) can be equivalently rewritten in terms of

stopped diffusion processes as
R T R
— e(x7P)yds s — e(x7 Py ds

S(z) = sup B, |g(XP)e o —i—/c(Xt Phe o dat|, (3)

7€M

where 7(z) =7 - x,(z), ¢(z) = c(z) - x, (2).

Assume that h, 0 < h < 1, is the parameter that tends to zero. Denote by
9N, the class of stopping moments 73, where 75, takes the values 0, h, ..., nh, ...,
and the set {r, <nh} e FWV.

The discrete analog of the problem (3) is written as follows (see [1]):

—Rhe(X§<D))ds g —Re(X;’(D))ds
Su(@) = sup B, |g(X2®e o + [ar®es at|. ()

ThEMY,

Denote by 7* the optimal stopping time of problem (3) (see [3], Ch. 3, The-
orem 3). Besides, introduce the so-called pseudo-optimal stopping moment 77,
defined as follows:

7, =inf (nh: nh > 7%),
which is an admissible stoping time from 9. In [1], requiring only continuity
of g(x), Bensoussan and Robins showed that Sy (z) converges to S(z) as h — 0.

2. FORMULATION AND PROOF OF THE BASIC RESULT

Theorem. Let (X;, P,), t € T, be an n-dimensional diffusion process given
by the stochastic differential equation (1) with the coefficients b(z) and o(x) sat-
isfying condition A, and g(z) be the Lipschitz function defined on D. Then for
the functions S(x) and Sy(x) defined by (3) and (4), respectively, the following
estimate 1s valid:

up|S(z) — Su(x)| <p- A
zeD
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where p = Cy +1rH + L\/2nC3 + 2n2C3, r is introduced in relation (2) and H,
C1, Cy, Cy are the constants such that for x € D

|g<l’)| < H, |C(:E)| < Ch, ’bl<x)| < Gy, |0';<1])| <Cs t,j=1,...,n
Proof. 1t is obvious from (4) that

—R;Le(X;’(D))ds t I R e(xs®)) g
) 2 B xS [ al,
0
and therefore
R* T R
e(x7P))ds I — e(x7P)yds
0< S(z) — Sy(z) < E, [ (X7Phe o +/(;<)qt Phe o dt}
0
— g "(D))ds ThN - 7R:e(X;’(D))dS
- EfgePe o [ al. ®)
0
Clearly,
_ *e( (\T(D))ds Y — e ;’(D))
(X7 —9(X e

R* R
" " e(x7P)yas — " e(xIP)yas
+ (X2 PNe o (1—e - ) (6)

If we use the elementary inequality 1 — e * < z, z > 0, then (6) leads to the
following inequality

D). — R*E(Xg(D))ds D
g(XZPNe o — g(Xx5"e o

T

< Joxz”) = g+ x| [ e ®yas (@)

Taking into account (7) in (5), we obtain

0 < S(x) = Sh(z) < Ex[

o(X27) = g0+ lg(X )| [ T ) s

(D) s
/| Dhyle o EEARE dt].
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We have
" "
s — " e(x?P)yds
/ (X, (D))‘e 0 dt < Cy(7, — ") < C1h,
‘g(XTU*(D))’ /'F(X;’(D)) ds <rH(r, — 1) < rHh.
It remains (X2 — g(X:},I(D))’. Since g(x) is the

Lipschitz function defined on D, we have

B, [g(X2P) (X2 < LB, 2P - xZ P < 1 (B x2? - x2™)) ",
Ty 2
ExHXf*(D)—X"(D) =F, H / (X7 Py at + / (X7 Py aw,
ngwZ{/Ei( dt} +2F, Z{/Z (5 (x7") dt}
1=1 *
B, [nC3(rt,— 7+ i, — 7).
Finally,

sup |S(z) — Sp(z)| < Cih+ rHh + \/h(2n022 +2n2C2)-L<p-h/? O

z€D
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