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OSCILLATION AND NONOSCILLATION THEOREMS FOR
SUPERLINEAR EMDEN–FOWLER EQUATIONS OF EVEN

ORDER

JAMES S. W. WONG AND C. H. OU

Abstract. We study the existence of oscillatory solutions of the even order
superlinear ordinary differential equations

(En
1 ) y(n) + p(t)|y|α sgn y = 0,

(En
2 ) y(n) − p(t)|y|α sgn y = 0,

where n is an even integer ≥ 2, α > 1 and p(t) ∈ C[t0,∞), t0 > 0 and
p(t) > 0. When n = 2, our results reduce to those of Jasny and Kurzweil,
and Erbe and Muldowney for (E2

1). When n = 4, our result becomes that
of Kura for equation (E4

2). We present here new techniques suitable for the
study of oscillation and nonoscillation of solutions of the general equations
of even order (En

1 ) and (En
2 ).
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1. Introduction

We consider the Emden–Fowler equations of even order

(En
1 ) y(n) + p(t)|y|α sgn y = 0,

(En
2 ) y(n) − p(t)|y|α sgn y = 0,

where n = 2m, m is any positive integer, α > 1 and p(t) is a positive con-
tinuous function on [t0,∞) for some t0 > 0. Equations (En

1 ) and (En
2 ) are

called superlinear if α > 1. A nontrivial solution y(t) of either (En
1 ) or (En

2 )
is called proper if it exists on some half-line [Ty,∞) ⊆ [t0,∞) and satisfies
sup{|y(t)| : t ≥ Ty} > 0 where Ty ≥ t0. Because of the nonlinear nature,
equations (En

1 ) and (En
2 ) in general have non-proper solutions, i.e., solutions

that cannot be extended beyond certain point t∗ where t0 < t∗ < ∞. These
solutions are also called singular solutions. A solution y(t) of (En

1 ) or (En
2 ) can

be singular in two ways, namely (a) lim
t→t∗

y(t) = 0 and (b) lim supt→t∗ |y(t)| = ∞.

Since equations (En
1 ) and (En

2 ) are superlinear, singular solutions of first kind,
i.e., the case (a), do not exist (Kiguradze and Chanturia [25, p. 205, Theorem
11.5]). Singular solutions of second kind, i.e., the case (b), can and in fact exist
for both (En

1 ) and (En
2 ) and are also referred to as solutions of finite escape

time (o.f.e.t.) (Kiguradze and Kvinikadze [26], Chanturia [4], Bartusek [3]).
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A solution y(t) of either (En
1 ) or (En

2 ) is called oscillatory if it has no last
zeros, i.e., for every zero t1 of y(t) there exists t2 > t1 such that y(t2) = 0. This
definition allows to obtain oscillatory solutions of finite escape time. A proper
solution y(t) is called oscillatory if it has arbitrarily large zeros, i.e., to every
t1 > t0 there corresponds t2 ≥ t1 such that y(t2) = 0. A solution y(t) is called
nonoscillatory if it is not oscillatory and a proper nonoscillatory solution can
have only finitely many zeros. Equations (En

1 ), (En
2 ) are called nonoscillatory

if every proper solution is nonoscillatory. On the other hand, they are called
oscillatory if every solution (not necessarily proper) is oscillatory.

The theory of oscillation and nonoscillation of second order Emden–Fowler
equation (E2

1), i.e.,

y′′ + p(t)|y|α sgn y = 0, (1.1)

has been extensively studied in the last half of the 20th century. When α > 1,
equation (1.1) may have both oscillatory and nonoscillatory solutions for a given
function p(t). Indeed, it is convenient to classify the study of oscillation theory
of nonlinear equations (En

1 ) and (En
2 ) into four different classes:

(I) All solutions are oscillatory.
(II) There exist nonoscillatory solutions.

(III) There exist oscillatory solutions.
(IV) All solutions are nonoscillatory.

Statements (I) and (II) are contradictory to each other and so are statements
(III) and (IV). It is known that the results concerning (I) and (II) are easier to
prove. One generally assumes the existence of an arbitrarily positive solution
of (En

1 ) or (En
2 ) and imposes conditions on p(t), which leads to a contradiction,

hence an oscillation theorem is formulated in the form of statement (I). To
prove the existence of a nonoscillatory hence eventually positive solution, we
have the powerful fixed point theorem in function spaces. Statements of types
(III) and (IV) are more difficult to prove. In case of (III), one needs to identify
a certain specific positive solution which, together with the condition on p(t),
is not sufficient for guaranteing that all solutions are oscillatory, will produce
the desired conclusion. Finally, for results of type (IV), we need to exclude the
existence of any oscillatory solutions. We know that it is more difficult to handle
oscillatory functions than positive functions and thus results relating to (IV)
are less available than the other three. Indeed, in the book of Kiguradze and
Chanturia [25] already mentioned, which is the most competent book available
on the subject under discussion, there is no result on nonoscillation for equations
(En

1 ) and (En
2 ) when n ≥ 4 except Kura’s work [28] which was mentioned as a

problem; see [25; p. 236, problem 15.3].
In the second order linear case, with equation (1.1) where α = 1, we can refer

to the Sturm Separation Theorem which states (I)⇔(III) and (II) ⇔(IV). This
reduces the study of (III) and (IV) to that of simpler cases of (I) and (II). When
n = 2 and α > 1, the classification problem of (E2

1) in respect of oscillation is
somewhat complete. For statements (I) and (II), we have
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Theorem A (Atkinson [2]). Equation (1.1) is oscillatory, i.e., all its solu-
tions are oscillatory if and only if

+∞∫
tp(t)dt = +∞. (1.2)

For statement (III), we have

Theorem B1 (Jasny [18], Kurzweil [29]). If (p(t)t(α+3)/2)′ ≥ 0, then equation
(1.1) has oscillatory solutions.

Theorem B2 (Erbe and Muldowney [8]). If (p(t)t(α+3)/2)′ ≤ 0 and

lim
t→∞

p(t)t(α+3)/2 = k > 0,

then equation (1.1) has oscillatory solutions.

Clearly, if p(t) = t−(α+3)/2, then it satisfies the conditions in Theorems B1 and
B2 but fails to satisfy (1.2).

Finally, for (IV) we have

Theorem C1 (Kiguradze [21]). If for some ε > 0, (p(t)t(α+3)/2+ε)′ ≤ 0, then
equation (1.1) is nonoscillatory.

Theorem C2 (Wong [43]). If for some ε > 0, (p(t)t(α+3)/2+ε)′ ≥ 0 and
lim
t→∞

p(t)t(α+3)/2+ε = k < ∞, then equation (1.1) is nonoscillatory.

Thus for the specific Emden–Fowler equation y′′ + tβ|y|α sgn y = 0, we have
(a) β ≥ −2 ⇐⇒ oscillation
(b) β ≥ −α+3

2
=⇒ existence of oscillatory solutions

(c) β < −α+3
2

=⇒ nonoscillation.
For higher order equations with n ≥ 4, we have only the results of Kura [28]

for (E4
2), i.e.,

y(iv) = p(t)|y|α sgn y (1.3)

concerning cases (III) and (IV), namely,

Theorem D1 (Kura [28]). If (p(t)t(3α+5)/2)′ ≥ 0, then equation (1.3) has
oscillatory solutions.

Theorem D2 (Kura [28]). If for some ε > 0, (p(t)t(3α+5)/2+ε)′ ≤ 0 and lim
t→∞

(p(t)t(3α+5)/2+ε) = k > 0, then equation (1.3) is nonoscillatory.

Applying Theorems D1 and D2 to the special example (E4
2): y(iv) = tβ|y|α ×

sgn y, we conclude that for β ≥ −3α+5
2

, equation (E4
2) has oscillatory solutions,

while for β < −3α+5
2

, equation (E4
2) is nonoscillatory.

In our recent paper [37], we have extended Kura’s Theorem D1 to equation
(E4

1) as follows:

Theorem E1(Ou and Wong [37]). If (p(t)t
3α+5

2 )′ ≥ 0, then equation (E4
1) has

oscillatory solutions.
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Theorem E2 (Ou and Wong [37]). If (p(t)t
3α+5

2 )′ ≤ 0 and lim
t→∞

p(t)t
3α+5

2 =

k > 0, then equation (E4
1) has oscillatory solutions.

Likewise, here we also give analogues of Theorem D2 for equation (E4
1) al-

though we are unable to establish a nonoscillation result in the same generality
as theorem D2 for equation (E4

2).
The techniques used both for the second order equation (1.1) and for the

fourth order equations (E4
1) and (E4

2) can be further developed to obtain similar
results for the general even order equations (En

1 ) and (En
2 ). It is the purpose of

this paper to present the results of this investigation.
For nth order equation (En

1 ), statements (I) and (II) can be easily disposed
of the following extension of Theorem A.

Theorem F (Kiguradze [22], Licko and Svec [32]). Equation (En
1 ) is oscil-

latory if and only if
∞∫

tn−1p(t)dt = ∞. (1.4)

Kiguradze [21] proved a more general result for the superlinear equation y(n)+
p(t)f(y)=0 where f(y) is odd, f(y) = −f(−y), y > 0 and satisfies

∫∞ dy
f(y)

< ∞.

On the other hand, it is well known that equation (En
2 ) always has nonoscil-

latory solutions. To find results concerning statements (III) and (IV) for nth

order equations, we consider the function ϕn(t) = p(t)t(
n−1

2
)α+n+1

2 . We see from
Theorems B1, B2, D1, D2, E1, E2 that the existence of oscillatory solutions is
related to the monotonicity properties of ϕ2(t) = p(t)t

a+3
2 and ϕ4(t) = p(t)t

3a+5
2

respectively. We shall show that in a similar fashion the monotonicity of the
function ϕn(t) yields results related to statements (III) and (IV) for the general
even order equations (En

1 ) and (En
2 ).

The basic technique in studying oscillation problems (III) and (IV) for the
second order equation (1.3) is to use Sturm’s Comparison Theorem and compare
it with a transformed equation based on the Euler equation y′′ + kt−2y = 0.
Results on the fourth order equations are again based upon the known facts
related to the fourth order Euler equation y(iv) + kt−4y = 0. For the nth order
equation, we consider the Euler equation (N): y(n) + kt−ny = 0. Much of the
information on solutions of (N) is contained in the characteristic polynomial
Γn(λ) = λ(λ − 1) · · · (λ − n + 1). In Section 2, we study the nth order Euler
equation (N) and derive a number of properties concerning Γn(λ) which will be
used throughout this paper. In Section 3, we prove the results on the existence
of proper oscillatory solutions of equation (En

1 ) and do the same for equation
(En

2 ) in Section 4. Section 5 is devoted to the study of nonoscillatory solutions
of (En

1 ) and (En
2 ), and we extend our earlier results on the fourth order equation

given in [37]. In the concluding section, we illustrate our results by examples
and state several open problems for further research. We refer to the survey
articles by Wong [41], Kartsatos [20] and Kiguradze [23] for further information
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concerning oscillation problems of second order and nth order Emden–Fowler
equations.

2. Auxiliary Lemmas and an nth Order Euler Equation

In this section, we study the nth order Euler equation in terms of its trans-
formed equation and the characteristic polynomial. We also give other results
concerning solutions of equations (En

1 ) and (En
2 ) which are required in the next

sections.
As can be seen in most papers on the subject of oscillation and nonoscillation

of the second order Emden–Fowler equation, the transformation

w(x) = t−λy(t), x = log t, (2.1)

where λ is a real constant, plays a key role. Under this “oscillation preserving”
transformation, equations (En

1 ) and (En
2 ) are respectively changed into

n∑

k=0

1

k!
Γ(k)

n (λ)
dkw

dxk
+ f(x)|w|α sgn w = 0 (2.2)

and
n∑

k=0

1

k!
Γ(k)

n (λ)
dkw

dxk
− f(x)|w|α sgn w = 0 (2.3)

where

Γn(λ) = Γ(0)
n (λ) =

n−1∏
j=0

(λ− j),

Γ(k)
n (λ) =

dkΓn(λ)

dλk
, f(x) = p(t)tn+λ(α−1).

(2.4)

To see that equations (2.2) and (2.3) are equivalent to (En
1 ) and (En

2 ), we only
need to show that

dny(t)

dtn
= tλ−n

n∑

k=0

1

k!
Γ(k)

n (λ)
dkw

dxk
. (2.5)

It is easy to verify that (2.5) is true for n = 1, 2. Using the identity

(λ− n)Γ(k)
n (λ) + kΓ(k−1)

n (λ) = Γ
(k)
n+1(λ), (2.6)

we can then derive (2.5) by induction.

In view of the importance of the coefficient functions Γ
(k)
n (λ) in the next

sections, here we would like to study the properties of the polynomial Γn(λ) and

its derivatives Γ
(k)
n (λ). First of all, we observe that Γ

(k)
n (λ) has n − k distinct

zeros, and we denote them by ri
k, where Γ

(k)
n (ri

k) = 0, i = 0, 1, . . . , n− k.

Lemma 1. Let n = 2m and Γn(λ) = Γ
(0)
n (λ) =

n−1∏
j=0

(λ− j). Then

(a) Γn(λ) is symmetrical about m− 1
2
, i.e., Γ

(0)
n (m− 1

2
+λ) = Γ

(0)
n (m− 1

2
−λ).

(b) Γ
(2k−1)
n (m− 1

2
) = 0 for 1 ≤ k ≤ m.
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(c) Γ
(2k)
n (m− 1

2
) 6= 0 for 1 ≤ k ≤ m. Γn(m− 1

2
) = (−1)m

m∏
k=1

(2k−1
2

)2.

(d) when λ > m− 1, |Γn(λ + 1)| > |Γn(λ)|, which means that |Γn(λ)| attains
the smallest local maximum at λ = m− 1

2
.

Proof. (a) By direct computation, one can find

Γ(0)
n (m− 1

2
+ λ) =

m∏
i=1

(
λ2 − (i− 1

2
)2

)
(2.7)

which implies Γ
(0)
n (m− 1

2
+ λ) = Γ

(0)
n (m− 1

2
− λ).

(b) Differentiating (2.7) odd number times at λ = m− 1
2

yields Γ
(2k−1)
n (m−

1
2
) = 0 for 1 ≤ k ≤ m.

(c) From (b) it follows that λ = m− 1
2

is a root of Γ
(2k−1)
n (m− 1

2
) = 0 and, by

Rolle’s mean-value theorem and the fact that Γ
(k)
n (λ) has exactly n− k distinct

zeros, we find that the multiplicity of this root is 1, hence Γ
(2k)
n (m− 1

2
) 6= 0 for

1 ≤ k ≤ m. We get Γn(m− 1
2
) = (−1)m

m∏
k=1

(2k−1
2

)2 by setting λ = 0 in (2.7).

(d) If λ > m− 1, then

(Γn(λ + 1))2 − (Γn(λ))2 = λ2(λ− 1)2 · · · (λ− n + 2)2(2(λ + 1)n− n2) > 0,

so |Γn(λ)| attains the smallest local maximum at λ = m− 1
2
. ¤

Lemma 2. Let n = 2m and Γn(λ) =
n−1∏
j=0

(λ− j). Then

(a) Γ2m(m − 1
2

+ λ) is an even function of λ. Furthermore, Γ
(k)
2m(m − 1

2
+ λ)

is an odd function when k is odd and is an even function when k is even.

(b) Γ2m+1(m+λ) is an odd function of λ. Moreover, Γ
(k)
2m+1(m+λ) is an even

function when k is odd and is an odd function when k is even.

Proof. (a) From (2.7) it follows that Γ2m(m− 1
2
+ λ) is an even function. Since

the derivative of an even function is an odd function and vice versa, it follows

that Γ
(k)
2m(m− 1

2
+ λ) is odd or even whenever k is odd or even.

(b) Like in the case of (2.7), for n = 2m + 1 we have

Γ2m+1(m + λ) = λ

m∏
i=1

(λ2 − i2) (2.8)

which is an odd function. This completes the proof of the lemma. ¤
Lemma 3. Let n = 2m. Then
(a) Γn(m− 1

2
)Γ′′n(m− 1

2
) < 0.

(b) Γn(m + 1
2
)Γ′n(m + 1

2
) > 0.

Proof. Define Gn(λ) = Γn(m− 1
2

+ λ). Note that

Gn(λ) = Γn

(
m− 1

2
+ λ

)
=

m∏

k=1

{
λ2 −

(
k − 1

2

)2
}

, (2.9)
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and, after differentiating (2.9), we obtain

G′
n(λ) = Gn(λ)

m∑

k=1

2λ

λ2 − (k − 1
2
)2

. (2.10)

Note that from (2.9) and (2.10) we have Gn(0) = (−1)m
m∏

k=1

(k− 1
2
)2 and G′

n(0) =

0. A further differentiation yields

G′′
n(0) = 2Gn(0)

m∑

k=1

1

(k − 1
2
)2

,

which proves (a).
To prove (b), we shall show that G′

n(1)Gn(1) > 0. Using (2.10) again, we find

G′
n(1) = 2Gn(1)

{
22

3 · 1 −
22

5 · 1 −
22

7 · 3 − · · · −
22

(2m− 1)(2m + 3)

}

= 2Gn(1)

{
4

3
−

(
1− 1

5

)
−

(
1

3
− 1

7

)
− · · · −

(
1

2m− 1
− 1

2m + 3

)}

= 2Gn(1)

{
1

2m + 1
+

1

2m + 3

}
.

Hence it follows from (2.9) that

Γn

(
m +

1

2

)
Γ′n

(
m +

1

2

)
= 2Γ2

n

(
m +

1

2

){
1

2m + 1
+

1

2m + 3

}
> 0,

which proves (b). ¤
Lemma 4. Define ε0 > 0 as follows:

ε0 = min

{∣∣∣∣ri
k−

(
m− 1

2

)∣∣∣∣ : 0≤k≤n−1, 1 ≤ i ≤ n− k, ri
k 6= m− 1

2

}
. (2.11)

Then we have
(a) For λ ∈ (m− 1

2
− ε0,m− 1

2
+ ε0), Γ

(2k)
n (λ) is alternating in sign, i.e.,

Γ(2k−2)
n (λ)Γ(2k)

n (λ) < 0 (2.12)

for k = 1, 2, . . . , m;
(b) For any λ ∈ (m− 1

2
− ε0,m− 1

2
) and (m− 1

2
,m− 1

2
+ ε0), we also have

Γ(2k−1)
n (λ)Γ(2k+1)

n (λ) < 0, (2.13)

for k = 1, 2, . . . , m− 1.

Proof. (a) Since Γn(λ) is a polynomial, Γ
(k)
n (λ) has only a finite number of

isolated zeros, so ε0 > 0 is clearly defined. To prove (a), we need only to show

that Γ
(2k−2)
n (λ)Γ

(2k)
n (λ) < 0 for k = 1, 2, . . . , m at λ = m − 1

2
. It follows by

continuity that the same conclusion holds for λ satisfying |λ − (m − 1
2
)| < ε0.

Assume to the contrary that Γ
(2k−2)
n (m − 1

2
)Γ

(2k)
n (m − 1

2
) > 0 for some k, 1 ≤

k ≤ m. Note that Γ
(2k−1)
n (m− 1

2
+ λ) is an odd function by Lemma 2(a), hence
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Γ
(2k−1)
n (m − 1

2
) = 0, so m − 1

2
is an extremum of Γ

(2k−2)
n (λ) and must satisfy

Γ
(2k−2)
n (m− 1

2
)Γ

(2k)
n (m− 1

2
) < 0, which is the desired contradiction.

(b) Let λ ∈ (m− 1
2
,m− 1

2
+ε0). By the definition of ε0, we note that Γ

(2k−1)
n (λ)

has only one sign, say Γ
(2k−1)
n (λ) > 0 on the interval (m− 1

2
,m− 1

2
+ ε0). Again

Γ
(2k−1)
n (m − 1

2
) = Γ

(2k−3)
n (m − 1

2
) = 0 implies that both Γ

(2k−2)
n (λ) and Γ

(2k)
n (λ)

attain extrema at λ = m − 1
2
. By (a) Γ

(2k−2)
n (λ)Γ

(2k)
n (λ) < 0, Γ

(2k−1)
n (λ) > 0

implies that Γ
(2k−2)
n (λ) < 0 attains its minimum at m− 1

2
. On the other hand,

Γ
(2k)
n (λ) must attain its maximum at m − 1

2
by virtue of Lemma 1 (c). In this

case, Γ
(2k+1)
n (λ) < 0, hence Γ

(2k−1)
n (λ)Γ

(2k+1)
n (λ) < 0.

The zeros ri
k of Γ

(k)
n (λ) are finite in number and this shows that ε0 > 0 exists.

Since Γn(m) = 0, we have ε0 ≤ 1
2
. It can be supposed that Γ

(i)
k (λ) can have

other zeros, apart from λ = m − 1
2
, in the interval (m − 1

2
,m + 1

2
). The next

lemma shows that this does not happen. ¤
Lemma 5. ε0 = 1

2
.

Proof. Since the characteristic polynomial Γ2m(λ) and its derivatives Γ
(k)
2m(λ)

have certain symmetry properties around m− 1
2
, to prove ε0 = 1

2
, it suffices to

prove

sgn Γ
(k)
2m

(
m− 1

2
+ λ

)
= (−1)m+[ k+1

2 ], 0 < λ <
1

2
, (2.14)

for all k = 0, 1, . . . , 2m, where [k] denotes the largest integer less than or equal
to k. We shall use identity (2.6) and proceed to prove (2.14) by induction on

m. Because Γ
(k)
2m+2(λ) is symmetric around λ = m + 1

2
, we need to prove

sgn Γ
(k)
2m+2

(
m +

1

2
+ λ

)
= (−1)m+[ k+1

2
], 0 < λ <

1

2
. (2.15)

Firstly , we note that (2.14) is equivalent to

sgn Γ
(k)
2m(m + λ) = (−1)m+[ k+1

2
], −1

2
< λ < 0. (2.16)

Using (2.16) in (2.6), we find for k = odd that

sgn Γ
(k)
2m+1(m + λ) = (−1)m+1+[k+1

2
] = (−1)m+[ k

2
], −1

2
< λ < 0. (2.17)

Since Γ
(k)
2m+1(m + λ) is an even function in λ, (2.17) also is valid for the interval

0 < λ < 1
2
, i.e.,

sgn Γ
(k)
2m+1(m + λ) = (−1)m+1+[ k+1

2
] = (−1)m+[ k

2
], 0 < λ <

1

2
. (2.18)

We claim that (2.18) also holds for k = even. Note that differentiating an even
function induces the negative sign for 0 < λ < 1

2
. We now differentiate the even

function Γ
(k)
2m+1(λ) with k = odd and by (2.18) we find

sgn Γ
(k+1)
2m+1(m + λ) = (−1)m+1+[ k

2
].
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Writing k + 1 = 2l in the above equation, we obtain

sgn Γ
(2l)
2m+1(m + λ) = (−1)m+1+[l− 1

2
] = (−1)m+[ 2l

2
],

which shows that (2.18) holds for all k = 0, 1, . . . , 2m.
Now using (2.18) and identity (2.6), we have for even k

sgn Γ
(k)
2m+2(m + λ) = (−1)m+1+[ k

2
], 0 < λ <

1

2
,

which in fact is equivalent to

sgn Γ
(k)
2m+2(m +

1

2
+ λ) = (−1)m+1+[ k

2
], −1

2
< λ < 0. (2.19)

For even k, Γ
(k)
2m+2(m + 1

2
+ λ) is an even function, so (2.19) remains valid for

0 < λ < 1
2
, i.e.,

sgn Γ
(k)
2m+2

(
m +

1

2
+ λ

)
= (−1)m+1+[ k

2
] = (−1)m+1+[ k+1

2
], 0 < λ <

1

2
. (2.20)

This proves (2.15) for even k. Differentiating Γ
(k)
2m+2(m+ 1

2
+λ) once, we obtain

from (2.20)

sgn Γ
(k+1)
2m+2

(
m +

1

2
+ λ

)
= (−1)m+[ k+1

2
]. (2.21)

Rewriting (2.21) for k = odd, we find

sgn Γ
(k)
2m+2

(
m +

1

2
+ λ

)
= (−1)m+[ k

2
], 0 < λ <

1

2
,

which is in fact (2.15) and the proof of Lemma 5 is completed. ¤

Here Γn(λ) is known as the characteristic polynomial associated with the nth
order equations:

y(n)(t)− k

tn
y(t) = 0 (2.22)

and

y(n)(t) +
k

tn
y(t) = 0, (2.23)

where k ≥ 0. As an immediate application of Lemma 1 concerning Γn(λ), we
have

Proposition 1. For the case n = 2m, where m is even, every solution of

equation (2.22) is nonoscillatory if and only if k ≤
m∏

j=1

(2j−1
2

)2. For the case

n = 2m, m is odd, every solution of equation (2.23) is nonoscillatory if and

only if k ≤
m∏

j=1

(2j−1
2

)2.
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Proof. We only prove the first case. By transformation (2.1), equation (2.22)
becomes

n∑

k=0

1

k!
Γ(k)

n (λ)
dkw

dxk
− kw = 0. (2.24)

Substituting w(x) = eux into (2.24), we obtain its algebraic characteristic equa-
tion

Γn(λ + u) = k. (2.25)

The characteristic polynomial Γn in (2.25) has and only has n real zeros if and

only if k ≤
m∏

j=1

(2j−1
2

)2. The proof is complete. ¤

Using the well-known comparison theorem, see, e.g., Levin [31], Kim [27] and
Kiguradze and Chanturia [25; p. 32, Theorem 2.6], we can also extend Proposi-
tion 1 to a more general linear ordinary differential equation y(n)(t)±p(t)y(t) =
0. For other useful results concerning the Euler equations and the associated
characteristic polynomial Γn(λ), we refer the reader to the monograph by Elias
[6]. Proposition 1 can also be used to deduce results concerning the nonoscilla-
tion and ultimate disconjugacy of the linear equation (2.22) (G. D. Jones [19],
U. Elias [6], Z. Nehari [34] and Trench [39]).

Next we shall state the important lemma due to Kiguradze [23] and [24]
concerning nonoscillatory solutions of (En

1 ) and (En
2 ).

Lemma 6. Suppose that y(t) is a solution of (En
1 ) (or (En

2 )), where y(t) > 0
for t ≥ t0 ≥ 0. Then there exist numbers t1 ∈ [t0,∞) and l ∈ {0, 1, . . . , n − 1}
such that l + n is even (odd) and

{
y(i)(t) > 0 for t ≥ t1, i = 0, 1, . . . , l − 1,

(−1)i+1y(i)(t) > 0 for t ≥ t1, i = l, l + 1, . . . , n .
(2.26)

Almost all the results on the oscillation of equations (En
1 ) and (En

2 ) and
similar equations in a more general form are in one way or other based upon
Lemma 6. This result is commonly known as Kiguradze’s lemma, see, e.g., [1]
as well as [14] by Grimmer, [11] by Foster, [12] by Foster and Grimmer and [30]
by Leizaroutz and Bracket.

The next two lemmas are concerned with the equation (En
2 ) only. Lemma 7

deals with the existence of proper solutions and Lemma 8 with the behavior
of a proper nonoscillatory solution near infinity. Both lemmas are intended to
control the growth of the solution by establishing a bound on y(n−1)(t). In the
case of (En

1 ), this situation does not arise, since y(t) > 0 implies y(n)(t) < 0 and
therefore every nonoscillatory solution is extendable throughout [t0,∞), i.e., it
must be proper, the fact explicitly pointed out in [11; pp. 116–117].

Lemma 7. Let n = 2m and p(t) > 0. For any c > 0, there exists a solution
of (En

2 ) satisfying the initial condition

y(t0) = y′(t0) = · · · = y(m−1)(t) = 0, y(m)(t0) = c (2.27)
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which is either oscillatory in a certain neighborhood of τ, t0 ≤ τ ≤ ∞, satisfying

lim
t→τ

sup |y(t)| = ∞ (2.28)

or extendable throughout [t0,∞) and satisfies

lim inf
t→∞

|y(n−1)(t)| = 0. (2.29)

This lemma is modelled after a similar result given by Kura [28] who at-
tributes it to Kitamura for the case n = 4.

Proof. We denote by y(t, d) a solution of the equation (En
2 ) satisfying the initial

conditions

y(t0) = y′(t0) = · · · = y(m−1)(t0) = 0, y(m)(t0) = c,

y(m+1)(t0) = y(m+2)(t0) = · · · = y(n−2)(t0) = 0, y(n−1)(t0) = d.
(2.30)

where d is a real number. It is clear that in the interval of the existence of both
y(t, d1) and y(t, d2)

y(i)(t, d1) < y(i)(t, d2), i = 0, 1, . . . , n− 1, if d1 < d2, t > t0. (2.31)

Define the set A+ and A− by

A+ = {d : y(i)(t, d) > 0, i = 0, 1, . . . , n− 1, for some t > t0}
and

A− = {d : y(i)(t, d) < 0, i = 0, 1, . . . , n− 1, for some t > t0}.
From (2.31) and the continuity of solutions of (En

2 ) with respect to the initial
values, it is clear that A+ and A− are open intervals, A+ ∩ A− is empty and
0 ∈ A+. We claim that A+ is bounded from below. Indeed, there exists a
positive constant δ such that y(t, 0) is defined on [t0, t0 + 2δ]. Choose d1 < 0
such that

c

m!
δm +

d1

(n− 1)!
δn−1 +

δn−1

(n− 1)!
yα(t0 + δ, 0)

t0+δ∫

t0

p(t)dt < 0.

Then

y(t0 + δ, d1) =
c

m!
δm +

d1

(n− 1)!
δn−1

+
1

(n− 1)!

t0+δ∫

t0

(t0 + δ − t)n−1p(t)yα(t, d1) sgn y(t, d1)dt

≤ c

m!
δm +

d1

(n− 1)!
δn−1 +

δn−1

(n− 1)!
yα(t0 + δ, 0)

t0+δ∫

t0

p(t)dt

< 0.
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Similarly, we have

y(i)(t0 + δ, d1) < 0, 1 ≤ i ≤ n− 1.

This implies d1 ∈ A− , and A+ is bounded from below by d1. Denote d0 =
inf{d : d ∈ A+}. Since A+ and A− are open, d0 /∈ A+ ∪ A−. If y(t, d0) cannot
be extended to +∞, then y(t, d0) must be oscillatory in a certain neighborhood
of some τ . On the other hand, if y(t, d0) can be extended to +∞, we can now
show that (2.29) holds, i.e.,

lim inf
t→∞

|y(n−1)(t, d0)| = 0.

On the other hand, if lim inf
t→∞

|y(n−1)(t, d0)| > 0, then there exists t > t0 such

that y(i)(t, d0)y(t, d0) > 0, i = 0, 1, . . . , n − 1, which contradicts the definition
of d0. ¤

Lemma 7 shows that under certain conditions, the solutions of (En
2 ) cannot

be “fast growing”, i.e.,

lim
t→∞

|y(n−1)(t)| = ∞,

a result due to Kiguradze [24], see also [23, p. 35, Theorem 2.13]. We shall
prove the lemma by an entirely different method.

Lemma 8. Let n be any positive integer. Suppose that p(t) satisfies

lim inf
t→∞

t1+(n−1)αp(t) = c > 0. (2.32)

Then every nonoscillatory solution y(t) of (En
2 ) must satisfy

lim sup
t→∞

|y(n−1)(t)| < ∞. (2.33)

Proof. Without loss of generality, we assume that y(t) > 0 for t ≥ t0 in which
case y(n)(t) > 0 so that y(n−1)(t) is increasing. Suppose that y(n−1)(t) > 0 for
t ≥ t1 ≥ t0, then it is easy to see that there exists t2 ≥ t1 ≥ t0 so that y(i)(t) > 0
for i = 0, 1, . . . , n.

Now multiply (En
2 ) by y′(t) and integrate by parts from t2 to t to obtain

y(n−1)(t)y′(t)−
t∫

t2

y(n−1)y′′(s)ds ≥ y(n−1)(t2)y
′(t2)+

t∫

t2

p(s)yα(s)y′(s)ds. (2.34)

Using (2.32), we integrate by parts the last integral in (2.34) and obtain

t∫

t2

p(s)yα(s)y′(s)ds ≥ c

t∫

t2

s−1−(n−1)αyα(s)y′(s)ds

≥ ct−1−(n−1)αyα+1

1 + α

∣∣∣∣
t

t2

+ c
(1 + (n− 1)α)

1 + α

t∫

t2

yα+1(s)s−2−(n−1)αds. (2.35)
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Combining (2.34) and (2.35), we can find c1 > 0 such that

y(n−1)(t)y′(t) ≥ c1t
−1−(n−1)αyα+1(t). (2.36)

Multiplying (2.36) again by y′(t) and integrating by parts once more, we find
c2 > 0 such that

y(n−2)(t)(y′(t))2 ≥ c2t
−1−(n−1)αyα+2(t). (2.37)

Proceeding like in the case of (2.37), we finally obtain after n− 1 times

(y′(t))n ≥ cn−1t
−1−(n−1)αyα+n−1(t), (2.38)

which is reduced to

y′(t) ≥ M0t
−1−(n−1)α

n (y(t))
α+n−1

n . (2.39)

Dividing both sides of (2.39) by (y(t))β, β = (α + n − 1)/n, and integrating
from t to ∞ we obtain

y(t) ≤ M0t
n−1,

which establishes (2.33) and completes the proof. ¤

We can prove that condition (2.32) implies that every proper nonoscillatory
solution y(t) of (En

2 ) must satisfy

lim
t→∞

y(n−1)(t) = 0. (2.40)

Indeed, suppose the contrary, then there exists a constant b > 0 such that
y(n−1)(t)≥b, which implies that y(t)≥ b1t

n−1. Using this in (En
2 ), we have

y(n)(t) ≥ p(t)bα
1 tα(n−1) ≥ cbα

1 t−1. (2.41)

Since lim
t→∞

y(n−1)(t) = b̂ < ∞, we can integrate (2.41) from t to ∞ and obtain

b̂− y(n−1)(t) ≥
∞∫

t

cbα
1 s−1ds = ∞,

which is the desired contradiction. So (2.40) must hold. Indeed, y(t) > 0 for
t ≥ t0 implies that there exists t3 ≥ t0 such that y(n−1)(t) < 0, for t ≥ t3.

3. Oscillatory Solutions of the Equation (En
1 )

In this section, we investigate the existence of oscillatory solutions of the
equation (En

1 ) using the auxiliary lemmas given in Section 2.

Theorem 3.1. Let n = 2m and m be odd. If p(t) satisfies

d

dt
(p(t)tn+(m− 1

2
)(α−1)) ≥ 0 (3.1)

for t ≥ t0, then every solution y(t) of (En
1 ) satisfying y(i)(t0) = 0, for 0 ≤ i ≤

m− 1, and |y(m)(t0)| sufficiently large is oscillatory.
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Proof. Let y(t) be a nonoscillatory solution of (En
1 ). Suppose that y(t) is not

proper, i.e., it cannot be extended throughout [t0,∞). Then y(t) must be sin-
gular of second kind, i.e., lim

t→t∗
|y(t)| = ∞ for some t0 ≤ t∗ < ∞. If y(t) is not

oscillatory, then it must satisfy lim
t→t∗

y(t) = ∞ or lim
t→t∗

y(t) = −∞. Since −y(t) is

also a solution, we always have y(t)y(n)(t) < 0 for t ≥ t1 ≥ t0. In this case, it
is known that y(t) cannot be of finite escape times (Foster [11; pp. 116–117]).
Therefore y(t) is proper.

Let y(t) be the solution of (En
1 ) satisfying the initial condition

y(t0) = y′(t0) = · · · = y(m−1)(t0) = 0, y(m)(t0) = c, (3.2)

where c > 0 will be chosen sufficiently large later.
We may assume without loss of generality that y(t) > 0 for t > T0 ≥ t0 and

y(T0) = 0, y′(T0) ≥ 0. By Kiguradze’s lemma, we conclude that there exists an
odd integer l such that for t ≥ T0 we have





(a) y(i)(t) > 0, 0 ≤ i ≤ l − 1,

(b) (−1)i+ly(i)(t) > 0,

(c) 0 ≤ y(l)(∞) = lim
t→∞

y(l)(t) < ∞, lim
t→∞

y(i)(t) = 0, l ≤ i ≤ n− 1 .

(3.3)

Since y(t) > 0, the equation (En
1 ) implies y(n)(t) < 0, so y(n−1)(t) > 0 and

decreases to a limit L which is a positive finite number. Integrating (En
1 ), we

find

L− y(n−1)(t) = −
∞∫

t

p(s)yα(s)ds. (3.4)

Denote P (t) = p(t)tn+h(α−1), where h = m− 1
2
. From (3.4) we obtain

y(n−1)(t) ≥
∞∫

t

p(s)yα(s)ds.

Integrating the latter inequality n− 1 times and using (a), (b), (c), we find

y(t) ≥
i=l−1∑
i=0

y(i)(T0)

i!
(t− T0)

i +
1

l!
y(l)(∞)(t− T0)

l

+

t∫

T0

· · ·
s∫

T0

(ds)l

∞∫

s

· · ·
∞∫

s

p(s)yα(s)(ds)n−l

≥ 1

l!
(t− T0)

lyα(t)P (t)

∞∫

t

· · ·
∞∫

s

s−n−h(α−1)(ds)n−l. (3.5)

Denote K = 2× l!× (l + h(α− 1))n where (a)n = a(a + 1) · · · (a + n− 1). Using
this in (3.5), we obtain for some sufficiently large T1 ≥ T0 ≥ t0

y(t) ≥ K−1yα(t)P (t)t−h(α−1)
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or

y(t) ≤ K
1

(α−1) P (t)−
1

α−1 th (3.6)

for t ≥ T1. Using (3.5) and (3.6), we conclude either l < n
2

or l = n
2

with

y(l)(∞) = 0. Furthermore, after substituting (3.6) into (En
1 ), we find

y(n)(t) ≥ −K
α

(α−1) P (t)−
1

α−1 th−n

or

y(n)(t) ≥ −Cnt
h−n (3.7)

for t ≥ T0, where Cn = Kα/(α−1)P (t)−1/(α−1). Integrating (3.7) once again, we
have

y(n−1)(T )− y(n−1)(t) ≥ −Cn

T∫

t

sh−nds. (3.8)

From (3.3) (b) and (3.6), we deduce lim
T→∞

y(n−1)(T ) = 0, hence (3.8) becomes

y(n−1)(t) ≤ Cn−1t
h−n+1, (3.9)

where Cn−1 = Cn(h − n + 1)−1. Repeating the above process inductively, we
obtain

(−1)iy(i)(t) ≤ Cit
h−i, i = l + 1, . . . , n, (3.10)

and

y(l)(t) ≤ y(l)(∞) + Clt
h−l, (3.11)

where Ci, i = l, l + 1, . . . , n, are positive constants depending only on K, α and
P (t0) (but independent of c). Now, we can integrate (3.11) several times on
[T1, t) and by virtue of (3.3)(c) we find

y(i)(t)t−h+i = O(1), (3.12)

as t →∞ for i = 1, 2, . . . , l− 1. Here O(1) is again dependent only on K,α and
P (t0) and is independent of the choice of c.

Using the transformation x = log t, w(x) = t−hy(t), equations (En
1 ) and (En

2 )
are transformed into the following two nonlinear nth order differential equations

n∑

k=0

Γ(k)
n (h)

1

k!
w(k)(x) + f(x)|w(x)|α−1w(x) = 0 (3.13)

and
n∑

k=0

Γ(k)
n (h)

1

k!
w(k)(x)− f(x)|w(x)|α−1w(x) = 0, (3.14)

where f(x) = P (t) = p(t)tn+h(α−1). Since the transformation of y and t into
w and x is “oscillation preserving”, the question concerning the existence and
nonexistence of oscillatory or nonoscillatory solutions of (En

1 ) and (En
2 ) can be
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transferred to equations (3.13) and (3.14) and vice versa. In particular, the
relation between y(i)(t) and w(j)(x) is defined by the identity

y(i)(t)t−h+i =
i∑

k=0

Γ
(k)
i (h)w(k)(x). (3.15)

We can consider (3.15) as a matrix equation with column vectors

(y(t)t−h, y′(t)t−h+1, . . . , y(n−1)(t)t−h+n−1)

and (w(x), ẇ(x), . . . , w(n−1)(x)) connected by the matrix {Γ(k)
i (h)}, where i =

0, 1, . . . , n− 1 and k = 0, 1, . . . , i. Note that {Γk
i (h)} is a triangular matrix and

it is easy to verify that det(Γ
(k)
i (h)) = (−1)n 6= 0. Thus, we can express w(i)(x)

in terms of linear combinations of y(j)t−h+j, j = 0, 1, . . . , i, i.e.,

w(i)(x) =
i∑

j=0

bi(h)y(i)(t)t−h+i, (3.16)

where bi(h) is a polynomial in h of degree n− i. In particular b0(h) = (−1)nhn

and bn−1(h) =
∑n−1

j=0 (j − h). Hence, by (3.12) and (3.16) we can deduce

w(i)(x) = O(1), t →∞ , for 0 ≤ i ≤ n. (3.17)

where O(1) is dependent only on K,α and P (t0) but independent of c. Also by
(3.6), we have

f(x)|w(x)|α+1 = P (t)|y(t)|α+1t−h(α+1)

≤ K
α+1
α−1 P (t)−

2
α−1 = O(1) (3.18)

as t →∞.
Next, we introduce an energy function associated with (3.13) as follows:

Fn(x) = Wn(x) + Sn(x) + In(x) + Φn(x),

where



Wn(x) =
m−1∑
i=1

(−1)i+1w(i)(x)
n−i∑

k=i+1

1
(i+k)!

Γ
(i+k)
n (h)w(k)(x),

Sn(x) = 1
2

m∑
i=1

(−1)i+1 1
(2i)!

Γ
(2i)
n (h)(w(i))2,

In(x) =
m∑

i=1

(−1)i+1 1
(2i−1)!

Γ
(2i−1)
n (h)

x∫
x0

(w(i))2dx, where x0 = log t0,

Φn(x) = 1
(1+α)

f(x)|w|α+1 − 1
2
Γn(h)w2.

(3.19)

Using assumption (3.1) in equation (3.13), we obtain

d

dx
Fn(x) =

1

1 + α

[
d

dx
f(x)

]
|w(x)|α+1 ≥ 0. (3.20)

Since Γ
(2i−1)
n (h) = 0, we have In(x) ≡ 0 and, by Lemma 1(c), (−1)i+1Γ

(2i)
n (h) <

0. We also have Sn(x) ≤ 0. By a choice of initial conditions, we note that
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Wn(x0) = Φn(x0) = 0. Note that m is odd so that (−1)m+1 1
(2m)!

Γ
(2m)
n (h) = 1.

Hence we obtain from (3.19)and (3.20) that

Fn(x0) =
1

2
|w(m)(x0)|2 =

1

2
t0c

2 ≤ F (∞) = O(1), (3.21)

where Fn(∞) is bounded from above by a constant independent of c. Thus,
by choosing c sufficiently large in (3.21), we obtain the desired contradiction
proving that y(t) is oscillatory. ¤

Remark 3.1. When n = 2, Theorem 3.1 becomes Theorem B1 of Jasný [18]
and Kurzweil [29].

Theorem 3.2. Let n = 2m and m be even. If p(t) satisfies

d

dt
(p(t)tn+(m− 1

2
)(α−1)) ≤ 0, t ≥ t0, (3.22)

and in addition

lim
t→∞

p(t)tn+(m− 1
2
)(α−1) = k > 0, (3.23)

then every solution y(t) of (En
1 ) satisfying y(i)(t0) = 0 for 0 ≤ i ≤ m − 1 and

|y(m)(t0)| sufficiently large is oscillatory.

Proof. We proceed in the same manner as for Theorem 3.1 with a solution y(t)
of (En

1 ) satisfying the initial conditions (3.2). In this case, since m is even

(−1)m+1 1
(2m)!

Γ
(2m)
n (h) = −1, by (3.20), we find

F (∞) ≤ F (x0) = −1

2
|w(m)(x0)|2 = −1

2
t0c

2. (3.24)

We claim that F (∞) is bounded from below by a constant independent of c
in which case the desired contradiction follows by choosing c sufficiently large.
In other words, we need to establish (3.17) and (3.18) with assumptions (3.22)
and (3.23) replacing (3.1).

Suppose that y(t) is a nonoscillatory solution satisfying (3.2) and (3.3). Using
(3.23) we find, instead of (3.5), that

y(t) ≥ 1

l!
(t− T )lya(t)k

∞∫

t

· · ·
∞∫

s

s−n−h(α−1)(ds)n−l (3.25)

for t ≥ T0 ≥ t0. By choosing T1 > T0 ≥ t0, we obtain for sufficiently large t ≥ T1

y(t) ≥ K−1yα(t)kt−h(α−1), h = m− 1

2
, (3.26)

where K = 2 × l! × (l + h(α − 1))n and (a)n = a(a + 1)(a + 2) · · · (a + n − 1).
Since α > 1, (3.26) implies

y(t) ≤ K
1

α−1 k
1

1−α th, (3.27)

which in turn implies that either l < n
2

= m or y(l)(∞) = 0 when l = m (since if

y(l)(∞) = c1 > 0 =⇒ y(t) ≥ c2t
l , where c1, c2 > 0, then by (3.27) h = m− 1

2
≥ l
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and l < m; thus if l = m, then y(l)(∞) = 0). Now substituting (3.27) into (En
1 )

we find

y(n)(t) ≥ −K
1

α−1 k
α

1−α thαp(t) ≥ −K
1

α−1 k
1

1−α t−n+h. (3.28)

Using (3.2) (b), we have lim
t→∞

y(n−1)(t) = 0. So integrating (3.28) we obtain

y(n−1)(t) ≤ Cn−1t
h−n+1,

where Cn−1 = Kα/(1−α)k1/(1−α)(h − n + 1)−1. Repeating the above process, by
induction we find

(−1)i−1y(i)(t) ≤ Cit
h−i, i = l + 1, . . . , n, (3.29)

and

y(l)(t) ≤ y(l)(∞) + Clt
h−l, (3.30)

where, like in (3.10) and (3.11), Ci, i = l + 1, . . . , n, are positive constants
depending only on K, α, and k and independent of c. Since l ≤ m and h− l is
not an integer, we can integrate (3.30) to find once again

y(j)(t)t−h+j = O(1) as t →∞, (3.31)

for i = 1, 2, . . . , l − 1 and O(1) is again independent of c. We can then appeal
to the identity

w(i)(x) =
i∑

j=0

bj(h)y(j)(t)t−h+j

to conclude that w(i)(x) = O(1), x → ∞ for i = 0, 1, . . . , n. Thus F (∞) is
bounded from below by a constant independent of c and the proof of the theorem
is complete. ¤

In addition to Theorems 3.1 and 3.2, we can also establish results on the
existence of oscillatory solutions of the equations (En

1 ) for all n by a different
choice of initial conditions irrespective of whether m is even or odd.

Theorem 3.3. If p(t) satisfies (3.1), then the equation (En
1 ) has oscillatory

solutions.

Proof. Let y(t) be a solution of (En
1 ) satisfying the initial condition {y(i)(t0) :

i = 0, 1, . . . , m} so that
{

w(i)(x0) = 0, i = 1, 2, . . . ,m

w(x0) = t−h
0 y(t0) = c > 0.

(3.32)

By an argument similar to that used in proving Theorem 3.1, we assert that
condition (3.1) is sufficient to show that w(j)(x) = O(1) as x →∞ for all i, i =
0, 1, . . . , n, where O(1) is independent of c. In that case, we can also conclude
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from (3.20) that F (∞) is bounded from above by a constant independent of c.
Now we observe that

F (∞) ≥ F (x0) = Γn(h)
w2(x0)

2
+ f(x0)

wα+1(x0)

α + 1

= Γn(h)
c2

2
+ f(x0)

cα+1

α + 1
. (3.33)

Since α > 1 and f(x0) > 0, (3.33) gives the desired contradiction by choosing c
sufficiently large, which completes the proof. ¤

Next we shall show that under a stronger assumption than that of condition
(3.1) every proper solution y(t) of the equation (En

1 ) such that y(i)(t0) = 0 for
0 ≤ i ≤ m − 1, |y(m)(t0)| 6= 0 is oscillatory. When n = 2, this amounts to
proving the fact that every solution with a zero is oscillatory.

Theorem 3.4. Let n = 2m, where m is odd. Suppose that there exists a
constant ε > 0 such that

d

dt
(p(t)tn+(h−ε)(α−1)) ≥ 0, h = m− 1

2
, (3.34)

then every solution of (En
1 ) with the initial conditions y(i)(t0) = 0, 0 ≤ i ≤ m−1

and |y(m)(t0)| 6= 0 is oscillatory.

Proof. We may assume that ε < 1
2

in (3.34), since if it holds for some ε1 > 0,
then it also does so for all 0 < ε < ε1. Assume to the contrary that there exists a
proper, eventually positive solution y(t) with prescribed initial conditions, say,
y(t) > 0 for t ≥ T0 ≥ t0 and y(T0) = 0, y′(T0) ≥ 0 as in the proof of Theorem
3.1. Again by Kiguradze’s Lemma, we note that y(t) satisfies (3.3), where l
is an odd integer greater than one. Using (3.34) instead of (3.1), we obtain,
similarly to (3.6), the following estimate

y(t) ≤ K
1

α−1 Pε(t)
−1

α−1 th−ε, h = m− 1

2
, (3.35)

where K = 2× l!× (l + h(α − 1)), (a)n = a(a + 1) · · · (α + n− 1) and Pε(t) =

p(t)tn+(m− 1
2
−ε)(α−1). Substituting (3.35) into (En

1 ), we repeat the argument as
in Theorem 3.1 starting with (3.6) and ending with (3.12), namely,

y(i)(t) = O(th−ε−i), 0 ≤ i ≤ n− 1, (3.36)

where O(th−ε−i) is dependent only on K,α, P (t0) and independent of the con-
stant c.

Turning to the transformed equation (3.13), under the transformation w(x) =

t−m+ 1
2 y(t), x = log t, we note that f(x) = p(t)tn+(m− 1

2
)(α−1) = Pε(t)t

ε(α−1). Also,
by (3.35) we have

f(x)|w(x)|α+1 = Pε(t)t
ε(α−1)(t−hy(t))α+1 ≤ K

α+1
α−1 Pε(t)

2
1−α t−2ε = o(1), (3.37)

and by (3.36)

w(i)(x) = O(t−ε) = o(1) as x →∞, 0 ≤ i ≤ n. (3.38)
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Now, on account of (3.37) and (3.38), the energy function Fn(x) defined by
(3.19) satisfies the condition lim

x→∞
Fn(x) = 0. On the other hand, condition

(3.34) implies trivially that (3.1) holds and thus we have

0 = lim
x→∞

Fn(x) ≥ Fn(x0) = (−1)m+1Γ2m
n (h)w(m)(x0) =

1

2
t0|y(m)(t0)|2 > 0,

which is the desired contradiction. This completes the proof of the Theorem. ¤
Remark 3.2. Consider the special Emden–Fowler equation y(n)+tβ|y|α sgn y =

0 (En
0 ). Condition (3.1) requires that β ≥ −n − (n−1

2
)(α − 1) = −n−1

2
α − n+1

2
for the existence of oscillatory solutions of the equation (En

1 ). When n = 2,
β ≥ −α+3

2
, which also follows from the classical result of Jasny and Kurzweil in

Theorem B1. For n = 4, β ≥ −3α+5
2

, which is the same as given by Kura [28]
in Theorem D1 for the equation (En

2 ). Applying Theorem 4 to (E2
0), we obtain

that if β > −α+3
2

, then every solution with a zero is oscillatory. This conclusion
is weaker than the results of Heidel and Hinton [16], Coffman and Wong [5],
where it was shown that β ≥ −α+3

2
will suffice.

4. Existence of Oscillatory Solutions of (En
2 )

We now turn our attention to the existence of oscillatory solutions of the
equation (En

2 ). It is well known that (En
2 ) always has nonoscillatory solutions

because of the sign condition on p(t) that it is positive. Unlike equation (En
1 ),

a nonoscillatory solution of (En
2 ) may be singular, i.e., it may have finite escape

time in the sense that

lim
t→t∗

y(t) = +∞ or −∞, (4.1)

where t0 ≤ t∗ < ∞. On the other hand, since (En
2 ) is superlinear with α > 1,

any singular solution must be of second type, the term introduced by Kiguradze,
see [25; p. 205, Theorem 11.5], i.e.,

lim
t→t∗

sup |y(t)| = +∞, (4.2)

where t0 ≤ t∗ < ∞. To prove the existence of oscillatory solutions of (En
2 ), we

need to choose solutions satisfying a certain set of initial conditions so that they
be first of all not singular in the sense of (4.1) and could be extended throughout
the entire interval [t0,∞). One such a sufficient condition is given by Lemma 6.

Theorem 4.1. Let n = 2m and m be even. If p(t) satisfies (3.1) for t ≥
t0,then there exist a solution y(t) of (En

2 ) satisfying y(i)(t0) = 0 for 0 ≤ i ≤ m−1,
y(m)(t0) = c, which is oscillatory when c is sufficiently large.

Proof. By Lemma 7 there exists a solution y(t) of (En
2 ) with the prescribed ini-

tial condition (3.2) which is oscillatory or otherwise satisfies lim inf
t→∞

|y(n−1)(t)| =
0. In the later case we know that y(t) can be extended throughout the semi-
infinite interval [t0,∞). We shall show that this situation cannot occur under
condition (3.1). Without loss of generality, assume the contrary and let y(t) > 0



OSCILLATION AND NONOSCILLATION THEOREMS 789

for t ≥ t1 ≥ t0. From Kiguradze’s theorem, Lemma 6, and by the fact that y(t)
has a zero at t = t0, there exists an even integer l > 0 such that (2.26) holds
for some t2 ≥ t1. More precisely,




y(i)(t) > 0, 1 ≤ i ≤ l − 1,

(−1)iy(i)(t) > 0, l ≤ i ≤ n− 1,

0 ≤ y(l)(∞) = lim
t→∞

y(l)(t) < ∞, lim
t→∞

y(i)(t) = 0, l + 1 ≤ i ≤ n− 1.

Note that condition (3.1) implies (2.32), so every proper nonoscillatory solution
satisfies y(n−1)(t) < 0 for t ≥ t2 and lim

t→∞
y(n−1)(t) = 0 by Lemma 8. We now

define the constant K and the function P (t) by

K = 2× l!× (l + h(α− 1))n, P (t) = p(t)tn+h(α−1), (4.3)

where h = m− 1
2
, (a)n = a(a + 1) · · · (a + n− 1). Integrating (En

2 ) n− l times
from t to ∞ and l times from t2 to t, we obtain

y(t) =
l−1∑
i=0

y(i)(t2)

i!
(t− t2)

i +
1

l!
y(l)(∞)(t− t2)

l

+

t∫

t2

· · ·
s∫

t2

(ds)l

∞∫

s

· · ·
∞∫

s

p(σ)yα(σ)(dσ)n−l. (4.4)

Using (4.3), we can estimate (4.4) as follows:

y(t) >

t∫

t2

· · ·
s∫

t2

(ds)l

∞∫

t

· · ·
∞∫

s

p(σ)yα(σ)(dσ)n−l

≥ 1

l!
(t− t2)

l

∞∫

t

· · ·
∞∫

s

p(σ)yα(σ)(dσ)n−l

≥ 1

l!
(t− t2)

lyα(t)P (t)

∞∫

t

· · ·
∞∫

s

σ−n−h(α−1)(dσ)n−l

≥ K−1yα(t)P (t)t−h(α−1). (4.5)

Simplifying (4.5), we find

y(t) ≤ K
1

α−1 P (t)
−1

α−1 th, (4.6)

which when combined with (4.4) implies

either l < m or l = m with y(l)(∞) = 0. (4.7)

Substituting (4.6) into (En
2 ), we have

y(n)(t) ≤ Kα/(α−1)P (t)−1/(α−1)th−n, t ≥ t2 ≥ t0,

or, simply,
y(n)(t) ≤ Cnth−n, (4.8)
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where Cn = Kα/(α−1)P (t0)
−1/(α−1). Integrating (4.8) n− l− 1 times over [t,∞),

t ≥ t2, we obtain inductively

(−1)iy(i)(t) ≤ Cit
h−i, i = l + 1, . . . , n− 1, (4.9)

and
y(l)(t) ≤ y(l)(∞) + Clt

h−l, t ≥ t2, (4.10)

where Ci, i = l + 1, . . . , n − 1, are positive constants depending on K, α and
P (t0), but independent of c. We now integrate (4.10) l times from t2 to t and
obtain

y(i)(t)t−h+i = O(1), 1 ≤ i ≤ l − 1, (4.11)

as t →∞, where O(1) is dependent on Ci but independent of c.
We now turn to the transformed equation (3.14) and the energy function

defined by (3.19). If w(x) is a solution of (En
2 ), then condition (3.1) implies

that
d

dx
Fn(x) =

−1

α + 1

(
d

dx
(f(x)

)
|w(x)|α+1 ≤ 0, (4.12)

where f(x) = P (t) = p(t)tn+h(α−1). The initial conditions (3.2) imply by (3.16)
that w(i)(x0) = 0, 0 ≤ i ≤ m− 1. Hence Wn(x0) in (3.19) is equal to zero, and

so is Φn(x0). Since Γ
(2i−1)
n (h) = 0 for 1 ≤ i ≤ m, In(x) ≡ 0 for all x. Note that

m is even and so Sn(x0) = 1
2
(−1)m+1|w(m)(x0)|2. From (4.12) we deduce

O(1) = Fn(∞) ≤ Fn(x0) = Sn(x0) =
−1

2
|w(m)(x0)|2 = −1

2
t0c

2. (4.13)

Now that Fn(∞) is bounded from below by a constant independent of c because
w(i)(x) = O(1), 0≤ i ≤ n, by (4.11). Hence, by choosing c sufficiently large in
(4.13), we obtain the desired contradiction. ¤

Remark 4.1. For n = 4, Theorem 4.1 reduces to the result of Kura [28; p. 658,
Theorem 3].

Theorem 4.2. Let n = 2m and m be odd. If p(t) satisfies (3.25) and (3.26)
in Theorem 3.2, then there exists a solution y(t) of (En

2 ), satisfying the initial
condition (3.2), which is oscillatory when |y(m)(t0)| is sufficiently large.

Proof. We proceed in the same manner as in Theorem 4.1 and by a similar
argument based upon Theorem 3.2 but applied to equation (En

2 ), we conclude
(4.11) which implies that the solution w(x) of the transformed equation (3.14)
satisfies w(i)(x) = O(1), 0 ≤ i ≤ n, where O(1) depends only on the constants
K,α, and P (t0) as given in (4.3) but is independent of c.

Now condition (3.22) implies that condition (3.20) holds for the energy func-
tion and Fn(x) is nondecreasing. Similarly to Theorem 4.1, we have Fn(x0) =
Sn(x0) = 1

2
(−1)m+1|w(m)(x0)|2. Since m is odd, we find by (3.16)

Fn(x0) =
1

2
|w(m)(x0)|2 =

1

2
t0c

2 ≤ Fn(∞) = O(1). (4.14)

Choosing c sufficiently large in (4.14), we obtain the desired contradiction and
complete the proof. ¤
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We can use the same method as the one by which we proved Theorem 3.5 to
obtain for the equation (En

2 ) the following result.

Theorem 4.3. Let n = 2m, where m is odd. Suppose that p(t) satisfies
for some ε > 0, condition (3.34), then every proper solution of (En

2 ) such that
y(i)(t0) = 0, 0 ≤ i ≤ m− 1 and y(m)(t0) 6= 0 is oscillatory.

Remark 4.2. When n = 4, Theorem 4.3 reduces to Theorem 4 in [28] by
Kura.

Remark 4.3. In the book by Kiguradze and Chanturia [25; p. 236, Theorem
15.5] we find a result which gives the existence of oscillatory solutions for the
equations (En

1 ) and (En
2 ) for n = 2m and n > 1:

(i) if m is odd, then
∫∞

tn+α−2p(t)dt = ∞ implies that (En
2 ) has an (m− 1)

parameter family of oscillatory solutions;
(ii) if m is even, then

∫∞
tn−1p(t)dt = ∞ implies that (En

1 ) has an m param-
eter family of oscillatory solutions.

Kiguradze and Chanturia’s result is also valid when n is odd. In case n is
even, statement (ii) is already covered by Theorem F of Ličko and Švec [32],
which in fact guarantees that all solutions of (En

1 ) are oscillatory when m is
odd. As for an odd m, statement (i) can be compared with Theorem 4.2. Let
p(t) = tβ, then (i) requires that β ≥ −n− α + 1. On the other hand, condition
( 3.1) and Theorem 4.2 require that β ≥ −n− (m− 1

2
)(α− 1) for (En

2 ), which
is implied by β ≥ −n− α + 1 when m > 1.

5. Nonoscillatory Solutions and Nonoscillation

In this section, we study nonoscillatory solutions of both equations (En
1 )

and (En
2 ) and prove that solutions bounded by certain powers of t must be

nonoscillatory. Unlike the second order equation (E2
1), there is no known result

on the nonoscillation of (En
1 ) for n ≥ 4. On the other hand, the equation (E2

2) is
nonoscillatory without additional assumptions on p(t) except for p(t) > 0. There
is also but one result on the nonoscillation of (E4

2) which is given by Kura [28]
in Theorem D1 referred to in Section 1. Kura proved that the equation (E4

2) has
no proper oscillatory solutions. So, strictly speaking, Theorem D1 states that
the equation (E4

1) is “properly” nonoscillatory. For definiteness, throughout
this section we shall assume that solutions of (En

1 ) and (En
2 ) are always proper.

Returning to the equation (En
1 ), it is known that for n = 2 there are numerous

results on the nonoscillation of (E2
1) (e.g., Gollwitzer [13], Wong [42], Erbe [7],

Erbe and Lu [10]). Theorems C1 and C2 referred to in Section 1 are however the
only two known results which are sharp in the sense that when the condition
on p(t) is relaxed by setting ε = 0, the equation (E2

1) has proper oscillatory
solutions. It is useful to recall that the proofs of Theorems C1 and C2 depend
heavily on a certain a priori bound on the oscillatory solutions of (E2

1) in terms
of certain powers of t using only the monotonicity conditions on p(t). This is a
characteristic typical of second order equations. That this is not available for
higher order equations, was demonstrated by the fourth order linear equation
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y(iv) + p(t)y = 0 which can have oscillatory solutions growing faster than any

powers of t. Indeed, the fourth order equation y(iv) + k̃t−4y = 0 which has
solutions in the form y(t) = tλ, where λ are the zeros of the algebraic equation

λ(λ− 1)(λ− 2)(λ− 3) + k̃ = 0. For 0 < k̃ < 1 there are four real zeros, but for

k̃ > 1 the four zeros are

λ1 = λ2 =
3

2
−

(
5

4
± i

√
k̃ − 1

)1/2

and

λ3 = λ4 =
3

2
+

(
5

4
± i

√
k̃ − 1

)1/2

,

where λi denotes the complex conjugate of λi. Clearly, λ3, λ4 grow without
bound when k̃ becomes large, and therefore it is not possible to impose a bound
on λ without restricting the value of k̃. By contrast, solutions of the second
order Euler equation y′′ + kt−2y = 0 are bounded by the power t1/2 irrespective
of the value of k. It is therefore natural to introduce the concept of “wildly
oscillatory ” solutions. An oscillatory solution of (En

1 ) and (En
2 ) is said to be

wildly oscillatory with respect to λ > 0 if

lim sup
t→∞

t−λ|y(t)| = ∞. (5.1)

Thus, by definition, a wildly oscillatory solution must be proper. Furthermore,
if a solution y(t) is wildly oscillatory with respect to λ then it is also wildly
oscillatory with respect to µ for any µ < λ.

We note that every solution y(t) of (En
1 ) or (En

2 ) can also be considered as a
solution of the linear equations

z(n) + p(t)|y(t)|α−1z = 0 (5.2)

and
z(n) − p(t)|y(t)|α−1z = 0. (5.3)

It is well known that the linear nth order equation

z(n) + q(t)z = 0 (5.4)

is nonoscillatory if either lim
t→∞

tnq(t) = 0 [25, p. 56, Corollary 2.9] or
∞∫

tn−1|q(t)|dt < ∞ ([6, p. 86, Corollary 6.22]). These conditions are related
to the so-called de la Vallee Poussin’s disconjugacy criteria, see, e.g., the papers
by Swanson [38] and Willett [40]. A solution z(t) of the linear equation (5.4) is
said to be disconjugate on [t0,∞) if it has at most n−1 zeros. Equation (5.4) is
said to be eventually disconjugate if there exists T > t0 such that all its solutions
are disconjugate on [T,∞). Clearly, if equation (5.4) is eventually disconjugate
on [t0,∞), then it is also nonoscillatory. For the binomial equation (5.4), the
converse is also true, i.e., nonoscillation implies eventual disconjugacy. This was
proved by Nehari [34] for even n and the odd case was considered by Elias in [6].
Therefore, the criteria for eventual disconjugacy of (5.4) imply nonoscillation
and vice versa. When y(t) of (En

1 ) or (En
2 ) is not wildly oscillatory, i.e., y(t)
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is bounded by a power of t, then we can use the linear equation (5.4) to show
that it is nonoscillatory. More specifically, if y(t) satisfies |y(t)| ≤ M0t

λ and

lim
t→∞

p(t)tn+λ(α−1) = 0, (5.5)

then y(t) is nonoscillatory. Indeed, our first result asserts a somewhat stronger
conclusion in the absence of wildly oscillatory solutions.

Theorem 5.1. Let λ > 1 and p(t) satisfy (5.5), then every proper solution
of (En

1 ) or (En
2 ) is either nonoscillatory or satisfies for any µ, 0 < µ < λ,

lim sup
t→∞

t−µ+i|y(i)(t)| = ∞ (5.6)

for i = 0, 1, . . . , n.

Remark 5.1. Clearly, every bounded solution of (En
1 ) and (En

2 ) does not
satisfy (5.6) and therefore must be nonoscillatory. In a restricted sense, this is
a nonoscillation result concerning higher order equations (En

1 ) and (En
2 ), valid

for all bounded solutions. Some related results are given by Lovelady in [33].

Proof of Theorem 5.1. Let y(t) be a proper oscillatory solution of (En
1 ) or (En

2 )
which does not satisfy (5.6). We shall prove that y(t) is nonoscillatory. Suppose
that for some i, 0 ≤ i < n, we have

lim sup
t→∞

t−µ+i|y(i)(t)| = Ki < ∞, (5.7)

where 0 < µ < λ, or y(i)(t) = O(tµ−i) as t → ∞. When µ is not an integer,
it is easy to see that y(j) = O(tµ−j) as t → ∞ for j = 0, 1, . . . , i since y(t) is
oscillatory. When µ is an integer, say, µ = j − 1, then y(j)(t) = O(tλ−j) for
j = 0, 1, . . . , i, since µ < λ. In particular, y(t) = O(tλ) as t →∞. Using this in
either equation (En

1 ) or equation (En
2 ), we deduce that

y(j)(t) = O(tλ−j), j = 0, 1, . . . , n, (5.8)

as t → ∞. Note that y(t) also satisfies the related nth order linear equations
(5.1) and 5.2). Using (5.5) and (5.8) with j = 0 and applying the well known
nonoscillation criteria lim

t→∞
tnq(t) = 0 for equation (5.4) to equations (5.2) and

(5.3), we conclude that y(t) is nonoscillatory. This completes the proof of the
theorem. ¤

We now turn to a more delicate problem when condition (5.5) is replaced by

lim
t→∞

p(t)tn+λ(α−1) = k > 0, (5.9)

where λ > 0. This is satisfied in the case of the Euler equation with q(t) =
kt−n and α = 1. In this case we have the nonoscillation of equation (5.4) if

k ≤
m∏

j=1

(j − 1
2
)2. For large values of k, the Euler equations z(n) + kt−nz =

0 and z(n) − kt−nz = 0 always have oscillatory solutions, see, e.g., [19] by
Jones. So when we impose condition (5.9) on the linear equations (5.2) and
(5.3), i.e., on (En

1 ) and (En
2 ), we cannot determine the nonoscillation of their
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solutions even if they are bounded by tλ, i.e., y(t) = O(tλ), t → ∞. However,
if we suitably restrict λ in the neighborhood m − 1

2
, the point of reflection

about which the polynomial Γn(λ) is symmetric, then we can prove that such
solutions are nonoscillatory for equations (En

1 ) and (En
2 ) with α > 1. This is

a nonlinear phenomenon of superlinear equations, since in the linear case we
can have oscillatory solutions of the Euler equation satisfying (5.9) which grow
faster than any power tλ, λ > m − 1

2
. We are now ready to prove our main

results concerning nonoscillatory solutions.

Theorem 5.2. Let n = 2m with m even. Suppose that p(t) satisfies (5.9)
and also

d

dt
(p(t)tn+λ(α−1)) ≤ 0, (5.10)

where m− 1
2

< λ < m, then every proper solution of (En
2 ) is nonoscillatory or

satisfies
lim sup

t→∞
t−λ+i|y(i)(t)| = ∞, i = 0, 1, . . . , n. (5.11)

Remark 5.2. For n = 4, Theorem 5.2 reduces in part to Kura’s [28] Theorem
D2, where 0 < ε < α− 1. We note for Kura’s Theorem D2 that when ε ≥ α− 1,
his proof requires the boundedness of y′′(t). This can be proved for the equation
(E4

2) when p′(t) ≤ 0, which is implied by condition (5.10). When n = 2, the
condition that p′(t) ≤ 0 implies that the derivatives of solutions of (E2

1) are
bounded. For general nth order equations, this amounts to the requirement
that y(m)(t) be bounded when n = 2m. We know no such results for higher
order equations when n ≥ 6.

Proof of Theorem 5.2. Let y(t) be a proper oscillatory solution of (En
2 ) which

does not satisfy (5.11). We shall prove that y(t) must be nonoscillatory. Suppose
that for some i, 0 ≤ i ≤ n, we have

lim sup
t→∞

t−λ+i|y(i)(t)| = Ki < ∞. (5.12)

Since m− 1
2

< λ < m, we have −λ+i 6= 0 for i = 0, 1, . . . , n. Now because y(t) is

oscillatory, it is easy to see that y(j)(t) = O(tλ−j), as t →∞ for j = 0, 1, . . . , i.
In particular, y(t) = O(tλ) as t → ∞. Using this in equation (En

2 ), we can
deduce as in Theorem 3.1 that

y(j)(t) = O(tλ−j), t →∞,

for j = 0, 1, . . . , n. We consider the following equations under the “oscillation
preserving” transformation w(x) = t−λy(t), x = log t like (3.13) and (3.14),
namely,

n∑

k=0

Γ(k)
n (λ)

1

k!
w(k)(x) + f(x)|w(x)|α−1w(x) = 0, (5.13)

and
n∑

k=0

Γ(k)
n (λ)

1

k!
w(k)(x)− f(x)|w(x)|α−1w(x) = 0, (5.14)



OSCILLATION AND NONOSCILLATION THEOREMS 795

where f(x) = p(t)tn+λ(α−1). Introduce as in (3.19) the energy function

Fn(x) = Wn(x) + Sn(x) + In(x) + Φn(x), (5.15)

where




Wn(x) =
m−1∑
i=1

(−1)i+1w(i)(x)
n−i∑

k=i+1

1
(i+k)!

Γ
(i+k)
n (λ)w(k)(x),

Sn(x) = 1
2

m∑
i=1

(−1)i+1 1
(2i)!

Γ
(2i)
n (λ)(w(i))2,

In(x) =
m∑

i=1

(−1)i+1 1
(2i−1)!

Γ
(2i−1)
n (λ)

x∫
x0

(w(i))2dx, where x0 = log t0,

Φn(x) = 1
(1+α)

f(x)|w|α+1 − 1
2
Γn(λ)w2.

(5.16)

From (3.16) and (5.12), we conclude that w(i)(x) = O(1), x → ∞ for i =
0, 1, . . . , n. Hence the functions Wn(x) and Sn(x) are also bounded. By virtue
of (5.10) and (5.16), we can differentiate Fn(x) and obtain

d

dx
Fn(x) = − 1

α + 1
ḟ(x)|w|α+1 ≥ 0, (5.17)

where ḟ(x) = d
dx

f(x). By Lemmas 3 and 4, we know that (−1)i+1Γ
(2i−1)
n (λ) < 0

for i = 1, 2, . . . , m, since m − 1
2

< λ < m and n = 2m with m even. Therefore
(5.17) shows that In(x) is also bounded, hence

∞∫

x0

(w(i)(x))2dx < ∞, i = 1, 2, . . . , m, (5.18)

which together with w(i)(x) = O(1) for i = 2, 3, . . . ,m + 1 implies that

lim
x→∞

w(i)(x) = 0, i = 1, 2, . . . , m. (5.19)

We further claim that in fact

lim
x→∞

w(x) = 0. (5.20)

Introduce an auxiliary energy function Vn(x) by

Vn(x) = Wn(x) + Sn(x) + Φn(x), (5.21)

which on account of (5.17) satisfies

d

dx
Vn(x) = − 1

α + 1
ḟ(x)|w|α+1 −

m∑
i=1

(−1)i+1Γ(2i−1)
n (λ)(w(i)(x))2 ≥ 0. (5.22)

Hence Vn(x) is also nondecreasing as is Fn(x). Let {xn} be an increasing se-
quence of zeros of w(x) where xn →∞ as n →∞. Then by (5.22), lim

n→∞
Vn(xn) =

lim
x→∞

Vn(x) = 0, which by (5.19) in turn implies

lim
x→∞

Φn(x) = 0. (5.23)
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Suppose that lim sup
x→∞

w(x) ≥ δ > 0, where δ is a constant. Since w(x) is

oscillatory, for any N, 0 < N < δ, there exists a sequence {zk}∞k=1 such that
lim

n→∞
zk = ∞ and w(zk) = N. Choose N so small that

1

2
Γn(λ)− 1

α + 1
LNα−1 > 0

where L = f(x0) and satisfies by (5.10)

f(x) ≤ L, x ≥ x0.

We then have for all k

Φn(zk) =
1

2
Γn(λ)w(zn)2 − 1

α + 1
f(zn)|w(zn)|1+α

≥ N2

(
1

2
Γn(λ)− 1

α + 1
LNα−1

)
> 0

which contradicts (5.23). Hence lim
x→∞

w(x) = 0. Returning back to the original

variables, we see that y(t) = o(tλ) and

tnp(t)|y(t)|α−1 = p(t)tn+λ(α−1)o(1) = o(1) (5.24)

as t → ∞. Now once again y(t) can be viewed as an oscillatory solution of
the nth order linear equation (5.3). Thus conditions (5.9) and (5.24) imply
by the well-known nonoscillation criteria (Kiguradze and Chanturia [25; p. 56,
Corollary 2.9]) that equation (5.3) is nonoscillatory. This contradiction proves
the theorem. ¤

Theorem 5.3. Let n = 2m with m odd. Suppose that p(t) satisfies (5.9) and
also

d

dt
(p(t)tn+λ(α−1)) ≥ 0, (5.25)

where m− 1
2

< λ < m, then every proper solution of (En
2 ) is nonoscillatory or

otherwise satisfies (5.11).

Proof. The proof follows largely from that of Theorem 5.2. We need only to
note that when m is odd, Γn(λ) < 0 for m − 1

2
< λ < m, and in this case the

energy function Fn(x) satisfies instead of (5.17)

d

dx
Fn(x) = − 1

α + 1
ḟ(x)|w|α+1 ≤ 0,

where Fn(x) is nonincreasing and thus is hence from bounded above by Fn(x0).

Using Lemmas 3 and 4, we find (−1)i+1Γ
(2i−1)
n (λ) > 0 for i = 1, 2, . . . ,m for

m − 1
2

< λ < m, which implies (5.18) and hence (5.19), since the conclusion

that w(i)(x) = O(1) as x → ∞ can be derived as in the proof of Theorem 5.2
using (5.9) but without using condition (5.10). To prove that lim

x→∞
w(x) = 0, we

proceed again with the auxiliary energy function Vn(x) defined by (5.21) and
note that, by condition (5.25), Vn(x) is nonincreasing. Let {xn} be an increasing
sequence of zeros of w(x). Then lim

j→∞
Vn(xj) = 0 implies lim

x→∞
Vn(x) = 0 and
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hence lim
x→∞

Φn(x) = 0. Repeating the argument starting with (5.23), we can

similarly deduce limx→∞w(x) = 0. The remaining part of the proof repeats the
proof of Theorem 5.2. ¤

Returning to the equation (En
1 ), it is clear that the method used in proving

the nonoscillation of solutions in Theorem 5.2 can be adopted to prove

Theorem 5.4. Let n = 2m with m odd. Suppose that p(t) satisfies (5.9)
and (5.10), where m − 1

2
< λ < m, then every proper solution of (En

1 ) is
nonoscillatory or otherwise satisfies (5.11).

Theorem 5.5. Let n = 2m with m even. Suppose that p(t) satisfies (5.9)
and (5.25), where m − 1

2
< λ < m, then every proper solution of (En

1 ) is
nonoscillatory or otherwise satisfies (5.11).

The proofs of Theorems 5.4 and 5.5 are similar to those of Theorems 5.2 and
5.3 and are left for the interested reader.

When p(t) does not satisfy condition (5.9) and is nevertheless small for large
values of t, we can establish a nonoscillation theorem for solutions with small
initial values, namely

Theorem 5.6. Assume that
∞∫

t0

t(n−1)αp(t)dt < ∞ (5.26)

and y(t) is a proper solution of the equation (En
1 ) or (En

2 ) such that

n−1∑

k=0

1

T n−k−1

y(k)(T )

k!
< M(T ) (5.27)

for some T ≥ t0, where

M(T ) =


 α− 1

(n− 1)!

∞∫

T

p(s)s(n−1)αds




1/(1−α)

. (5.28)

Then y(t) is nonoscillatory.

Proof. Integrating the equation (En
1 ) or (En

2 ) from T to t yields

y(t) =
n−1∑

k=0

y(k)(T )

k!
(t− T )k ± 1

(n− 1)!

t∫

T

(t− s)n−1p(s)yα(s) sgn y(s)ds. (5.29)

If we let v(t) = |y|
tn−1 , then dividing (5.29) by tn−1 we get

v(t) ≤
n−1∑

k=0

y(k)(T )

k!T n−k−1
+

1

(n− 1)!

t∫

T

s(n−1)αp(s)vα(s)ds.
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So

0 ≤ v(t) ≤ C +
1

(n− 1)!

t∫

T

s(n−1)αp(s)vα(s)ds,

where C =
∑n−1

k=0
y(k)(T )

k!T n−k−1 . By the Gronwall’s inequality, we have

v(t) ≤

C1−α +

1− α

(n− 1)!

t∫

T

s(n−1)αp(s)ds




1/(1−α)

. (5.30)

In view of (5.27), we conclude from (5.30) that v(t) is bounded on [T,∞). This
fact means that

|y(t)| ≤ ktn−1, for some k > 0 and t ≥ T. (5.31)

Now assume to the contrary that y(t) is oscillatory and satisfies the linear
equation

z(n) ± p(t)|y(t)|α−1z = 0. (5.32)

Using (5.31), we obtain
∞∫

T

sn−1p(s)|y(s)|α−1ds ≤ kα−1

∞∫

T

s(n−1)αp(s)ds < ∞

which implies that equation (5.32) is nonoscillatory, see Elias[6, p. 86, Corollary
6.22]. This is a contradiction and the proof is complete. ¤

Remark 5.3. We note that Theorem 5.6 is also valid when n is odd. Indeed
when n = 3, it reduces to a result of Erbe and Rao [9; p. 477, Theorem 3.1].

6. Concluding Remarks

In this last section, we give a few comments on the current status of our
knowledge of Emden–Fowler equations of even order with regard to Classifi-
cation Problems (III) and (IV) mentioned in Section 1, i.e., the existence of
oscillatory solutions under the assumption of co-existence of nonoscillatory so-
lutions and that of nonoscillation. It is also hoped that these remarks will
present open problems for further research.

1. For Problem (III) relating to the existence of oscillatory solutions we im-

pose certain monotonicity conditions on the function ϕ(t) = tn+(m− 1
2
)(α−1)p(t).

This brings us to composition of the equations (En
1 ) and (En

2 ) with the nth or-
der Euler equation, where the function ϕ(t) becomes tnp(t), and an application
of the well-known oscillation and nonoscillation criteria, see, e.g., [6; p. 130,
Theorem 8.37], or [25; p. 56, Corollary 2.9]. For n = 2, we have recently shown
that the condition ϕ′(t) ≥ 0 can be relaxed to ϕ′−(t) ∈ L1(t0,∞), see Ou and
Wong [36]. We cannot obtain a similar result for the equations (En

1 ) and (En
2 )

when n ≥ 4.
2. For Problem (IV) on the nonoscillation of (En

1 ) and (En
2 ), we find only

the results of Kura [28] for the equation (E4
2) and it will be a real challenge
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to find another nonoscillation theorem for higher order equations. Even when
we restrict our attention to solutions bounded by powers of t, our results are
fragmentary is a sense in that we require that m− 1

2
< λ < m. When a solution

y(t) of either (En
1 ) or (En

2 ) is bounded by tλ for m− 1
2

< λ < m, , we have shown
that if p(t) satisfies condition (5.9) together with an appropriate monotonicity
condition, then y(t) is nonoscillatory without any restriction on the constant
k in (5.9). This is a nonlinear feature not characteristic of the linear Euler
equation z(iv) + kt−4z = 0 which has oscillatory solutions when k > 1. When
n = 4, we have shown in our earlier paper [37] that the range of λ can be
extended to an interval with endpoints being the two furthest roots of the
third order polynomical Γ′4(λ) = 0. Unfortunately, for higher order equations,

the derivatives Γ
(k)
n (λ) lose the desired alternating sign property described in

Lemma 3(a), 3(b), which is used throughout this paper. Indeed, the nearest
zero of Γ′n(λ) from λ = m− 1

2
, where Γ′n(m− 1

2
) = 0, is larger than m + 1

2
, and

approaches m + 1
2

when n becomes large, see Lemma 3(e). It is therefore of
interest to prove similar results for solutions of both (En

1 ) and (En
2 ) which are

bounded by tλ for λ outside the range, m− 1
2

< λ < m when n ≥ 6.
3. A similar question concerning the monotonicity condition on Ψ(t) =

p(t)tn+λ(α−1),m − 1
2

< λ < m, for nonoscillation remains open for the equa-
tion (En

1 ) when n ≥ 4. In the case of (E2
1), it was recently shown that the

condition Ψ′(t) ≤ 0 can be improved to that of Ψ′
+ ∈ L1(t0,∞), see Wong [44].

4. In Section 5, for the linear equation (5.32) the eventual disconjugacy is
equivalent to nonoscillation. It is not known whether the same is true for the
nonlinear equations (En

1 ) and (En
2 ) when n ≥ 2.

5. For the linear equation y(iv) + p(t)y = 0, p(t) > 0, it is known that either
all solutions oscillate or none do (see [35] by Leighton and Nehari). This is not
true when n ≥ 6 ([19] by Jones, cf. also [17] by Hunt). Find a condition on p(t)
such that this is true for the nonlinear equation (E4

1).
6. Problems regarding classifications (III) and (IV) for equations more com-

plicated than the equations (En
1 ) and (En

2 ) remain at large. Indeed, we know
no such results for second order equations such as

(i) equations with delay

y′′(t) + p(t)|yα(t− 1)| sgn y(t− 1) = 0;

(ii) equations with linear damping

y′′(t) + r(t)y′(t) + p(t)|y(t)|α sgn y(t) = 0;

(iii) equations under forcing

y′′(t) + p(t)|y(t)|α sgn y(t) = e(t).

The classification of these equations with respect to (I) and (II) can be found
in a recent book of Agarwal, Grace, and O’Regan [1].

7. Rather simple equations which may commonly occur still fail to be classi-
fied into (III) and (IV). Below we give two cases as examples:
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(i) Consider y(iv) + e−xy3 = 0. This equation is simple enough and by Licko
and Svec’s Theorem F we know it must have nonoscillatory solutions. Since
the coefficient function is exponentially small, we would expect that in fact all
solutions are nonoscillatory. We are unaware of any results which can be applied
to deduce this conclusion. The same applies to all higher order equations.

(ii) Consider y(iv) = e−x(sin x+ 1
2
)y3. Without the term “sin x”, this equation

is nonoscillatory by Theorem D2 of Kura [28]. In this case, q(t) does not have
the definite sign and all the existing results are not applicable. The numerical
results for a limited range of initial conditions indicate that this equation is
again nonoscillatory.

8. When p(t) is not of definite sign, the oscillation of all solutions of (En
1 ) like

Theorem F is known only when n = 2, see [21] by Kiguradze for an extension
of Atkinson’s Theorem A. It will be of interest to establish similar results for
higher order equations.

9. Finally, we should point out that the results given in this paper are based
upon the techniques related to the superlinear equations (En

1 ) and (En
2 ) with

α > 1. The sublinear case, i.e., when 0 < α < 1, has not been considered
although some of the nonoscillation results could perhaps be reformulated in
order to be valid for sublinear equations too. Likewise, the problem for odd order
equations is wide open except for the third order equation. On the existence of
oscillatory solutions on odd order equations, we refer to Heidel [15].
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3. M. Bartusěk, On existence of singular solutions of n-th order differential equations.
CDDE 2000 Proceedings (Brno). Arch. Math. (Brno) 36(2000), suppl., 395–404.

4. T. A. Chanturia, On the existence of singular and unbounded oscillating solutions
of differential equations of Emden-Fowler type. (Russian) Differentsial’nye Uravneniya
28(1992), No. 6, 1009–1022; English transl.: Differential Equations 28(1992), No. 6,
811–824

5. C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation of solutions of
generalized Emden–Fowler equations. Trans. Amer. Math. Soc. 167(1972), 399–434.

6. U. Elias, Oscillation theory of two-term differential equations. Mathematics and its
Applications, 396. Kluwer Academic Publishers Group, Dordrecht, 1997.

7. L. Erbe, Nonoscillation criteria for second order nonlinear differential equations. J. Math.
Anal. Appl. 108(1985), No. 2, 515–527.

8. L. H. Erbe and J. S. Muldowney, On the existence of oscillatory solutions to nonlinear
differential equations. Ann. Mat. Pura Appl. (4) 109(1976), 23–38.

9. L. H. Erbe and V. S. H. Rao, Nonoscillation results for third-order nonlinear differen-
tial equations. J. Math. Anal. Appl. 125(1987), No. 2, 471–482.

10. L. H. Erbe and Hong Lu, Nonoscillation theorems for second order differential equa-
tions. Funkcial. Ekvac. 33(1990), No. 2, 227–244.



OSCILLATION AND NONOSCILLATION THEOREMS 801

11. K. Foster, Criteria for oscillation and growth of nonoscillatory solutions of forced dif-
ferential equations of even order. J. Differential Equations 20(1976), No. 1, 115–132.

12. K. E. Foster and R. C. Grimmer, Nonoscillatory solutions of higher order differential
equations. J. Math. Anal. Appl. 71(1979), No. 1, 1–17.

13. M. E. Gollwitzer, Nonoscillation theorems for a nonlinear differential equation. Proc.
Amer. Math. Soc. 26(1970), 78–84.

14. R. Grimmer, Oscillation criteria and growth of nonoscillatory solutions of even order
ordinary and delay-differential equations. Trans. Amer. Math. Soc. 198(1974), 215–228.

15. J. W. Heidel, The existence of oscillatory solutions for a nonlinear odd order differential
equation. Czechoslovak Math. J. 20 (95)(1970), 93–97.

16. J. W. Heidel and D. B. Hinton, The existence of oscillatory solutions for a nonlinear
differential equation. SIAM J. Math. Anal. 3(1972), 344–351.

17. R. W. Hunt, Oscillation properties of even-order linear differential equations. Trans.
Amer. Math. Soc. 115(1965), 54–61.
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