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HOLOMORPHIC VECTOR BUNDLES ON
HOLOMORPHICALLY CONVEX COMPLEX MANIFOLDS

EDOARDO BALLICO

Abstract. Let X be a holomorphically convex complex manifold and
Exc(X) ⊆ X the union of all positive dimensional compact analytic sub-
sets of X. We assume that Exc(X) 6= X and X is not a Stein manifold.
Here we prove the existence of a holomorphic vector bundle E on X such
that (E|U)⊕Om

U is not holomorphically trivial for every open neighborhood
U of Exc(X) and every integer m ≥ 0. Furthermore, we study the existence
of holomorphic vector bundles on such a neighborhood U , which are not
extendable across a 2-concave point of ∂(U).
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1. Introduction

A famous theorem of Grauert states that on a complex Stein space the holo-
morphic and the topological classification of vector bundles are the same. In par-
ticular every holomorphic vector bundle on a one-dimensional or a contractible
Stein space is holomorphically trivial. A suitable extension of Grauert’s theorem
to 0-convex complex manifolds was proved by G. Henkin and J. Leiterer (see [5]
and [3]). J. Winkelmann proved that on any n-dimensional compact complex
manifold there is a non-trivial holomorphic vector bundle of rank at most n
([6] and [7], Theorem 7.13.1). Let X be a connected holomorphically convex
complex manifold and f : X → Z be its Remert reduction f : X → Z. We
recall that f is proper, Z is a Stein space, f∗(OX) = OZ and that the pair (Z, f)
is uniquely determined by these properties. Furthermore, f is surjective and for
any P ∈ X the fiber f−1(f(P )) is the union of all irreducible compact analytic
subsets of X containing P . X is Stein if and only if f is an isomorphism. X
is compact if and only if Z is a point. Let Exc(X) := Exc(f) := {P ∈ X : f
is not a local isomorphism at P} be the exceptional locus of f . Exc(f) is
the union of all the positive dimensional irreducible compact analytic sub-
sets of X. We will also call it the exceptional subset of X. Exc(X) = X if
and only if dim(Z) < dim(X). In this paper we will only consider the case
dim(X) = dim(Z). For the case 1 ≤ dim(X) − dim(Z) ≤ 2, see [2], Theorem
1.2. In Section 2 we will prove the following two theorems.

Theorem 1. Let X be a holomorphically convex complex manifold such
that Exc(X) 6= X and Exc(X) contains a hypersurface of X. Then there is a
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holomorphic line bundle L on X such that (L|U) ⊕Om
U is not holomorphically

trivial for every open neighborhood U of Exc(X) and every integer m ≥ 0.

Theorem 2. Let X be a holomorphically convex complex manifold such
that Exc(X) 6= X and Exc(X) contains no hypersurface of X. Then the tan-
gent bundle TX is not holomorphically trivial. Furthermore, for every open
neighborhood U of Exc(X) and every integer m ≥ 0 on U the vector bundle
TX|U ⊕O⊕m

U is not holomorphically trivial.

From Theorems 2 and 1 we obviously obtain the following result.

Corollary 1. Let X be a holomorphically convex complex manifold such
that Exc(X) 6= X. Then there exists a holomorphic vector bundle E on X such
that rank(E) ≤ dim(X) and for every open neighborhood U of Exc(X) and every
integer m ≥ 0 the holomorphic vector bundle E|U⊕O⊕m

U is not holomorphically
trivial.

For the results corresponding to Corollary 1 when X is 0-convex, i.e. when
f(Exc(X)) is a finite set, see [2], Theorem 1.2.

Now we will drop the assumption Exc(X) 6= X and consider the problem of
the existence of non-trivial holomorphic vector bundles on certain open subsets
of X. We will obtain a very easy extension of [1] to this set-up. Let U ⊆ X
be an open subset of X. We will say that U is f -saturated if U = f−1(f(U)).
Since f is proper and surjective, the set f(U) is open in Z for every f -saturated
open subset of X. Let X be a complex space and U ⊂ X be an open subset
of X, E a holomorphic vector bundle on U and P ∈ ∂(U). We will say that
E extends across P if there are an open neighborhood W of P in X and a
holomorphic vector bundle F on W such that F |U ∩W ∼= E|U ∩W . Since a
holomorphic vector bundle is locally trivial, by restricting, if necessary, W we
may assume that F is trivial. Hence E extends across P if and only if there is
an open neighborhood A of P in X such that E|U ∩ A is trivial.

Proposition 1. Let X be an irreducible holomorphically convex complex
space such that Exc(X) 6= X and its Remmert reduction f : X → Z has the
property that Z is biholomorphic open subset of Cn, n ≥ 3. Let U be an open
subset of X containing Exc(X) and P ∈ ∂(U) such that the domain f(U) is
2-concave at f(P ). Then there is a holomorphic vector bundle E on U such
that rank(E) = n− 1, E does not extend across P , but it extends across every
other point of ∂(U).

Proof. By [1], Theorem 1.1, there is a holomorphic vector bundle F on f(U)
such that F does not extend across f(P ), but it extends across all the other
boundary points of f(U) (seen as an open subset of C). In particular F extends
along all the boundary points of f(U) inside Z, except f(P ). The proof of [1],
Theorem 1.1, shows that there is such a vector bundle F with the additional
property rank(F ) = n − 1. Set E := f ∗(E). E is a rank n − 1 holomorphic
vector bundle on U . Since Exc(X) ⊂ X and P /∈ U , f is biholomorphic in a
neighborhood of P and hence f ∗(E) does not extend across P . Similarly (but
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this part is true even for more simpler reasons), f extends across all other points
of ∂(U). ¤

Remark 1. Take the set-up of Proposition 1 and its proof, but drop the as-
sumption “ Exc(X) ⊂ U ”. Assume only that U is f -saturated. The properness
of f , the fact that f∗(OX) = OZ and the proof of Proposition 1 show that there
is no f -saturated open subset W of P in X such that f ∗(F )|W ∩ U is trivial.

By the proofs of Proposition 1, Remark 1 and [1], Theorem 1.2, we immedi-
ately get the following result.

Proposition 2. Let X be a holomorphically convex complex space, f : X → Z
its Remmert reduction, U an open f -saturated subset of X and P ∈ ∂(U) such
that f(U) is 2-concave at f(P ) and Z has dimension at least three at P . Then
there exists a holomorphic vector bundle E on U such that E extends across
every point of ∂(U)\{P}, but there is no f -saturated open neighborhood W of
f−1(f(P )) in X such that E|U ∩W is trivial. If Exc(X) ⊂ U , then E does not
extend across P .

2. The proofs

Proof of Theorem 1. By assumption, there is an irreducible component D of
Exc(X) which is a closed hypersurface of X. Since X is smooth, the sheaf ID,X

is a holomorphic line bundle, L, on X. Fix a neighborhood U of Exc(X) and an
integer m ≥ 0 and assume (L|U)⊕O⊕m

U trivial. Since L|U is the determinant of
(L|U)⊕O⊕m

U , L|U must be trivial. Hence its dual L∗|U is trivial. Hence there is
a holomorphic function g on U whose zero-locus is scheme-theoretically exactly
D. Since Exc(U) ⊂ U and f∗(OX) = OZ , f(U) is an open subset of Z and there
is a holomorphic function h on f(U) such that g = h ◦ f . Since X is normal, Z
is normal and in particular every local ring OZ,Q, Q ∈ Z, is an integral domain.
We have f(D) = {h = 0}. Notice that {h = 0} is an effective Cartier divisor
of Z and hence it has pure codimension one in Z at each of its points. Since
D ⊆ Exc(X), we have dim(f(D)) < dim(D) = dim(X) − 1 = dim(Z) − 1, a
contradiction. ¤

Proof of Theorem 2. Fix an integer m ≥ 0 and assume the existence of
an open neighborhood U of Exc(X) such that TU ⊕ O⊕m

U is trivial. Since
U\Exc(X) ∼= f(U)\f(Exc(X)), the restriction to f(U)\f(Exc(X)) of Θf(U) ⊕
O⊕m

f(U) is trivial, where Θf(U) denotes the tangent sheaf of f(U). By its very

definition Θf(U) is the dual of the cotangent sheaf of f(U) and in particular it
is isomorphic to a dual of a coherent analytic sheaf with rank dim(Z) at each
smooth point of f(U). In particular Θf(U) is the so-called reflexive sheaf. Since
X is smooth, it is normal. Hence the universal properties of the normalization
and of the Remmert reduction imply that Z is normal. On a normal complex
space any reflexive sheaf is uniquely determined by its restriction to an open
subset whose complementary is a closed analytic subset with codimension at

least two. Since the trivial vector bundle O⊕dim(X)+m
f(U) is an extension of Θf(U)⊕

O⊕m
f(U)|f(U)\f(Exc(X)), Θf(U) ⊕Of(U)

⊕m is trivial. Hence Θf(U) is locally free.
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Since dim(f(Exc(X))) < dim(Exc(X)) ≤ dim(X) − 2, f(U) is smooth ([4],
Corollary at p. 318). The holomorphic map f : U → f(U) is a holomorphic map
between smooth manifolds which is an isomorphism outside a closed analytic
subset of U with codimension at least two. This implies that f is an isomorphism
(use the determinant of the differential df : TX → f ∗(TZ)). By the universal
property of the Remmert reduction, this implies X is Stein, a contradiction.

¤
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