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SOLUTION OF A NONCLASSICAL PROBLEM OF
OSCILLATION OF TWO-COMPONENT MIXTURES

LEVAN GIORGASHVILI AND KETEVAN SKHVITARIDZE

Abstract. A general representation of solutions by six metaharmonic func-
tions is obtained for a system of homogeneous equations of oscillation of
two-component mixtures. The boundary value problem of oscillation of two-
component mixtures is investigated when the normal components of partial
displacement vectors and the tangent components of partial rotation vectors
are given on the boundary. Uniqueness theorems of the considered prob-
lem are proved. Solutions are obtained in terms of absolutely and uniformly
convergent series.
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1. Introduction

In the early 60s of the last century, C. Truesdell and R. Toupin formulated
in [20] the fundamental mechanical principles of a new model of a deformable
elastic medium with complex inner structure and thereby laid the foundation
for the continual theory of elastic mixtures. In subsequent years this theory
was generalized and developed in different directions. Based on kinematic and
thermodynamic principles, theories were created for two- and many-component
mixtures of such as fluid-fluid (Crochet and Naghdi [5], Atkin [2], Green and
Naghdi [9], [10], Green and Steel [8]), fluid-solid body (Crochet and Naghdi [5],
Atkin [2], Green and Naghdi [9], [10], Green and Steel [8] and solid body-solid
body (Crochet and Naghdi [5], Atkin [2], Green and Naghdi [9], [10], Green and
Steel [8], Khoroshun and Soltanov [12], Hill [11]).

In Natroshvili, Dzhagmaidze and Svanadze [17], static and dynamic problems
of the linear theory of a mixture of two isotropic elastic components are inves-
tigated by the method of a potential and singular integral equations. Atkin,
Chadwick and Steel [3] and Knops and Steel [13] deal with uniqueness theorems
for various linearized dynamic problems of the theory of anisotropic mixtures.

Questions as to the existence and uniqueness of weak solutions of mixed
static linear problems for mixtures of two nonhomogeneous anisotropic elastic
components were considered in Aron [1] and Borrelli and Patria [4]; in the former
work, the problem was studied by the method of functional analysis, while in
the latter by the variational method. In Khoroshun and Soltanov’s monograph
[12], along with theoretical questions, quite interesting concrete problems of
thermoelasticity were considered for two-component mixtures.
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In the present paper, we study a nonclassical boundary value problem of os-
cillation of two-component elastic mixtures with spherical cavity. A uniqueness
theorem is proved. Solutions of the problem are obtained in terms of absolutely
and uniformly convergent series.

2. Basic Equations

Let R3 be a three-component Euclidean space, and Ω+ ⊂ R3 be a finite
domain bounded by the surface ∂Ω, Ω+ = Ω+ ∪ ∂Ω, Ω− = R3 \ Ω+.

Denote by u′ = (u′1, u
′
2, u

′
3)
> and u′′ = (u′′1, u

′′
2, u

′′
3)
> the partial displacement

vectors; here > is the transposition symbol. In what follows, under the vector
we will mean the one-column matrix.

Homogeneous dynamic equations of two-component elastic mixtures are writ-
ten in the form [8], [17]

a1∆u′(x, t) + b1 grad div u′(x, t) + c∆u′′(x, t)

+ d grad div u′′(x, t) = ρ1
∂2u′(x, t)

∂t2
,

c∆u′(x, t) + d grad div u′(x, t) + a2∆u′′(x, t)

+ b2 grad div u′′(x, t) = ρ2
∂2u′′(x, t)

∂t2
.

Let us assume that the displacement components are periodic functions of
time, i.e., we can write them in the form u′(x, t) = u′(x) exp(−itσ), u′′(x, t) =
u′′(x) exp(−itσ), where σ ∈ R1 and i =

√−1. Then we obtain the following
system of homogeneous differential equations of stationary oscillation of two-
component elastic mixtures:

a1∆u′(x) + b1 grad div u′(x) + c∆u′′(x)

+ d grad div u′′(x) + ρ1σ
2u′(x) = 0,

c∆u′(x) + d grad div u′(x) + a2∆u′′(x)

+ b2 grad div u′′(x) + ρ2σ
2u′′(x) = 0,

(2.1)

where u′ = (u′1, u
′
2, u

′
3), u′′ = (u′′1, u

′′
2, u

′′
3) are partial displacement vectors; ρ1, ρ2

are partial mixture densities, and σ is an oscillation frequency,

a1 = µ1 − λ5, b1 = µ1 + λ5 + λ1 − ρ2

ρ
α′, a2 = µ2 − λ5,

b2 = µ2 + λ5 + λ2 +
ρ1

ρ
α′, c = µ3 + λ5, α′ = λ3 − λ4,

d = µ3 − λ5 + λ3 − ρ1

ρ
α′, ρ = ρ1 + ρ2,

λ1, λ2, . . . , λ5, µ1, µ2, µ3 are the elasticity moduli which satisfy the conditions
[17]

µ1 > 0, µ1µ2 − µ2
3 > 0, λ5 < 0, λ1 +

2

3
µ1 − ρ2

ρ
α′ > 0,
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(
λ1 +

2

3
µ1 − ρ2

ρ
α′

) (
λ2 +

2

3
µ2 +

ρ1

ρ
α′

)
>

(
λ3 +

2

3
µ3 − ρ1

ρ
α′

)2

.

From the above inequalities it follows that

d1 = (a1 + b1)(a2 + b2)− (c + d)2 > 0, d2 = a1a2 − c2 > 0.

Definition 2.1. The vector U = (u′, u′′)> defined in the domain Ω ⊂ R3 is
called regular if u′k, u

′′
k ∈ C2(Ω) ∩ C1(Ω), k = 1, 2, 3, Ω = Ω ∪ ∂Ω.

3. Expansion of Regular Solutions

Theorem 3.1. A regular solution U = (u′, u′′)> of the homogeneous oscilla-
tion equation (2.1) is represented as a sum

u′ =
4∑

j=1

αjVj, u′′ =
4∑

j=1

βjVj, (3.1)

where Vj, j = 1, 2, 3, 4, are regular vectors satisfying the conditions
(
∆ + k2

j

)
Vj = 0, j = 1, 2, 3, 4, (3.2)

rot Vj = 0, j = 1, 2, div Vj = 0, j = 3, 4, (3.3)

and, also,

αj = (c + d)k2
j , βj = ρ1σ

2 − (a1 + b1)k
2
j , j = 1, 2,

αj = ck2
j , βj = ρ1σ

2 − a1k
2
j , j = 3, 4;

(3.4)

k2
1 + k2

2 =
1

d1

[ρ1(a2 + b2) + ρ2(a1 + b1)] σ
2, k2

1k
2
2 =

ρ1ρ2σ
4

d1

,

k2
3 + k2

4 =
1

d2

(ρ1a2 + ρ2a1)σ
2, k2

3k
2
4 =

ρ1ρ2σ
4

d2

.

(3.5)

Proof. We rewrite system (2.1) as follows:

u′ =
4∑

j=1

αjVj, u′′ =
4∑

j=1

βjVj, (3.6)

where αj, βj, j = 1, 2, 3, 4, are written as (3.4), and

V1 =
1

(c + d)ρ1σ2(k2
2 − k2

1)k
2
1

grad(β2 div u′ − α2 div u′′),

V2 =
1

(c + d)ρ1σ2(k2
2 − k2

1)k
2
2

grad(α1 div u′′ − β1 div u′),

V3 =
1

cρ1σ2(k2
3 − k2

4)k
2
3

rot(β4 rot u′ − α4 rot u′′),

V4 =
1

cρ1σ2(k2
3 − k2

4)k
2
4

rot(α3 rot u′′ − β3 rot u′),

(3.7)

where k2
j , j = 1, 2, 3, 4, are written as (3.5).
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Since rot grad = 0 and div rot = 0, from (3.7) we obtain

rot Vj = 0, j = 1, 2, div Vj = 0, j = 3, 4.

The theorem will be proved, if we show that

(∆ + k2
j )Vj = 0, j = 1, 2, 3, 4.

The statement below is true [14].

Theorem 3.2. A regular solution of the system of homogeneous differential
equations (2.1) has continuous partial derivatives of any order at an arbitrary
point not belonging to ∂Ω.

By Theorem 3.2, to each equation of system (2.1) we can apply the operation
div; then, taking into account div grad ≡ ∆, we obtain

(a1 + b1)∆ div u′ + (c + d)∆ div u′′ + ρ1σ
2 div u′ = 0,

(c + d)∆ div u′ + (a2 + b2)∆ div u′′ + ρ2σ
2 div u′′ = 0.

(3.8)

After multiplying the first equation of system (3.8) by β2, and the second by
−α2 and summing the products, we have[

(a1 + b1)β2

ρ1σ2
− (c + d)α2

ρ2σ2

]
∆ div u′ +

[
(c + d)β2

ρ1σ2
− (a2 + b2)α2

ρ2σ2

]
∆ div u′′+

+ (β2 div u′ − α2 div u′′) = 0. (3.9)

By (3.4) and (3.5) we obtain

(a1 + b1)β2

ρ1σ2
− (c + d)α2

ρ2σ2
=

β2

k2
1

,

(c + d)β2

ρ1σ2
− (a2 + b2)α2

ρ2σ2
= −α2

k2
1

.

The substitution of these equalities into (3.9) gives

(∆ + k2
1)(β2 div u′ − α2 div u′′) = 0.

Hence, using the values v1 from (3.7) we obtain

(∆ + k1)v1 = 0.

After multiplying the first equation of system (3.8) by −β1, and the second
by α1 and summing the products, we have[

(c + d)α1

ρ2σ2
− (a1 + b1)β1

ρ1σ2

]
∆ div u′ +

[
(a2 + b2)α1

ρ2σ2
− (c + d)β1

ρ1σ2

]
∆ div u′′+

+ (α1 div u′′ − β1 div u′) = 0. (3.10)

By (3.4) and (3.5) we obtain

(c + d)α1

ρ2σ2
− (a1 + b1)β1

ρ1σ2
= −β1

k2
2

,

(a2 + b2)α1

ρ2σ2
− (c + d)β1

ρ1σ2
=

α1

k2
2

.
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The substitution of these equalities into (3.10) gives

(∆ + k2
2)(α1 div u′′ − β1 div u′) = 0.

This means that (∆ + k2)v2 = 0.
Applying the operation rot to both parts of each equation of system (2.1),

we obtain
a1∆ rot u′ + c∆ rot u′′ + ρ1σ

2 rot u′ = 0,

c∆ rot u′ + a2∆ rot u′′ + ρ2σ
2 rot u′′ = 0.

(3.11)

After multiplying the first equation of system (3.11) by β4, and the second
by −α4, we have

(
a1β4

ρ1σ2
− cα4

ρ2σ2

)
∆ rot u′

(
cβ4

ρ1σ2
− a2α4

ρ2σ2

)
∆ div u′′+

+ (β4 rot u′ − α4 rot u′′) = 0.

If in these equations we take into account that

a1β4

ρ1σ2
− cα4

ρ2σ2
=

β4

k2
3

,

cβ4

ρ1σ2
− a2α4

ρ2σ2
= −α4

k2
3

,

then we obtain

(∆ + k2
3)(β4 rot u′ − α4 rot u′′) = 0.

Taking into account the value of the vector V3 from (3.7), from the latter
equality we obtain (∆ + k2

3)V3 = 0.
In an analogous manner we prove that (∆ + k2

4)V4 = 0. ¤

Definition 3.3. A regular in Ω− solution U = (u′, u′′)> of the system of
homogeneous equations (2.1) satisfy the radiation condition if for the vectors
Vj given by equalities (3.7) the conditions

Vj(x) = o(1),

∂Vj(x)

∂R
− ikjVj(x) = o(R−1), j = 1, 2, 3, 4,

are fulfilled, where R is the length of the radius vector of the point x =
(x1, x2, x3); the derivative with respect to R is a partial derivative with re-
spect to the coordinate R of the point x. Ω− = R3 \ (Ω+), Ω+ is a finite domain
bounded by the surface ∂Ω.

The theorems below are true [7], [14], [16].

Theorem 3.4. If U = (u′, u′′)> is a regular solution of system (2.1) in Ω−

and satisfies the radiation condition, then

Vj(x) = O(R−1),
∂Vj(x)

∂R
− ikjVj(x) = O(R−2), j = 1, 2, 3, 4.
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Theorem 3.5. For the vector u = (u1, u2, u3) to be a solution of the system
of differential equations

(∆ + k2)u = 0, div u = 0,

in the domain Ω ⊂ R3, it is necessary and sufficient that it be represented in
the form

u(x) = rot rot(xχ1(x)) + rot(xχ2(x)),

where k is a constant, x = (x1, x2, x3), (∆ + k2)χj(x) = 0, j = 1, 2.

Theorem 3.6. For the vector u = (u1, u2, u3) to be a solution of the system
of differential equations

(∆ + k2)u = 0, rot u = 0,

in the domain Ω ⊂ R3, it is necessary and sufficient that it be represented in
the form

u(x) = grad χ(x),

where k is a constant, χ(x) is a metaharmonic function, i.e., (∆+k2)χ(x) = 0.

Let us prove the following theorem.

Theorem 3.7. For the vector U = (u′, u′′)> to be a solution of the system of
differential equations (2.1) in the domain Ω ⊂ R3, it is necessary and sufficient
that it be represented in the form

u′(x) = grad [α1Φ1(x) + α2Φ2(x)] + rot rot(xΨ3(x)) + rot(xΨ5(x)),

u′′(x) = grad [β1Φ1(x) + β2Φ2(x)] + rot rot(xΨ4(x)) + rot(xΨ6(x)),
(3.12)

where

Ψ2j+1(x) = α3Φ2j+1(x) + α4Φ2j+2(x),

Ψ2j+2(x) = β3Φ2j+1(x) + β4Φ2j+2(x), j = 1, 2,

Φj(x), j = 1, 2, . . . , 6, are scalar metaharmonic functions satisfying the equa-
tions

(∆ + k2
j )Φj(x) = 0, j = 1, 2, 3, 4, (∆ + k2

j )Φj+2(x) = 0, j = 3, 4, (3.13)

the constants αj, βj, k2
j , j = 1, 2, 3, 4, have form (3.4), (3.5).

Proof. We will prove the first part of the theorem. Let the vector U = (u′, u′′)>

be a solution of system (2.1). Then, by virtue of Theorem 3.1, it can be rep-
resented as (3.6), where αj, βj, j = 1, 2, 3, 4, have form (3.4), and the vectors
Vj, j = 1, 2, 3, 4, satisfy the system of differential equations (3.2), (3.3). The
constants k2

j , j = 1, 2, 3, 4, have form (3.5).
By virtue of Theorems 3.5 and 3.6, the vectors Vj, j = 1, 2, 3, 4, can be written

in the form
Vj(x) = grad Φj(x), j = 1, 2,

V3(x) = rot rot(xΦ3) + rot(xΦ5),

V4(x) = rot rot(xΦ4) + rot(xΦ6),

(3.14)

where the scalar functions Φj(x), j = 1, 2, . . . , 6, satisfy equations (3.13).
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If we substitute the values of the vectors Vj, j = 1, 2, 3, 4, into (3.6), then we
obtain representation (3.12). This completes the proof of the first part of the
theorem.

Substituting the values of the vectors u′(x) and u′′(x) from (3.12) into (2.1)
and using the identities

βj

[
ρ2σ

2 − (a2 + b2)k
2
j

]− (c + d)k2
j αj = 0, j = 1, 2,

βj

[
ρ2σ

2 − a2k
2
j

]− ck2
j αj = 0, j = 3, 4,

we ascertain that the vector U = (u′, u′′)> represented by (3.12) is a solution of
system (2.1). ¤

4. Formulation of the Problem. The Uniqueness Theorem

Denote by Ω+ the ball bounded by the spherical surface ∂Ω with center at
the origin and radius R, i.e., Ω+ = {x : x ∈ R3, |x| < R}, ∂Ω = {x : x ∈ R3,
|x| = R}, Ω− = R3 \ Ω+.

Problem (
σ

N)−. Find, a regular solution of system (2.1) in the domain Ω−,
which on the boundary ∂Ω satisfies the conditions

[n(z) · u′(z)]
−

= f
(1)
4 (z), [n(z) · u′′(z)]

−
= f

(2)
4 (z),

[n(z)× rot u′(z)]
−

= f (1)(z), [n(z)× rot u′′(z)]
−

= f (2)(z),
(4.1)

where f (j) = (f
(j)
1 (z), f

(j)
2 (z), f

(j)
3 (z)), j = 1, 2, f

(j)
k , j = 1, 2, k = 1, 2, 3, 4 are

the functions given on ∂Ω, n(z) is the outward unit normal with respect to Ω+

at a point z ∈ ∂Ω.

Near the point at infinity the vector U = (u′, u′′)> satisfies the radiation
condition.

We introduce the matrix differential operator A(∂x)

A(∂x) =




A(1)(∂x)
... A(2)(∂x)

. . . . . . . . . . . . . . . . . . . . .

A(3)(∂x)
... A(4)(∂x)




6×6

,

A(i)(∂x) =
[
A

(i)
kj (∂x)

]
3×3

, i = 1, 2, 3, 4,

(4.2)

where

A
(1)
kj = a1δkj∆ + b1

∂2

∂xk∂xj

,

A
(i)
kj = cδkj∆ + d

∂2

∂xk∂xj

, i = 2, 3,

A
(4)
kj = a2δkj∆ + b2

∂2

∂xk∂xj

,

δkj is Kronecker’s symbol and ∆ the Laplace operator.
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Denote by Ω the finite domain bounded by the surface ∂Ω ∈ Λ1(α), 0 < α ≤ 1
[14].

Theorem 4.1. If U = (u′, u′′)> is a regular vector in the domain Ω and
A(∂x)U is absolutely integrable in Ω, then∫

Ω

U · A(∂x)U dx =

∫

∂Ω

[U(z)]+ · [P (∂z, n)U(z)]+ds−
∫

Ω

E(U, U) dx, (4.3)

where the small line above the symbol indicates a complex-conjugate value,

U · PU = [(a1 + b1)(n · u′) + (c + d)(n · u′′)] div u′

+ [(c + d)(n · u′) + (a2 + b2)(n · u′′)] div u′′

− (a1u
′ + cu′′) · [n× rot u′]− (cu′ + a2u

′′) · [n× rot u′′], (4.4)

E(U, U) =
1

a1 + b1

[
|(a1 + b1) div u′ + (c + d) div u′′|2 + d1| div u′′|2

]

+
1

a1

[|a1 rot u′ + c rot u′′|2 + d2| rot u′′|2] . (4.5)

Proof. Let U = (u′, u′′)> and U = (u′, u′′)> be six-component complex-conjugate
vectors. We will consider the scalar derivative

U · A(∂x)U = (a1u
′ + cu′′) ·∆u′ + (cu′ + a2u

′′) ·∆u′′

+ (b1u
′ + du′′) · grad div u′ + (du′ + b2u

′′) · grad div u′′. (4.6)

After some transformations we obtain

u ·∆v = div(u div v)− div u div v + div[u× rot v]− rot u · rot v,

u · grad div v = div(u div v)− div u div v,

where u = (u1, u2, u3)
> and v = (v1, v2, v3)

> are three-component vectors.
Substituting these equalities into (4.6), we have

U · A(∂x)U = div
{

[(a1 + b1)u
′ + (c + d)u′′] div u′ +

[
(c + d)u′

+ (a2 + b2)u
′′] div u′′ + a1[u

′ × rot u′] + c[u′ × rot u′′]

+ c[u′′ × rot u′] + a2[u
′′ × rot u′′]

}− E(U, U), (4.7)

where E(U, U) has form (4.5).
Applying the Gauss–Ostrogradski formula, from (4.7) we obtain equality

(4.3), where

U · PU = n · {[
(a1 + b1)u

′ + (c + d)u′′
]
div u′ +

[
(c + d)u′

+ (a2 + b2)u
′′] div u′′ + a1[u

′ × rot u′] + c[u′ × rot u′′]

+ c[u′′ × rot u′] + a2[u
′′ × rot u′′]

}
.

If we use here the identity

n · [u× rot v] = −u · [n× rot v],

then U · PU takes form (4.4). ¤
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Since E(U, U) = E(U, U), (4.3) immediately implies

∫

Ω

[
U · A(∂x)U − U · A(∂x)U

]
dx

=

∫

∂Ω

[
U(z) · P (∂z, n)U(z)− U(z) · P (∂z, n)U)(z)

]+
dS. (4.8)

Theorem 4.2. If ∂Ω ∈ Λ1(α), 0 < α ≤ 1, then the homogeneous Problem

(
σ

N)−0 has only a trivial solution in the class of regular vectors.

Proof. Denote by B(0, R) the ball bounded by the sphere S(0, R) with center at
the origin and radius R. Let Ω−

R = Ω− ∩ B(0, R), where R > 0 is a sufficiently
large value such that ∂Ω ⊂ B(0, R). Applying (4.7) in the domain Ω−

R, we
obtain

∫

Ω−R

[
U · A(∂x)U − U · A(∂x)U

]
dx

=

∫

∂Ω

[
U(z) · P (∂z, n)U(z)− U(z) · P (∂z, n)U(z)

]−
dS

+

∫

S(0,R)

[
U · P (∂z, n)U − U · P (∂z, n)U

]
dS. (4.9)

Rewrite system (2.1) as

A(∂x)U + J σ2U = 0, (4.10)

where the operator A(∂x) has form (4.2),

J =




ρ1I
... 0

. . . . . . . . . . .

0
... ρ2I




6×6

, I = [δkj]3×3 .

By virtue of (4.10), the volume integral in equality (4.9) vanishes an so also

does the integral on ∂Ω due to the boundary conditions of Problem (
σ

N)−0 (f
(j)
4 =

0, f (j) = 0, j = 1, 2). As a result we obtain

∫

S(0,R)

[
U · P (∂z, n)U − U · P (∂z, n)U

]
dS = 0. (4.11)
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The following estimates are true [14]:

div Vj = ikj(n · Vj) + O(R−2), j = 1, 2,

rot Vj = ikj[n× Vj] + O(R−2), j = 3, 4,

(n · Vj) = O(R−2), j = 3, 4,

[n× Vj] = O(R−2), j = 1, 2,

(Vk · V j) = O(R−3), (V k · Vj) = O(R−3), k = 1, 2, j = 3, 4.

(4.12)

Using the vector identity

[a× [b× c] ] = b(a · c)− c(a · b),
from the second equality of (4.12) we have

[n× rot Vj] = −ikjVj + O(R−2), j = 3, 4, (4.13)

where n(z) is the outward unit normal with respect to B(0, R) at a point z ∈
S(0, R), the functions Vj satisfy equations (3.2) and (3.3).

If to (4.4) we apply formulas (3.1), the radiation condition and estimates
(4.12), (4.13), then we obtain

U · PU − U · PU = −2i
[
k1λ

2
1|(n · V1)|2 + k2λ

2
2|(n · V2)|2

+ k3λ
2
3|V3|2 + k4λ

2
4|V4|2

]
+ O(R−3), (4.14)

where

λ2
1 =

1

a1 + b1

{
[α1(a1 + b1) + β1(c + d)]2 + β2

1d1

}
> 0,

λ2
2 =

1

a1 + b1

{
[α2(a1 + b1) + β2(c + d)]2 + β2

2d1

}
> 0,

λ2
3 =

1

a1

[
(α3a1 + β3c)

2 + β2
3d2)

]
> 0,

λ2
4 =

1

a1

[
(α4a1 + β4c)

2 + β2
4d2)

]
> 0.

In deriving (4.14), the following identities have been used:

α2 [α1(a1 + b1) + β1(c + d)] + β2 [α1(c + d) + β1(a2 + b2)] = 0,

α1 [α2(a1 + b1) + β2(c + d)] + β1 [α2(c + d) + β2(a2 + b2)] = 0,

α4(α3a1 + β3c) + β4(α3c + β3a2) = 0,

α3(α4a1 + β4c) + β3(α4c + β4a2) = 0.

Using estimates (4.14) in (4.11), we obtain
∫

S(0,R)

[
k1λ

2
1|n · V1)|2 + k2λ

2
2|n · V2|2

+ k3λ
2
3|V3|2 + k3λ

2
4|V4|2

]
dS = O(R−1). (4.15)
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Passing to the limit in (4.15) as R →∞, we have

lim
R→∞

∫

S(0,R)

|(n · Vj)|2dS = 0, i = 1, 2,

lim
R→∞

∫

S(0,R)

|Vj|2dS = 0, i = 3, 4.

(4.16)

The next lemma holds true [6], [14], [18], [21].

Lemma 4.3. A regular in Ω− solution of the equation (∆+k2)u = 0, k2 > 0,
satisfying the radiation condition and the condition

lim
R→∞

∫

S(0,R)

|u(x)|2dxS = 0,

is identically zero.

This lemma was proved by several authors (Rellich [18], Freudenthal [6], I.
Vekua [22], Kupradze [14]).

We will prove the following statement.

Lemma 4.4. A regular in Ω− solution of the equation (∆ + λ2)V = 0,
rot V = 0, λ2 > 0, satisfying the radiation condition and the condition

lim
R→∞

∫

S(0,R)

|n · V (x)|2dxS = 0, (4.17)

is identically zero.

Proof. By virtue of Theorem 3.6, the vector V (x) can be written as

V (x) = grad Φ(x), (∆ + λ2)Φ(x) = 0.

Let (R, ϑ, ϕ) be the spherical coordinates of a point x ∈ S(0, R). Then the
metaharmonic function Φ(x) can be written in the form [19]

Φ(x) =
∞∑

k=0

k∑

m=−k

1√
R

H
(1)

k+ 1
2

(λR)Y
(m)
k (ϑ, ϕ)Amk,

where H
(1)

k+ 1
2

(λR) is a Hankel function of first kind, Amk is an arbitrary constant,

Y
(m)
k (ϑ, ϕ) has the form

Y
(m)
k (ϑ, ϕ) =

√
2k + 1

4π
· (k −m)!

(k + m)!
P

(m)
k (cos ϑ)eimϕ, (4.18)

P
(m)
k (cos ϑ) is an adjoint Legendre function of first kind, k-th power and m-th

order [19]. We have

n(x) · V (x) =
d

dR
Φ(x) =

∞∑

k=0

k∑

m=−k

d

dR

(
1√
R

H
(1)

k+ 1
2

(λR)

)
Y

(m)
k (ϑ, ϕ)Amk.
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From the properties of completeness and orthogonality of spherical functions
it follows by Parceval’s theorem that

2π∫

0

π∫

0

|R(n · V )|2 sin ϑ dϑ dϕ =
∞∑

k=0

k∑

m=−k

∣∣∣∣R
d

dR

(
1√
R

H
(1)

k+ 1
2

(λR)

)
Amk

∣∣∣∣
2

,

while condition (4.17) implies that

lim
R→∞

∞∑

k=0

k∑

m=−k

∣∣∣∣R
d

dR

(
1√
R

H
(1)

k+ 1
2

(λR)

)
Amk

∣∣∣∣
2

= 0,

and for each fixed k

lim
R→∞

R
d

dR

[
1√
R

H
(1)

k+ 1
2

(λR)

]
Amk = 0. (4.19)

When a real argument x > 0 has large values, the following asymptotic
formula is fulfilled for the Hankel function [19]:

H(1)
ν (x) =

√
2

πx
ei(x−π

2
ν−π

4
) + O(x−

3
2 ).

This asymptotic formula clearly implies that (4.19) holds true only for Amk =
0. This means V (x) = 0. ¤

Using Lemma 4.3 and 4.4, from (4.16) we obtain Vj(x) = 0, j = 1, 2, 3, 4,
x ∈ Ω−. Using the latter result in (3.1), we obtain u′(x) = 0, u′′(x) = 0,
x ∈ Ω−. This completes the proof of Theorem 4.2. ¤

5. Solution of Problem (
σ

N)−

A solution of Problem (
σ

N)− will be sought for in form (3.12), where the
functions Φj(x), j = 1, . . . , 6, are represented as

Φj(x) =
∞∑

k=0

k∑

m=−k

hk(kjr)Y
(m)
k (ϑ, ϕ)A

(j)
mk, j = 1, 2, 3, 4,

Φj+2(x) =
∞∑

k=0

k∑

m=−k

hk(kjr)Y
(m)
k (ϑ, ϕ)A

(j+2)
mk , j = 3, 4,

(5.1)

where A
(j)
mk, j = 1, . . . , 6, are the unknown constants, Y

(m)
k (ϑ, ϕ) has form (4.18),

kj, j = 1, 2, 3, 4, have form (3.5),

hk(kjr) =

√
R

r

H
(1)

k+ 1
2

(kjr)

H
(1)

k+ 1
2

(kjR)
.

We require of the functions Φj(x), j = 3, 4, 5, 6, to satisfy the conditions∫

∂Ω1

Φj(x) dS = 0, j = 3, 4, 5, 6, (5.2)
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where Ω1 is a sphere with center at the origin and radius R1 (R < R1 < +∞).
If we substitute the values of the function Φj(x), j = 3, 4, 5, 6, from (5.1) into

(5.2) and use the equality

∫

∂Ω1

Y
(m)
k (ϑ, ϕ) dS =

{
2
√

π R2
1 for k = m = 0,

0 for other values of k and m,

then we obtain A
(j)
00 = 0, j = 3, 4, 5, 6.

If we substitute the values of the function Φj(x), j = 1, . . . , 6, from (5.1) into
(3.12) and use the identity [7]

grad[a(r)Y
(m)
k (ϑ, ϕ)] =

da(r)

dr
Xmk(ϑ, ϕ) +

√
k(k + 1)

r
a(r)Ymk(ϑ, ϕ),

rot[xa(r)Y
(m)
k (ϑ, ϕ)] =

√
k(k + 1) a(r)Zmk(ϑ, ϕ),

rot rot[xa(r)Y
(m)
k (ϑ, ϕ)] =

k(k + 1)

r
a(r)Xmk(ϑ, ϕ)

+
√

k(k + 1)

(
d

dr
+

1

r

)
a(r)Ymk(ϑ, ϕ),

where a(r) is a function of r,

Xmk(ϑ, ϕ) = erY
(m)
k (ϑ, ϕ), k ≥ 0,

Ymk(ϑ, ϕ) =
1√

k(k + 1)

(
eϑ

∂

∂ϑ
+

eϕ

sin ϑ

∂

∂ϕ

)
Y

(m)
k (ϑ, ϕ), k ≥ 1,

Zmk(ϑ, ϕ) =
1√

k(k + 1)

(
eϑ

sin ϑ

∂

∂ϕ
− eϕ

∂

∂ϑ

)
Y

(m)
k (ϑ, ϕ), k ≥ 1,

(5.3)

|m| ≤ k, er, eϑ, eϕ are the normal unit vectors

er = (cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ),

eϑ = (cos ϕ cos ϑ, sin ϕ cos ϑ,− sin ϑ),

eϕ = (− sin ϕ, cos ϕ, 0),

then we obtain

u′(x) =
∞∑

k=0

k∑

m=−k

{
u

(1)
mk(r)Xmk(ϑ, ϕ) +

√
k(k + 1)

[
v

(1)
mk(r)Ymk(ϑ, ϕ)

+ w
(1)
mk(r)Zmk(ϑ, ϕ)

]}
,

u′′(x) =
∞∑

k=0

k∑

m=−k

{
u

(2)
mk(r)Xmk(ϑ, ϕ) +

√
k(k + 1)

[
v

(2)
mk(r)Ymk(ϑ, ϕ)

+ w
(2)
mk(r)Zmk(ϑ, ϕ)

]}
,

(5.4)
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u
(1)
mk(r) =

2∑
j=1

αj
d

dr
hk(kjr)A

(j)
mk +

4∑
j=3

αj
k(k + 1)

r
hk(kjr)A

(j)
mk, k ≥ 0,

v
(1)
mk(r) =

2∑
j=1

αj
1

r
hk(kjr)A

(j)
mk +

4∑
j=3

αj

( d

dr
+

1

r

)
hk(kjr)A

(j)
mk, k ≥ 1,

u
(2)
mk(r) =

2∑
j=1

βj
d

dr
hk(kjr)A

(j)
mk +

4∑
j=3

βj
k(k + 1)

r
hk(kjr)A

(j)
mk, k ≥ 0,

v
(2)
mk(r) =

2∑
j=1

βj
1

r
hk(kjr)A

(j)
mk +

4∑
j=3

βj

( d

dr
+

1

r

)
hk(kjr)A

(j)
mk, k ≥ 1,

w
(1)
mk(r) =

4∑
j=3

αj hk(kjr)A
(j+2)
mk , w

(2)
mk(r) =

4∑
j=3

βj hk(kjr)A
(j+2)
mk , k ≥ 1.

(5.5)

Note that since n(x) = er, from (5.3) we have

n(x) ·Xmk(ϑ, ϕ) = Y
(m)
k (ϑ, ϕ), n(x) · Ymk(ϑ, ϕ) = 0, n(x) · Zmk(ϑ, ϕ) = 0.

By virtue of the latter equality, from (5.4) we obtain

n(x) · u′(x) =
∞∑

k=0

k∑

m=−k

u
(1)
mk(r)Y

(m)
k (ϑ, ϕ),

n(x) · u′′(x) =
∞∑

k=0

k∑

m=−k

u
(2)
mk(r)Y

(m)
k (ϑ, ϕ).

(5.6)

From (3.12) we have

rot u′(x) = rot
[
x(α3k

2
3Φ3(x) + α4k

2
4Φ4(x)

]
+ rot rot(xΨ5(x)),

rot u′′(x) = rot
[
x(β3k

2
3Φ3(x) + β4k

2
4Φ4(x)

]
+ rot rot(xΨ6(x)).

(5.7)

Substituting the values of the function Φj(x), j = 3, 4, 5, 6, from (5.1) into
(5.7) and taking into account that

[er ×Xmk] = 0, [er × Ymk] = −Zmk, [er × Zmk] = Ymk,

we obtain

n(x)× rot u′(x) =
∞∑

k=1

k∑

m=−k

4∑
j=3

√
k(k + 1)

[
αjk

2
j hk(kjr)A

(j)
mkYmk(ϑ, ϕ)

− αj

(
d

dr
+

1

r

)
hk(kjr)A

(j+2)
mk Zmk(ϑ, ϕ)

]
,

n(x)× rot u′′(x) =
∞∑

k=1

k∑

m=−k

4∑
j=3

√
k(k + 1)

[
βjk

2
j hk(kjr)A

(j)
mkYmk(ϑ, ϕ)

− βj

(
d

dr
+

1

r

)
hk(kjr)A

(j+2)
mk Zmk(ϑ, ϕ)

]
.

(5.8)
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Since on the sphere S(0, 1) the sets {Y (m)
k (ϑ, ϕ)}|m|≤k, k=0,∞ and {Xmk(ϑ, ϕ),

Ymk(ϑ, ϕ), Zmk(ϑ, ϕ)}|m|≤k, k=0,∞ form a complete orthonormal system in the
space L2 and provided that the sufficient condition of smoothness is fulfilled,

we can represent the function f
(j)
4 (z) and the vector f (j)(z), j = 1, 2, as Fourier

series

f
(j)
4 (z) =

∞∑

k=0

k∑

m=−k

α
(j)
mkY

(m)
k (ϑ, ϕ), (5.9)

f (j)(z) =
∞∑

k=0

k∑

m=−k

{
α̃

(j)
mkXmk(ϑ, ϕ) +

√
k(k + 1)

[
β

(j)
mkYmk(ϑ, ϕ)

+ γ
(j)
mkZmk(ϑ, ϕ)

]}
, j = 1, 2, (5.10)

where α̃
(j)
mk, α

(j)
mk, β

(j)
mk, γ

(j)
mk are Fourier coefficients.

Taking into account that n(z) · f (j)(z) = 0, j = 1, 2, from (5.10) we obtain

f (j)(z) =
∞∑

k=1

k∑

m=−k

√
k(k + 1)

[
β

(j)
mkYmk(ϑ, ϕ)+γ

(j)
mkZmk(ϑ, ϕ)

]
, j = 1, 2. (5.11)

Passing on both sides of equalities (5.6) and (5.8) to the limit as x → z ∈ ∂Ω

and taking into account the boundary condition of Problem (
σ

N)− and also

formulas (5.9) and (5.11), for the unknown constants A
(j)
mk, j = 1, . . . , 6, we

obtain the following systems of algebraic equations:

2∑
j=1

αj
d

dR
h0(kjR)A

(j)
00 = α

(1)
00 ,

2∑
j=1

βj
d

dR
h0(kjR)A

(j)
00 = α

(2)
00 ,

(5.12)

2∑
j=1

αj
d

dR
hk(kjR)A

(j)
mk +

4∑
j=3

αj
k(k + 1)

R
A

(j)
mk = α

(1)
mk,

2∑
j=1

βj
d

dR
hk(kjR)A

(j)
mk +

4∑
j=3

βj
k(k + 1)

R
A

(j)
mk = α

(2)
mk,

4∑
j=3

αjk
2
j A

(j)
mk = β

(1)
mk,

4∑
j=3

βjk
2
j A

(j)
mk = β

(2)
mk,

4∑
j=3

αj

(
d

dR
+

1

R

)
hk(kjR)A

(j+2)
mk = γ

(1)
mk,

4∑
j=3

βj

(
d

dR
+

1

R

)
hk(kjR)A

(j+2)
mk = γ

(2)
mk, k ≥ 1.

(5.13)
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These systems are compatible by virtue of Theorem 4.2. Their solution has
the form

A
(1)
00 =

1

h′0(k1R)∆0

(
β2α

(1)
00 − α2α

(2)
00

)
,

A
(2)
00 =

1

h′0(k2R)∆0

(
α1α

(2)
00 − β1α

(1)
00

)
,

A
(1)
mk =

1

h′k(k1R)∆0

(
β2δ

(1)
mk − α2δ

(2)
mk

)
,

A
(2)
mk =

1

h′k(k2R)∆0

(
α1δ

(2)
mk − β1δ

(1)
mk

)
,

A
(3)
mk =

1

k2
3∆1

(
β4β

(1)
mk − α4β

(2)
mk

)
,

A
(4)
mk =

1

k2
4∆1

(
α3β

(2)
mk − β3β

(1)
mk

)
,

A
(5)
mk =

R

(Rh′k(k3R) + 1)∆1

(
β4γ

(1)
mk − α4γ

(2)
mk

)
,

A
(6)
mk =

R

(Rh′k(k4R) + 1)∆1

(
α3γ

(2)
mk − β3γ

(1)
mk

)
,

(5.14)

where

δ
(1)
mk = α

(1)
mk −

k(k + 1)

ρ1σ2R

(
a1β

(1)
mk + cβ

(2)
mk

)
,

δ
(2)
mk = α

(2)
mk −

k(k + 1)

ρ2σ2R

(
cβ

(1)
mk + a2β

(2)
mk

)
,

∆0 = (c + d)ρ1σ
2(k2

1 − k2
2), ∆1 = cρ1σ

2(k2
3 − k2

4),

h′k(kjR) =
d

dr
hk(kjr)

∣∣∣
r=R

.

By substituting the values of the constant A
(j)
mk, j = 1, 2, . . . , 6, from (5.14)

into (5.4) we obtain a solution of Problem (
σ

N)−. To justify this solution we have
to prove that series (5.4), (5.6) and (5.8) should be absolutely and uniformly
convergent in the domain Ω−.

The following statement is true [7].

Theorem 5.1. The vectors Xmk(ϑ, ϕ), Ymk(ϑ, ϕ), Zmk(ϑ, ϕ) admit the fol-
lowing estimates for any k ≥ 0:

|Xmk(ϑ, ϕ)| ≤
√

2k + 1

4π
, k ≥ 0,

|Ymk(ϑ, ϕ)| <
√

2k(k + 1)

2k + 1
, k ≥ 1,

|Zmk(ϑ, ϕ)| <
√

2k(k + 1)

2k + 1
, k ≥ 1.

(5.15)
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Moreover, as is known [19],

|Y (m)
k (ϑ, ϕ)| ≤

√
2k + 1

4π
, k ≥ 0. (5.16)

If we substitute estimates (5.15) and (5.16) into (5.4) and write Hankel’s
functions of first kind as k →∞ in the form [19]

hk(kjr) ≈
(

R

r

)k+1

, h′k(kjr) ≈ k

(
R

r

)k+1

,

then we ascertain that series (5.4) and their partial derivatives of any order are
absolutely and uniformly convergent in the domain Ω−.

Let x ∈ ∂Ω. Then series (5.4) and their partial derivatives of first order
will be absolutely and uniformly convergent if we prove the convergence of the
majorizing series

α

∞∑

k=k0

2∑
j=1

k
3
2

[
|α(j)

mk|+ k2|β(j)
mk|+ |γ(j)

mk|
]
, (5.17)

where α is a positive constant not depending on k.

Series (5.17) converges if we require of the coefficients α
(j)
mk, β

(j)
mk, γ

(j)
mk, j = 1, 2,

to have order

α
(j)
mk = O(k−3), β

(j)
mk = O(k−5), γ

(j)
mk = O(k−3). (5.18)

The following theorem is true [7].

Theorem 5.2. If f (j) ∈ C l(∂Ω), j = 1, 2, then the coefficients α̃
(j)
mk, β

(j)
mk,

γ
(j)
mk admit the following estimates:

α̃
(j)
mk = O(k−l), β

(j)
mk = O(k−l−1), γ

(j)
mk = O(k−l−1), l ≥ 1.

Analogously, if f
(j)
4 ∈ C l(∂Ω), j = 1, 2, then the estimate

α
(j)
mk = O(k−l), j = 1, 2,

is true [15].
With these properties of Fourier coefficients taken into account, we conclude

that the coefficients α
(j)
mk, β

(j)
mk, γ

(j)
mk, j = 1, 2, admit estimates (5.18) if the

boundary vector functions satisfy the following boundary conditions:

f
(j)
4 ∈ C3(∂Ω), f (j) ∈ C4(∂Ω), j = 1, 2.

Writing Hankel’s function of first kind as r →∞ in the form [19]

hk(kjr) = O(r−1),

(
d

dr
− ikj

)
hk(kjr) = O(r−2), j = 1, 2, 3, 4,

we ascertain that the vectors u′(x) and u′′(x) defined by (5.4) satisfy the radi-
ation condition near the point at infinity.
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Passing on both sides of equalities (5.6) and (5.8) to the limit as x → z ∈ ∂Ω
and using formulas (5.12), (5.13) and (5.9), we obtain

[n(z) · u′(z)]
−

= f
(1)
4 (z), [n(z)× rot u′(z)]

−
= f (1)(z),

[n(z) · u′′(z)]
−

= f
(2)
4 (z), [n(z)× rot u′′(z)]

−
= f (2)(z), z ∈ ∂Ω.

Thus, for f
(j)
4 ∈ C3(∂Ω) and f (j) ∈ C4(∂Ω), the vector U = (u′, u′′)> repre-

sented by (5.4) is a solution of Problem (
σ

N)−.
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