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ON SOME MUTUAL POSITIONS OF HYPERPLANES IN A
FINITE-DIMENSIONAL AFFINE SPACE

ALEXANDER KHARAZISHVILI

Abstract. Several combinatorial questions and facts connected with certain
types of mutual positions of finitely many hyperplanes in a finite-dimensional
affine space are considered. An application of one of such facts to a multi-
dimensional version of the well-known Sylvester theorem is presented.
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Let E be a finite-dimensional affine space and let n = dim(E). Without loss
of generality, we may identify E with the canonical product space Rn (where R
denotes, as usual, the real line).

Let X be a subset of E. We say that X is admissible if, for any pairwise
distinct points x1 ∈ X, x2 ∈ X, . . . , xn ∈ X, there exists a unique hyperplane in
E containing all these points. We denote that hyperplane by L(x1, x2, . . . , xn).
Also, for any two distinct points x and y in E, we denote by l(x, y) the straight
line passing through these points.

Let L be an injective family of hyperplanes in E. We say that this family
is admissible if, for any pairwise distinct hyperplanes L1 ∈ L, L2 ∈ L, . . . ,
Ln ∈ L, the corresponding exterior normal vectors e(L1), e(L2), . . . , e(Ln) are
linearly independent. In that case, we have

L1 ∩ L2 ∩ · · · ∩ Ln = {x}
for some uniquely determined point x ∈ E. We denote x = x(L1, L2, . . . , Ln)
and define the set of points

X(L) = {x(L1, L2, . . . , Ln) : {L1, L2, . . . , Ln} ⊂ L}.
If x ∈ X(L), then we say that x is a point associated with a given family L.

Let S = [x1, x2, . . . , xn+1] denote the n-dimensional simplex in E whose ver-
tices are x1, x2, . . . , xn+1. We say that S is associated with L if each facet (i.e.,
each (n− 1)-dimensional face) of S is carried by a hyperplane belonging to L.
Obviously, if S is associated with L, then all its vertices x1, x2, . . . , xn+1 are also
associated with L.

We say that a simplex S = [x1, x2, . . . , xn+1] is admissible for L if the following
two conditions hold:

(a) S is associated with L;
(b) there exists a point x also associated with L and belonging to ]xi, xj[

where xi and xj are some two distinct vertices of S.
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Suppose now that L is an injective finite family of hyperplanes in E and
card(L) = k. Obviously, there are only finitely many purely combinatorial pos-
sibilities for mutual positions (arrangements) in E of elements of L. Briefly,
there are only finitely many combinatorial types of mutual positions of k hy-
perplanes in E. The total number of these combinatorial types is denoted by
pn(k).

The problem of finding an exact formula for pn(k) is very difficult. In this
context, let us note that if n = 1, then pn(k) = 1 for all natural numbers k. If
n = 2, then for small natural numbers k we have

p2(0) = 1, p2(1) = 1, p2(2) = 2, , p2(3) = 4, p2(4) = 9, p2(5) = 47, . . . .

Let us consider more thoroughly the case n = 2, k = 4. In this case, all
combinatorial types of mutual positions of four straight lines l1, l2, l3, l4 on the
affine plane are well known and are presented below (see Fig. 1).

Fig. 1

We readily observe that if any two of the lines l1, l2, l3, l4 are not parallel and
these four lines have no common point, then there is a triangle admissible for
the family L = {l1, l2, l3, l4}. This simple geometrical fact is shown in Figure 2
below.

Fig. 2

The above observation is the starting point for our further constructions.

Lemma 1. Let dim(E) = n > 0, let L = {L1, L2, . . . , Ln+2} be an admissible
family of hyperplanes in E and suppose that ∩L = ∅. Then there exists at least
one admissible simplex for L.



ON SOME MUTUAL POSITIONS OF HYPERPLANES 103

Proof. We use the method of induction on n. The case n = 1 is trivial. Suppose
that our assertion is valid for all natural numbers m < n and let us establish its
validity for m = n. Take, in a space E with dim(E) = n, any admissible family
L = {L1, L2, . . . , Ln+2} of hyperplanes such that ∩L = ∅ and define:

P1 = L1 ∩ Ln+2, P2 = L2 ∩ Ln+2, , . . . , Pn+1 = Ln+1 ∩ Ln+2,

L′ = {P1, P2, . . . , Pn+1}.
Clearly, L′ is an admissible family of hyperplanes in the affine space Ln+2 such
that

card(L′) = n + 1, ∩L′ = ∅.

Since dim(Ln+2) = n − 1 < n, we can apply the inductive assumption to L′.
Consequently, there exists an (n− 1)-dimensional simplex

S ′ = [x1, x2, . . . , xn] ⊂ Ln+2

which is admissible for L′. Let Pi1 , Pi2 , . . . , Pin be all those hyperplanes in Ln+2

which carry the facets of S ′, and let

x = x(Li1 , Li2 , . . . , Lin).

It is obvious that the point x does not belong to Ln+2. Therefore we can
consider, in E, the n-dimensional simplex S = [x, x1, x2, . . . , xn]. An easy ver-
ification shows that S is admissible for the original family L. This completes
the proof of the lemma. ¤

Remark 1. Let us denote by s(L) the number of admissible simplices for a
given admissible family L = {L1, L2, . . . , Ln+2} of hyperplanes in E, satisfying
the relation ∩L = ∅. It would be interesting to find some good lower bounds for
s(L). The inequality s(L) ≥ 1 (stated by Lemma 1) is completely sufficient for
our further consideration. If dim(E) = n = 2, then a situation may occur, where
s(L) = 1 (see Fig. 2). Also, it is not difficult to show that if dim(E) = n ≥ 3,
then s(L) ≥ 2.

Lemma 2. Let S = [x1, x2, . . . , xn+1] be the n-dimensional simplex in E with
vertices x1, x2, . . . , xn+1 and let x′ be a point belonging to the edge [xj, xk] of
[x1, x2, . . . , xn] and distinct from all vertices x1, x2, . . . , xn. Finally, let Γ be a
hyperplane in E such that:

1) Γ passes through x′;
2) Γ does not contain xn+1;
3) Γ does not contain the edge [xj, xk].
Then there exist an index i ∈ {1, 2, . . . , n} and a point z such that

z ∈ Γ ∩ ]xi, xn+1[.

In particular, we have the inequality

dist(z, L(x1, x2, . . . , xn)) < dist(xn+1, L(x1, x2, . . . , xn)).
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The proof of Lemma 2 can easily be carried out by induction on n. Omit-
ting details, we only note that, for n = 2, the formulation of this lemma is
very similar to the well-known Pasch axiom from elementary geometry. The
above-mentioned axiom plays an essential role in studyings the foundations of
geometry (cf. [1]).

Now, let us give an application of Lemmas 1 and 2 to the problem concerning
certain mutual positions of hyperplanes (or points) in a finite-dimensional affine
space E. Problems and questions of this kind are typical in combinatorial and
discrete geometry (see, for instance, [2], [3], [4]).

Theorem 1. Let dim(E) = n > 1 and let L be a finite admissible family of
affine hyperplanes in E, satisfying the following conditions:

1) card(L) ≥ n;
2) for any pairwise distinct hyperplanes L1 ∈ L, L2 ∈ L, . . . , Ln ∈ L, there

exists at least one hyperplane L ∈ L such that

L 6= L1, L 6= L2, . . . , L 6= Ln, L ∩ L1 ∩ L2 ∩ · · · ∩ Ln 6= ∅.

Then we have ∩L 6= ∅.

Proof. Suppose otherwise, i.e., suppose that ∩L = ∅. Then there are a point
x associated with L and a hyperplane L ∈ L for which dist(x, L) > 0. We may
assume without loss of generality that dist(x, L) takes a minimal possible value.
According to the definition of x, there are some pairwise distinct hyperplanes
L1, L2, . . . , Ln from L such that

{x} = L1 ∩ L2 ∩ · · · ∩ Ln.

Further, by the assumption of the theorem, there exists a hyperplane Ln+1 ∈ L
passing through x and distinct from all hyperplanes L1, L2, . . . , Ln. Let us put

P1 = L1 ∩ L, P2 = L2 ∩ L, . . . , Pn+1 = Ln+1 ∩ L.

The family P = {P1, P2, . . . , Pn+1} of hyperplanes in the (n − 1)-dimensional
affine space L is admissible and ∩P = ∅. Applying Lemma 1 to P , we obtain
an (n − 1)-dimensional simplex S ′ = [x1, x2, . . . , xn] ⊂ L admissible for P .
Denote by x′ a point associated with P , belonging to some edge [xj, xk] of S ′

and distinct from all vertices of S ′. We may write

{x′} = Li1 ∩ Li2 ∩ · · · ∩ Lin−1 ∩ L,

where i1, i2, . . . , in−1 are some pairwise distinct indices from the segment [1, n+1]
of natural numbers. Again, by the assumption of the theorem, there exists a
hyperplane Γ ∈ L passing through x′ and satisfying the relations

Γ 6= Li1 , Γ 6= Li2 , . . . , Γ 6= Lin−1 , Γ 6= L.

Observe that Γ does not contain the edge [xj, xk] and does not pass through x
(since our family L is admissible). So we may apply Lemma 2 to Γ and to the
n-dimensional simplex S = [x1, x2, . . . , xn, x]. In this way we obtain that

Γ ∩ ]x, xi[ 6= ∅
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for some index i ∈ {1, 2, . . . , n}. If z ∈ Γ ∩ ]x, xi[, then we obviously have

0 < dist(z, L) < dist(x, L).

On the other hand, it can be easily verified that z is a point associated with L.
So we come to a contradiction with the choice of x, which completes the proof
of Theorem 1. ¤

Remark 2. It is not difficult to give a direct proof of Theorem 1 by applying
the method of induction on n = dim(E) and using the fact that if a family
{Γ1, Γ2, . . . , Γk} of hyperplanes in the space Rn is admissible, then the family

{Γ1 ∩ Γk, Γ2 ∩ Γk, . . . , Γk−1 ∩ Γk}
of hyperplanes in the (n− 1)-dimensional affine space Γk is admissible, too.

The case n = 2 is considered, e.g., in [2]. More precisely, suppose that L is a
finite family of straight lines in R2 satisfying the condition: for any two distinct
lines l1 ∈ L and l2 ∈ L, the relation l1 ∩ l2 6= ∅ implies the existence of a third
line l3 ∈ L such that l1 ∩ l2 ∩ l3 6= ∅. Then either ∩L 6= ∅ or all lines from L
are parallel to each other (cf. [2]).

For our further purposes, we need to recall the notion of a polarity correspon-
dence between points and hyperplanes in the Euclidean space Rn.

Let y ∈ Rn be a fixed point and let k be a strictly positive real number. For
each point x ∈ Rn distinct from y, consider the point x′ ∈ l(x, y) such that

y 6∈ [x, x′], ||y − x|| · ||y − x′|| = k.

Let Γ(x) denote the hyperplane in Rn passing through x′ and orthogonal to
l(x, y). We thus obtain the bijective mapping

φy : x → Γ(x)

between the set Rn \{y} and the family of all those hyperplanes in Rn which do
not pass through y. The geometric properties of φy are well known. In particu-
lar, points x1, x2, . . . , xk distinct from y lie in an affine hyperplane L (not con-
taining y) if and only if the corresponding affine hyperplanes φy(x1), φy(x2), . . . ,
φy(xk) have a common point (which, in fact, coincides with φ−1

y (L)).

The polarity between points and hyperplanes in E enables us to transform
an admissible subset of E with small cardinality into an admissible family of
hyperplanes in the same E. More precisely, we have

Lemma 3. Let dim(E) = n ≥ 1 and let X be an admissible subset of E with
card(X) < c, where c denotes the cardinality of the continuum. Then there
exists a point y ∈ E such that the family of hyperplanes {φy(x) : x ∈ X} is
admissible, too.

Proof. For any pairwise distinct points x1, x2, . . . , xn from X, denote by
L(x1, x2, . . . , xn) the unique affine hyperplane determined by these points. Also,
put

LX = {L(x1, x2, . . . , xn) : {x1, x2, . . . , xn} ⊂ X}.
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Then, according to our assumption, card(LX) < c. This implies that the family
LX does not cover the space E, so there exists a point y ∈ E \ ∪LX . It can be
easily seen that y is the desired point. ¤

Lemma 3 and Theorem 1 enable us to prove some multi-dimensional analogue
of the Sylvester theorem on collinear points. This theorem was first formulated
in [5]. For further extensions and generalizations, see, e.g., [6],[7] and [8].

Theorem 2. Let dim(E) = n > 1 and let X be a finite admissible subset of
E satisfying the condition: for any pairwise distinct points x1, x2, . . . , xn from
X, we have

card(X ∩ L(x1, x2, . . . , xn)) ≥ n + 1.

Then there exists a hyperplane in E containing X.

Proof. We may assume without loss of generality that card(X) ≥ n. According
to Lemma 3, there exists a point y ∈ E such that the family of hyperplanes
{φy(x) : x ∈ X} is admissible. This family also satisfies the assumptions of
Theorem 1. Consequently, ∩{φy(x) : x ∈ X} 6= ∅. Take a point z from
∩{φy(x) : x ∈ X} and define L = φy(z). Then we readily claim that X ⊂ L,
which ends the proof of Theorem 2. ¤

Remark 3. Some other versions of Theorem 1 (Theorem 2) can be formulated
and proved without difficulties. For example, let L be a finite family of hyper-
planes in E such that, for any two distinct and nonparallel hyperplanes L1 and
L2 from L, there exists a third hyperplane L3 ∈ L satisfying

L1 6= L3, L2 6= L3, L1 ∩ L2 ⊂ L3.

Then either all members of L are parallel to each other or there exists an (n−2)-
dimensional affine linear manifold M ⊂ E such that M ⊂ ∩L. The proof of
this fact can be carried out by induction on dim(E).

It would be interesting to find the most general form of the Sylvester theorem
for the space Rn (formulated in terms of k-dimensional affine linear submanifolds
of Rn, where k ranges over the set {0, 1, . . . , n− 1}).

Theorem 2 implies the following statement.

Theorem 3. Let X be a finite set of points of Rn (n ≥ 2) in general
position such that, for any (n − 1)-dimensional sphere T in Rn, the relation
card(T ∩ X) ≥ n + 1 implies the relation card(T ∩ X) ≥ n + 2. Then there
exists an (n− 1)-dimensional sphere in Rn containing X.

Proof. Actually, Theorem 3 can easily be obtained from Theorem 2 by using
the standard technique, namely, the inversion of Rn whose pole coincides with
one of the elements of X and whose coefficient is an arbitrary strictly positive
number (cf. [2]). ¤

Remark 4. We say that a set T ⊂ R2 is a generalized circumference in R2 if T
is either a circumference or a straight line. In other words, we treat each straight
line in R2 as a circumference of infinite radius. For R2, we have the following



ON SOME MUTUAL POSITIONS OF HYPERPLANES 107

analog of Theorem 3 in terms of generalized circumferences: if X is a finite
subset of R2 such that the relation card(X ∩ T ) ≥ 3 implies card(X ∩ T ) ≥
4 for every generalized circumference T ⊂ R2, then X is contained in some
generalized circumference.

Theorem 4. Let L be a family of straight lines in R2 satisfying the following
condition: if any three pairwise distinct lines l1, l2, l3 from L are tangent to
some circumference T ⊂ R2, then there exists one more line l4 ∈ L which is
also tangent to the same T .

Then at least one of the next three relations holds:
1) all lines from L are parallel to each other;
2) all lines from L have a common point;
3) the family L is infinite.

Proof. Considering all possible combinatorial types of mutual positions of three
straight lines in the plane, we observe that if some three pairwise distinct lines
are given in R2 and are tangent to a circumference T lying in R2, then the
radius length of T can take at most four values. Starting with this observation,
suppose to the contrary that none of the above relations 1) - 3) is valid and
consider a circumference T0 ⊂ R2 of the smallest radius such that there are three
pairwise distinct lines from L tangent to T0. A simple argument shows that the
existence of T0 leads to a contradiction, which yields the desired result. ¤
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