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THE PSEUDO-SPECTRAL COLLOCATION METHOD FOR
RESONANT LONG-SHORT NONLINEAR WAVE

INTERACTION

ABDUR RASHID

Abstract. A pseudo-spectral collocation method for a class of equations
describing resonant long-short wave interaction is studied. Semi-discrete and
fully discrete Fourier pseudo-spectral collocation schemes are given. In fully
discrete case we establish a three-level explicit scheme which is convenient
and saves time in real computation. We use energy estimation methods to
obtain error estimates for the approximate solutions.
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1. Introduction

Interaction phenomena between long waves and short waves have long been
known and studied for many physical situations. This type of interaction is of
interest in several fields of physics and fluid dynamics, e.g. water wave theory
[5], electron-plasma/ion-field interaction [9] or diatomic lattice systems [13]. In
the theory of capillary-gravity waves, Kawahara et al. [6] analyzed the coupled
system {

iSt + icsSx + Sxx = αLS,

Lt + clLx + Lxxx + (L2)x + β |S|2x = 0,
(1)

where L and S describe long and short water waves respectively, and α, β, cs and
cl are real constants. When the resonance condition cs = cl holds, this equation
is known as the coupled Schrödinger–KdV equation. The physical significance of
(1) is that the dispersion of short waves is balanced by the nonlinear interaction
of long waves with short waves, while the evolution of long waves is driven by
the self-interaction of short waves.

One of the closely related resonant interactions is described by the system



iεt + εxx = αnε, t, x ∈ R,

nt + β |ε|2x = 0,

ε(x, 0) = ε0(x), n(x, 0) = n0(x)

(2)

introduced by Benney [2] (see also [12], [5]). This system of equations has
been studied using both inverse scattering methods ([12], [8]) and the theory
of evolution equations ([1], [7], [11]). One important characteristic of Benney’s
equation (2) is that it is a completely integrable system. Moreover, Bekiranov
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et al. [1] showed that this system is well posed for weaker initial data, i.e.
(ε0, n0) ∈ Ha(R)× L1/a(R) for any a > 0.

In this paper we consider a subclass of long-short wave interactions described
by Benney’s equation (2), namely the periodic initial boundary-value problem





iεt + εxx = αnε, x, t ∈ R, t > 0,

nt + β |ε|2x = 0,

ε(x, 0) = ε0(x), n(x, 0) = n0(x),

ε(x + 2π, t) = ε(x, t), n(x + 2π, t) = n(x, t).

(3)

We investigate the implicit second order finite difference approximation in time,
combined with pseudo-spectral collocation in space, for solving (3). Both the
semi-discrete and the fully discrete schemes are analyzed and error estimation
for both are found. The rate of convergence of the resulting schemes are O(N−s)
and O(τ 2 + N−s) where N is the number of spatial Fourier modes, τ is the dis-
crete mesh spacing of the time variable t and s depends only on the smoothness
of an exact solution.

For a further discussion, we introduce the following notation. Let Ω = [0, 2π]
and L2(Ω) denote the set of all square integrable functions with the inner prod-

uct (u, v) =
∫ 2π

0
u(x)v(x)dx and the norm ‖u‖2 = (u, u). Let L∞(Ω) denote the

Lebesgue space with the norm ‖u‖L∞ = ess supx∈Ω |u(x)| and Hs
p(Ω) denote the

periodic Sobolev space with the norm ‖u‖s =
( ∑
|α|≤s

‖Dαu‖2
)1/2

, we define

L2
(
0, T ; Hs

p(Ω)
)

=

{
u(·, t) ∈ Hs

p(Ω) :

T∫

0

‖u(·, t)‖2
sdt < ∞

}
,

L∞
(
0, T ; Hs

p(Ω)
)

=
{

u(·, t) ∈ Hs
p(Ω) : sup

0≤t<T
‖u(·, t)‖sdt < ∞

}
.

Let SN = span
{

ψk = 1√
2π

eikx : |k| ≤ N
}

. Suppose h = 2π
2N+1

is the mesh step

of the variable x. The nodes are then x` = x0 + `h, x0 = −π, ` = 0, 1, . . . , 2N .
The discrete inner product and norm in the interval Ω are defined by

(u, v) = h

2N∑

`=0

u(x`)v(x`), ‖u‖N = (u, v)
1/2
N .

Let PN : L2(Ω) −→ SN be an orthogonal projection operator i.e.

(PNu, v) = (u, v) , ∀v ∈ SN .

and Pc : C(Ω) −→ SN be an interpolation operator, i.e. such that for all
u ∈ C(Ω)

Pcu(x`) = u(x`), 0 ≤ ` ≤ 2N.

For the discretization in the time variable t, let τ be the mesh spacing of t
and Rτ =

{
t = kτ : 0 ≤ k ≤ [

T
τ

]}
and uk = u(x, kτ). We define the following
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difference quotients as

uk
bt =

1

2τ
(uk+1 − uk−1),

ûk =
1

2
(uk+1 + uk−1).

2. Some Lemmas

In this section we state without proof a few lemmas which will be useful in
the next section.

Lemma 1 ([3]). If s ≥ 0 and 0 ≤ µ ≤ s, then for any u ∈ Hs
p(Ω)

‖u− PNu‖µ ≤ CNµ−s‖u‖s.

If, in addition, s > 1/2, then

‖u− Pcu‖µ ≤ CNµ−s‖u‖s and ‖Pcu‖s ≤ C‖u‖s.

Lemma 2 ([10]). If u, v ∈ C(Ω), then

(Pcu, Pcv)N = (Pcu, Pcv) = (u, v)N .

Lemma 3 ([4]). If s ≥ 1 and u, v ∈ Hs(Ω) then

‖uv‖s ≤ C ‖u‖s ‖v‖s .

Lemma 4 ([3]). Assume that the following conditions are fulfilled:
(i) E(t) is a non-negative function defined on Rτ .
(ii) ρ, M and c are non-negative constants.
(iii) For all t ∈ Rτ and max

0≤t≤T
E(t) ≤ M we have

E(t) ≤ ρ + c

t∫

0

E(τ)dτ.

(iv) E(0) ≤ ρ ≤ Me−cT .

Then for all t ∈ Rτ we have

E(t) ≤ ρect.

3. The Semi-Discrete Pseudospectral Collocation Method

The semi-discrete pseudospectral approximation of equation (3) consists in
finding εc, nc ∈ SN satisfying





iεct + εcxx − αPc(ncεc) = 0,

nct + β
(
Pc |εc|2

)
x

= 0,

εc(0) = PNε0(x), nc(0) = PNn0(x).

(4)
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Suppose that (ε, n) is the solution of (3) and (εc, nc) is the solution of (4).
Setting

ε− εc = (ε− PNε) + (PNε− εc) = λ + ξ,

n− nc = (n− PNn) + (PNn− nc) = σ + θ,

one sees that, by (3) and (4), ξ and θ satisfy the system{
i(ξt, w)− (ξx, wx)− α((I − Pc)(nε), w) + α(Pc(ncεc − nε), w)) = 0,

(θt, w)− β((I − Pc)|ε|2, wx) + β(Pc (|εc|2 − |ε|2) , wx) = 0.
(5)

Setting w = ξ in the first equation of (5), we have

1

2

d

dt
‖ξ‖2 = αIm((I − Pc)(nε), ξ) + αIm(Pc(nε− ncεc), ξ), (6)

and
|αIm((I − Pc)(nε), ξ)| ≤ |α|(‖(I − Pc)(nε)‖2 + ‖ξ‖2).

But by Lemmas 1 and 3 we obtain

‖(I − Pc)(nε)‖ ≤ CN−s‖nε‖s ≤ CN−s‖n‖s‖ε‖s

and
|αIm((I − Pc)(nε), ξ)| ≤ C(‖ξ‖2 + N−2s), (7)

where C = C(α, ‖n‖s, ‖ε‖s) and so

|αIm(Pc(nε− ncεc), ξ)| ≤ |α|(‖Pc(nε− ncεc)‖2 + ‖ξ)‖2).

But

‖Pc(nε− ncεc)‖ = ‖Pc(n(ε− εc))‖+ ‖Pc(εc(n− nc))‖
≤ ‖n‖∞‖Pc(ε− εc)‖+ ‖εc‖∞‖Pc(n− nc)‖.

Since Pc(u− uc) = Pcu− uc = −(I −Pc)u + (I −PN)u + (PNu− u), by Lemma
1, we have the following results:

‖Pc(ε− εc)‖ ≤ CN−s‖ε‖s + ‖ξ‖,
‖Pc(n− nc)‖ ≤ CN−s‖n‖s + ‖θ‖.

Therefore
|αIm(Pc(nε− ncεc), ξ)| ≤ C(‖ξ‖2 + ‖θ‖2 + N−2s), (8)

and substituting (8) and (7) into (6), we have

1

2

d

dt
‖ξ‖2 ≤ C(‖ξ‖2 + ‖θ‖2 + N−2s), (9)

where C = C(α, ‖n‖∞, ‖ε‖∞, ‖n‖s, ‖ε‖s).
Setting w = ξt in the first equation of (5), we have

1

2

d

dt
‖ξx‖2 = αRe((I − Pc)(nε), ξt) + αRe(Pc(nε− ncεc), ξt). (10)

Similarly to the proof of (9), we get

1

2

d

dt
‖ξx‖2 ≤ C(‖ξt‖2 + ‖ξ‖2 + ‖θ‖2 + N−2s). (11)
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Differentiate the first equation of (5) with respect to t and take w = ξt to obtain

1

2

d

dt
‖ξt‖2 = αIm((I − Pc)(nε)t, ξt) + αIm(Pc(nε− ncεc)t, ξt), (12)

and since

(nε− ncεc)t = εct(n− nc) + εc(n− nct) + nt(ε− εc) + n(εt − εct),

we have

|αIm(Pc(nε− ncεc)t, ξt)| ≤ |α|‖ξt‖(‖PNεt‖∞‖Pc(n− nc)‖+ ‖εc‖∞‖Pc(n− nct)‖
+ ‖nt‖∞‖Pc(ε− εc)‖+ ‖n‖∞‖Pc(εt − εct)‖).

By Lemmas 1 and 3, we have

|αIm(Pc(nε− ncεc)t, ξt)| ≤ C
(‖ξt‖2 + ‖θ‖2 + ‖θt‖2 + ‖ξ‖2 + N−2s

)
(13)

and

|αIm((I − Pc)(nε)t, ξt)| ≤ C
(‖ξt‖2 + N−2s‖nt‖s‖εt‖s

)
. (14)

Putting (13) and (14) in (12), we get

1

2

d

dt
‖ξt‖2 ≤ C(‖ξt‖2 + ‖ξ‖2

1 + ‖θ‖2 + ‖θt‖2 + N−2s), (15)

where C = C(α, ‖εc‖∞, ‖nt‖∞, ‖n‖∞, ‖εt‖, ‖ε‖∞, ‖εct‖, ‖nt‖s, , ‖n‖s, ‖εt‖s).
Setting w = θ in the second equation of (5), we get

(θt, θ)− β((I − Pc)|ε|2, θx) + β(Pc(|εc|2 − |ε|2), θx) = 0

and so
1

2

d

dt
‖θ‖2 = β((I − Pc)|ε|2, θx) + β(Pc(|ε|2 − |εc|2), θx). (16)

To estimate the right-hand side of equation (16), we consider

|β((I − Pc)|ε|2, θx)| ≤ |β|‖(I − Pc)|ε|2‖‖θx‖
≤ C(‖θx‖2 + ‖(I − Pc)|ε|2‖2) ≤ C(‖θx‖2 + N−2s) (17)

and

|α(Pc(|ε|2 − |εc|2), θx)| ≤ C(‖Pc(|ε|2 − |εc|2)‖2 + ‖θx‖2),

where

‖Pc(|ε|2 − |εc|2)‖ = ‖Pc(εε− εcεc)‖
= ‖Pc(ε(ε− εc)) + Pc(ε(ε− εc))‖
≤ ‖ε‖∞‖Pc(ε− εc)‖+ ‖εc‖∞‖Pc(ε− εc)‖
≤ (‖ε‖∞ + ‖εc‖∞)‖Pc(ε− εc)‖
≤ (‖ε‖∞ + ‖εc‖∞)(CN−s‖ε‖s + ‖ξ‖). (18)

Substituting estimates (17) and (18) into (16), we get

1

2

d

dt
‖θ‖2 ≤ C(‖θx‖2 + ‖ξ‖2 + CN−2s). (19)
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Combining (9), (11), (15) and (19) we find

d

dt

(‖ξ‖2 + ‖ξ‖2
1 + ‖ξt‖2 + ‖θ‖2

) ≤ C
(‖ξ‖2 + ‖ξ‖2

1 + ‖ξt‖2 + ‖θ‖2 + N−2s
)
.

By applying Gronwall’s inequality we obtain

‖ξ(t)‖2 + ‖ξ(t)‖2
1 + ‖ξt(t)‖2 + ‖θ(t)‖2

≤ ‖ξ(0)‖2 + ‖ξ(0)‖2
1 + ‖ξt(0)‖2 + ‖θ(0)‖2 + CN−2s

+ C

t∫

0

(‖ξ(τ)‖2 + ‖ξ(τ)‖2
1 + ‖ξt(τ)‖2 + ‖θ(τ)‖2

)
dτ. (20)

The initial conditions read as

ξc(0) = θc(0) = 0, ξx(0) = 0. (21)

At t = 0, setting w = ξt(0) in (5), we have

‖ξt(0)‖2 ≤ C(‖(I − Pc)(n0ε0)‖2 + ‖Pc(PNn0PNε0 − n0ε0)‖2,

and
‖ξt(0)‖2 ≤ CN−2s. (22)

Let
E(t) = ‖ξ(t)‖2 + ‖ξ(t)‖2

1 + ‖ξt(t)‖2 + ‖θ(t)‖2.

Using (21) and (22) in (20), we get

E(t) ≤ CN−2s + C

t∫

0

E(τ)dτ.

Thus we have proved

Theorem 1. Suppose ε and n are solutions of equation (3) and assume
ε ∈ L∞

(
0, T ; Hs+1

p

)
, εt, n, nt ∈ L∞

(
0, T ; Hs

p

)
. Then for εc and nc the solutions

for the pseudo-spectral scheme (4), there exist positive constants M and C such
that N ≥ M and s ≥ 2,

‖ε(t)− εc(t)‖1 + ‖εt(t)− εct(t)‖1 + ‖n(t)− nc(t)‖ ≤ CN−2s

where C is independent of N .

4. The Fully Discrete Pseudospectral Collocation Method

We consider the fully discrete pseudospectral collocation method which con-
sists in finding εk

c , n
k
c ∈ SN such that for k = 1, . . . ,

[
T
τ

]
the equations





iεk
cbt + ε̂k

cxx − αPc(n
k
cε

k
c ) = 0,

ncbt + β
(
Pc

∣∣εk
c

∣∣2
)

x
= 0,

ε0
c = PNε0, n0

c = PNn0, ε1
c = PNε1(x), n1

c = PNn1

(23)

are satisfied at x = xj, j = 0, . . . , 2N .
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Let

εk − εk
c = (εk − PNεk) + (PNεk − εk

c ) = λk + ξk,

nk − nk
c = (nk − PNnk) + (PNnk − nk

c ) = σk + θk.

From equations (3) and (23), we get
{

i(ξk
bt , w)− (ξ̂k

x, w)− α(Pc(n
kε̂k − nk

c ε̂
k
c ), w) = (Gk

1, w),

(θbt, w)− β(Pc(|εk|2 − |εk
c |2), wx) = (Gk

2, w) + (Gk
3, wx),

(24)

where

Gk
1 = i(εk

bt − εk
t ) + (ε̂k

xx − εk
xx) + α(I − Pc)(n

kε̂k) + αnk(εk − ε̂k)

=
iτ 2

12

[
∂3

∂t3
ε(tk1) +

∂3

∂t3
ε(tk2)

]
− τ 2

2

[
∂2

∂t2
εxx(t

k
3) +

∂2

∂t2
εxx(t

k
4)

]

+
−αnkτ 2

4

[
∂3

∂t3
ε(tk5) +

∂3

∂t3
ε(tk6)

]
+ α(I − Pc)(n

kε̂K),

Gk
2 = (nk

bt − nk
t ) =

τ 2

12

[
∂3

∂t3
ε(tk7) +

∂3

∂t3
ε(tk8)

]
,

Gk
3 = −β(I − Pc)|εk|2.

Setting w = ξ̂k in the first equation of (24), we get

1

4τ

[∥∥ξk+1
∥∥2 − ∥∥ξk−1

∥∥2
]

= αIm(Pc(n
kε̂k − nk

c ε̂
k
c ), ξ̂

k) + Im(Gk
1, ξ̂

k). (25)

Since we have∣∣∣αIm(Pc(n
kε̂k − nk

c ε̂
k
c ), ξ̂

k)
∣∣∣ ≤ C

(
‖ξ̂k‖2 + ‖θk‖2 + τ 4 + N−2s

)
, (26)

|Im(Gk
1, ξ̂

k)| ≤ C
(
‖ξ̂k‖2 + τ 4 + N−2s

)
,

putting the above estimate (26) into (25), we get

1

4τ

[∥∥ξk+1
∥∥2 −

∥∥ξk−1
∥∥2

]
≤ C

(
‖ξ̂k‖2 + ‖θk‖2 + τ 4 + N−2s

)
. (27)

By summing (27) w.r.t. k = 1, 2, . . . , n we find

∥∥ξn+1
∥∥2 ≤ ‖ξ0‖2 + ‖ξ1‖2 + c(τ 4 + N−2s) + Cτ

n∑

k=1

(
‖ξ̂k‖2 + ‖θk‖2

)
. (28)

Setting w = ξk
bt in the first equation of (24), we get

1

4τ

[∥∥ξk+1
x

∥∥2 −
∥∥ξk−1

x

∥∥2
]

= −αRe
(
Pc(n

kε̂k − nk
c ε̂

k
c ), ξ

k
bt
)

+ Re
(
Gk

1, ξ
k
bt
)

and hence

1

4τ

[∥∥ξk+1
x

∥∥2 −
∥∥ξk−1

x

∥∥2
]
≤ C

(
‖ξk
bt ‖2 + ‖ξ̂k‖2 + ‖θk‖2 + τ 4 + N−2s

)
. (29)
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By summing (29) w.r.t. k = 1, 2, . . . , n we find
∥∥ξn+1

x

∥∥2 ≤ ‖ξ0
x‖2 + ‖ξ1

x‖2 + C(τ 4 + N−2s)

+ Cτ

n∑

k=1

(
‖ξk
bt ‖2 + ‖ξ̂k‖2 + ‖θk‖2

)
. (30)

Differentiating the first equation of (24) with respect to t and taking w = ξ̂k
bt ,

we get

1

4τ

[∥∥∥ξk+1
bt

∥∥∥
2

−
∥∥∥ξk−1
bt

∥∥∥
2
]

= αIm(Pc(n
kε̂k − nk

c ε̂
k
c )t, ξ̂

k
bt ) + Im(Gk

1t, ξ̂
k
bt ). (31)

Substituting the estimates∣∣∣αIm(Pc(n
kε̂k − nk

c ε̂
k
c )t, ξ̂

k
bt )

∣∣∣ ≤ C
(
‖ξ̂k
bt ‖2 + ‖θk+1‖2 + ‖θk

bt ‖2 + ‖ξ̂k+1‖2 + N−2s
)

,

|Im(Gk
1t, ξ̂

k
bt )| ≤ C

(
‖ξ̂k
bt ‖2 + τ 4 + N−2s

)
,

into (31) and summing from k = 1 to n, we get
∥∥ξn
bt
∥∥2 ≤ ‖ξ0

bt ‖2 + ‖ξ1
bt ‖2 + C(τ 4 + N−2s)

+ Cτ

n∑

k=1

(
‖ξ̂k
bt ‖2 + ‖ξ̂k‖2 + ‖θk+1‖2 + ‖θk

bt ‖2
)

. (32)

Setting w = θk in the second equation of (24), we get

1

4τ

[∥∥θk+1
∥∥2 −

∥∥θk−1
∥∥2

]
= β

(
Pc(|εk|2 − |εk

c |2), θ̂k
x

)
+ (Gk

2, θ̂
k) + (Gk

3, θ̂
k
x). (33)

To estimate the right-hand side of (33) notice that the following inequalities
hold ∣∣∣β

(
Pc(|εk|2 − |εk

c |2), θ̂k
x

)∣∣∣ ≤ C
(
‖θ̂k

x‖2 + ‖ξk‖2 + N−2s
)

,
∣∣∣(Gk

2, θ̂
k)

∣∣∣ ≤ C
(
‖θ̂k‖2 + τ 4

)
,

∣∣∣(Gk
3, θ̂

k
x)

∣∣∣ ≤ C
(
‖θ̂k‖2 + N−2s

)
,

and hence
1

4τ

[∥∥θk+1
∥∥2 −

∥∥θk−1
∥∥2

]
≤ C

(
‖θ̂k

x‖2 + ‖θk‖2 + ‖ξk‖2 + τ 4 + N−2s
)

. (34)

By summing (34) w.r.t. k = 1, 2, . . . , n we get
∥∥θn+1

∥∥2 ≤ ‖θ0‖2 + ‖θ1‖2 + C(τ 4 + N−2s)

+ Cτ

n∑

k=1

(
‖θ̂k

x‖2 + ‖θk‖2 + ‖ξk‖2
)

. (35)

Setting w = θk
bt in the second equation of (24) we find
∥∥θk
bt
∥∥2 ≤ C

(‖θk
btx‖2 + ‖θk

bt ‖2 + ‖ξk‖2 + τ 4 + N−2s
)
.
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Combining (28), (30), (32) and (35), we get

EN =
∥∥ξn+1

∥∥2

1
+

∥∥θn+1
∥∥2

+
∥∥ξn
bt
∥∥2

≤
(∥∥ξ1

∥∥2

1
+

∥∥θ1
∥∥2

+
∥∥ξ1
bt
∥∥2

+
∥∥θ0

∥∥2
+ τ 4 + N−2s

)

+ Cτ

n∑

k=1

(
‖ξ̂k‖2 + ‖ξk

bt ‖2 + ‖ξ̂k
bt ‖2 + ‖θk‖2 + ‖θ̂k‖2

)
,

and hence

EN ≤ C
(∥∥ξ1

∥∥2

1
+

∥∥θ1
∥∥2

+
∥∥ξ1
bt
∥∥2

+
∥∥θ0

∥∥2
+ τ 4 + N−2s

)
+ Cτ

n∑

k=0

Ek−1. (36)

Using the initial conditions ξ0 = 0 and ξ0
x = 0, substituting k = 1 into the first

equation of (24) and setting w = ξ1
bt , we find

∥∥ξ1
bt
∥∥2 ≤ C

(∥∥ξ2
∥∥2

+
∥∥ξ1

∥∥2
+

∥∥θ1
∥∥2

+ τ 4 + N−2s
)

.

Again taking k = 1 in the first equation of (24) and setting w = ξ̂1 we get

∥∥ξ2
∥∥2 ≤ C

(∥∥ξ1
∥∥2

+
∥∥θ1

∥∥2
+ τ 4 + N−2s

)

and since ∥∥ξ1
∥∥2

1
+

∥∥θ1
∥∥2 ≤ C

(
τ 4 + N−2s

)
,

equation (36) can be rewritten as

EN(t) ≤ C
(
τ 4 + N−2s

)
+ Cτ

n∑

k=0

Ek−1. (37)

By applying Lemma 4 we obtain

C
(
τ 4 + N−2s

) ≤ Me−cT ,

and so the estimate for EN(t) in (37) takes the form

EN(t) ≤ C
(
τ 4 + N−2s

)
ec(n+1)τ , ∀(n + 1)τ ≤ T.

Thus we have proved

Theorem 2. Assume that ε(x, t) ∈ L∞
(
0, T ; Hs+1

p

)
, εt, n, nt ∈ L∞

(
0, T ; Hs

p

)
,

εtt, ntt,∈ L∞
(
0, T ; H1

p

)
, εttt, nttt,∈ L∞

(
0, T ; H0

p

)
. Then there exist constants C

and δ such that τ 2 + N−s < δ and ∀n, (n + 1)τ ≤ t,

‖εn+1 − εn+1
c ‖1 + ‖εn

bt − εn
cbt‖1 + ‖nn+1 − nn+1

c ‖ ≤ C(τ 2 + N−s).
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