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A VECTOR-VALUED SHARP MAXIMAL INEQUALITY ON
MORREY SPACES WITH NON-DOUBLING MEASURES

YOSHIHIRO SAWANO

Abstract. We consider the vector-valued extension of the Fefferman–Stein–
Strömberg sharp maximal inequality under growth condition. As an appli-
cation we obtain a vector-valued extension of the boundedness of the com-
mutator. Furthermore, we prove the boundedness of the commutator.
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1. Introduction

In this paper we obtain a vector-valued extension of the sharp-maximal in-
equality and develop its applications.

We denote by M the Hardy–Littlewood maximal operator and by M ] as the
sharp maximal operator. We mean the sharp maximal inequality by one of the
form:

‖Mf : Lp(Rd)‖ ≤ C ‖M ]f : Lp(Rd)‖ (1 < p < ∞),

which appeared in [3]. The primary aim of this paper is to obtain an inequality
of the form

∥∥∥∥∥

( ∞∑
j=1

Mfj
q

) 1
q

: Lp(µ)

∥∥∥∥∥ ≤ C

∥∥∥∥∥∥

( ∞∑
j=1

M ]fj
q

) 1
q

: Lp(µ)

∥∥∥∥∥∥
(1 < p, q < ∞). (1)

Here and below C will be used for constants that may change from one occur-
rence to another. Constants with subscripts, such as C0, C1, C2, do not change
in different occurrences. Throughout this paper µ will be a (positive) Radon
measure on Rd satisfying the growth condition:

µ(B(x, l)) ≤ C0 ln for all x ∈ supp (µ) and l > 0, (2)

where n, 0 < n ≤ d, is a fixed number and B(x, r) is a ball with center x and ra-
dius r > 0. We do not assume the doubling condition µ(B(x, 2r)) ≤ Cµ(B(x, r))
(x ∈ supp (µ), r > 0). We are going to obtain (1) with the underlying measure µ
satisfying only the growth condition and the function space will be the Morrey
space, which is an extension of the Lp space.

By a “cube” Q ⊂ Rd we mean a compact cube whose edges are parallel to
the coordinate axes. Its side length will be denoted by `(Q). For c > 0, cQ
will denote a cube concentric to Q with its sidelength c `(Q). The set of all
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cubes Q ⊂ Rd with positive µ-measure will be denoted by Q(µ). We recall the
definition of Morrey spaces with non-doubling measures.

Let k > 1 and 1 ≤ q ≤ p < ∞. We define a Morrey space Mp
q(k, µ) as

Mp
q(k, µ) :=

{
f ∈ Lq

loc(µ) : ‖f |Mp
q(k, µ)‖ < ∞}

,

where the norm ‖f |Mp
q(k, µ)‖ is given by

‖f |Mp
q(k, µ)‖ := sup

Q∈Q(µ)

µ(k Q)
1
p
− 1

q

(∫

Q

|f(x)|q dµ(x)

) 1
q

. (3)

By applying Hölder’s inequality to (3), it is easy to see that

Lp(µ) = Mp
p(k, µ) ⊂Mp

q2
(k, µ) ⊂Mp

q1
(k, µ) (4)

for 1 ≤ q1 ≤ q2 ≤ p < ∞. The definition of Morrey spaces does not depend on
a constant k > 1. The norms for different choices of k > 1 are equivalent. For
details we refer to [13]. Nevertheless, for definiteness, we will assume k = 2 in
the definition and denote Mp

q(2, µ) by Mp
q(µ).

Our BMO here is a RBMO (regular bounded mean oscillation) introduced by
X. Tolsa which is a suitable substitute for the classical spaces [16]. We adopt
the notation due to Chen and Sawyer, who modified the notion of Tolsa in order
to develop the theory of commutators of a fractional integral operator.

Definition 1.1.

(1) Let 0 ≤ α < n. Given two cubes Q ⊂ R ∈ Q(µ), we set

K
(α)
Q,R := 1 +

NQ,R∑

k=0

(
µ(2kQ)

`(2kQ)n

)1−α/n

,

where NQ,R is the smallest integer k ≥ 0 such that 2kQ ⊃ R. For

simplicity, we denote KQ,R = K
(0)
Q,R.

(2) We say that Q ∈ Q(µ) is a doubling cube if µ(2Q) ≤ 2d+1µ(Q). We
denote by Q(µ, 2) the set of all doubling cubes.

(3) Given Q ∈ Q(µ), we set Q∗ as the smallest doubling cube R of the form
R = 2jQ with j ∈ N0 := {0} ∪N.

(4) We say that f ∈ L1
loc(µ) is an element of RBMO if it satisfies

sup
Q∈Q(µ)

1

µ
(

3
2
Q

)
∫

Q

|f(y)−mQ∗(f)| dµ(y) + sup
Q⊂R

Q,R∈Q(µ,2)

|mQ(f)−mR(f)|
KQ,R

< ∞,

where mQ(f) :=
1

µ(Q)

∫

Q

f(x) dµ(x). We denote this quantity by ‖f‖∗.

By the growth condition (2) there are a lot of big doubling cubes. Speaking
precisely, given any cube Q ∈ Q(µ), we can find j ∈ N with 2jQ ∈ Q(µ, 2).
Meanwhile, for µ-a.e. x ∈ Rd, there exists a sequence of doubling cubes {Qk}k
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centered at x with `(Qk) → 0 as k →∞. So we can say that there are a lot of
small doubling cubes, too. (See [16].)

For f ∈ L1
loc(µ) we define two maximal operators mainly due to Tolsa (see

[16]): Let 0 ≤ α < n. The sharp maximal operator M ],αf(x) is defined as

M ],αf(x) : = sup
x∈Q∈Q(µ)

1

µ
(

3
2
Q

)
∫

Q

|f(y)−mQ∗(f)| dµ(y)

+ sup
x∈Q⊂R

Q,R∈Q(µ,2)

|mQ(f)−mR(f)|
K

(α)
Q,R

and Nf(x) is defined as Nf(x) := sup
x∈Q∈Q(µ,2)

mQ(|f |). The modification pa-

rameter α was introduced by Chen and Sawyer. We also introduce a κ-times
maximal operator

Mκf(x) := sup
x∈Q∈Q(µ)

1

µ(κQ)

∫

Q

|f(x)| dµ(x) (κ > 1).

Since there are a lot of doubling cubes, we have a pointwise estimate

|f(x)| ≤ Nf(x), |f(x)| ≤ κd+1Mκf(x)

for µ-almost all x ∈ Rd. It is known that Mκ : Mp
q(µ) →Mp

q(µ) is a bounded
operator (cf. [13]), if κ > 1. If µ is a finite measure, we denote

mRd(f) :=
1

µ(Rd)

∫

Rd

f(x) dµ(x).

Proposition 1.2 ([14]). Suppose that 1 < q ≤ p < ∞, 0 ≤ α < n.

(1) For any f ∈ L1
loc(µ), there exists a constant C > 0 independent of f

such that

‖Nf : Mp
q(µ)‖ ≤ C

(‖M ],αf : Mp
q(µ)‖+ ‖f : Mp

1(µ)‖) .

(2) Suppose that there exists an increasing sequence of concentric doubling
cubes

I0 ⊂ I1 ⊂ · · · ⊂ Ik ⊂ · · ·
such that

lim
k→∞

mIk
(f) = 0 and

⋃

k

Ik = Rd. (5)

Then there exists a constant C > 0 independent of f such that

‖Nf : Mp
q(µ)‖ ≤ C ‖M ],αf : Mp

q(µ)‖. (6)

In particular, if µ is finite, (6) is available for all f with mRd(f) = 0.
(3) Suppose that µ(Rd) < ∞. Then we have

‖Nf : Mp
q(µ)‖ ≤ C

(‖M ],αf : Mp
q(µ)‖+ ‖f : L1(µ)‖) .
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In this paper we prove the vector-valued extension of (2) and (3) of the previ-
ous proposition. Since Mp

1(µ) contains Mp
q(µ), the norms in (1) are equivalent.

Condition (5) will be a key to our argument. Below we give our main results.

Theorem 1.3. Suppose that 1 ≤ q ≤ p < ∞, 1 < r < ∞, κ > 1 and
0 ≤ α < n. Let fj ∈Mp

q(µ) with j = 1, 2, . . . .

(1) Assume that µ(Rd) = ∞. Then we have
∥∥∥∥∥

( ∞∑
j=1

Nfj
r

) 1
r

: Mp
q(µ)

∥∥∥∥∥ ≤
∥∥∥∥∥

( ∞∑
j=1

M ],αfj
r

) 1
r

: Mp
q(µ)

∥∥∥∥∥. (7)

(2-a) Assume that µ(Rd) < ∞. If mRd(fj) = 0 for all j = 1, 2, . . ., then we
have (7).

(2-b) Assume that µ(Rd) < ∞. Then we have for all {fj}∞j=1 ⊂Mp
q(µ)

∥∥∥∥∥

( ∞∑
j=1

Nfj
r

) 1
r

: Mp
q(µ)

∥∥∥∥∥

≤ C

∥∥∥∥∥

( ∞∑
j=1

M ],αfj
r

) 1
r

: Mp
q(µ)

∥∥∥∥∥ + C

{ ∞∑
j=1

(∫

Rd

|fj(x)| dµ(x)

)r} 1
r

. (8)

At first glance the condition fj ∈ Mp
q(µ) seems to be superfluous, but this

assumption can be verified by using Proposition 1.2. So this seemingly strong
assumption suffices. It is easy to see that M ],α is bounded pointwise by M2.
Since we have the Fefferman–Stein type inequality for M2 on Lp(µ) spaces and
on Morrey spaces Mp

q(µ) (see [12] and [13]), it follows that the right-hand and
the left-hand sides of the formulae of Theorem 1.3 are equivalent. By using
Minkowski’s inequality and µ(Rd) < ∞ the equivalence in (2-b) also holds.
Theorem 1.3 (2-b) can be easily obtained from Theorem 1.3 (2-a). Indeed, given
a system of functions fj ∈ Mp

q(µ) (j = 0, 1, . . .), we have that fj − mRd(fj)
(j = 0, 1, . . .) satisfies the assumption of Theorem 1.3 (2-a). Thus we have

∥∥∥∥∥

( ∞∑
j=1

(N(fj −mRd(fj)))
r

) 1
r

: Mp
q(µ)

∥∥∥∥∥ ≤ C

∥∥∥∥∥

( ∞∑
j=1

M ],αfj
r

) 1
r

: Mp
q(µ)

∥∥∥∥∥,

which yields Theorem 1.3 (2-b). Now it follows that we have only to prove
Theorem 1.3 (1) and (2-a). In both cases we have (5).

Remark 1.4. It is worth restating Theorem 1.3 in the case of a Lebesgue space
Lp(dx). Notice that if µ = dx, then M ],0f(x) is equivalent to the usual sharp
maximal function introduced and studied in [3]. Applying our result with µ =
dx and 1 < p = q < ∞ and using the Fefferman–Stein vector-valued inequality,
we have a norm equivalence for any countable subset {fj}∞j=1 ⊂ Lp(dx)

∥∥∥∥∥

( ∞∑
j=1

Mfj
r

) 1
r

: Lp(dx)

∥∥∥∥∥ ∼
∥∥∥∥∥

( ∞∑
j=1

M ],αfj
r

) 1
r

: Lp(dx)

∥∥∥∥∥. (9)
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As an application of Theorem 1.3 we obtain the vector-valued extension of
the boundedness of commutators. Under a commutator we mean an operator
of the form [a, T ]f(x) = a(x)Tf(x)− T (af)(x), where a is a function and T is
a bounded operator. The classical results say that [a, T ] is a bounded operator
from Lp(dx) to Lp(dx) if a ∈BMO and T is a Calderón–Zygmund operator and
that [a, T ] is a bounded operator from Lp(dx) to Lq(dx) if a ∈BMO and T is
a fractional integral operator, where p and q are suitable real numbers. Fazio
and Ragusa [11] extended these results to the classical Morrey spaces. The
definition will be given in the next section.

2. Preliminaries

In this section we collect the known facts on maximal operators, weighted
norm inequalities and commutator operators.

In what follows we will use the notation due to Triebel [17] to state a vector-
valued inequality. Let X be Mp

q(µ) or Lp(µ) with 1 ≤ q ≤ p < ∞ and let
‖· : X‖ be its norm. We denote

‖fj : X(lr)‖ :=

∥∥∥∥∥

( ∞∑
j=1

|fj(·)|r
) 1

r

: X

∥∥∥∥∥. (10)

Thus we are going to prove that

‖Mκfj : X(lr)‖ ≤ C ‖M ],αfj : X(lr)‖.
2.1. Maximal operators. For f ∈ L1

loc(µ), κ > 1 and 0 ≤ α < n, a fractional
maximal operator Mα

κ f(x) is defined as

Mα
κ f(x) := sup

x∈Q∈Q(µ)

1

µ(κQ)1−α
n

∫

Q

|f(x)| dµ(x).

It follows that, by definition, M0
κ = Mκ. As for the boundedness of Mα

κ on the
Morrey spaces, a vector-valued inequality of Fefferman–Stein type is known.

Lemma 2.1 ([13]). Suppose that κ > 1, 0 ≤ α < n, 1 < q ≤ p < ∞,
1 < t ≤ s < ∞, 1 < r < ∞, 1/s = 1/p− α/n and t/s = q/p. Then we have

‖Mα
κ fj : Ms

t(l
r)‖ ≤ C

∥∥fj : Mp
q(l

r)
∥∥ .

In particular we have (taking into account that Nf(x) ≤ CM2f(x) µ-a.e.)

‖Nfj : Ms
t(l

r)‖ ≤ C
∥∥fj : Mp

q(l
r)

∥∥ .

We use a covering lemma of Besicovitch type.

Lemma 2.2. Let κ > 1. Suppose that {Rj}j∈J is a family of cubes with
bounded diameters. Then we can find a subset J0 in J such that⋃

j∈J

Rj ⊂
⋃
j∈J0

κRj,
∑
j∈J0

χRj
(x) ≤ Cκ, (11)

where χA is the indicator function of A ⊂ Rd.
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As for a weak-type assertion, we have the following proposition which will be
obtained easily by using Lemma 2.2.

Lemma 2.3. Suppose that κ > 1. Then we have

µ{x ∈ Rd : Mκf(x) > λ} ≤ Cκ

λ

∫

Rd

|f(x)| dµ(x),

where Cκ is the same constant as in Lemma 2.2.

2.2. Weighted norm inequality. To prove Theorem 1.3 we use the technique
of a weighted norm inequality. In [8], Komori considered weighted norm inequal-
ities with respect to Mκ. He considered weights with Radon measure µ, where
µ does not necessarily satisfy either the doubling condition or the growth con-
dition. In this paper we deal with a class of weights which are “almost”in A1(µ)
and consider the double-weighted norm inequality∫

{x∈Rd ; Mκf(x)>λ}

u(x) dµ(x) ≤ C

λ

∫

Rd

|f(x)|v(x) dµ(x). (12)

Our problem is that for given κ > 1 we have to find a pair (u, v) with (12). If
the measure µ is doubling, as in [5], this is equivalent to Mκu(x) ≤ Cv(x). The
following result is due to Komori [8]. His result contains the Lp-version but here
we need the L1-assertion only.

Proposition 2.4. Let κ > κ′ > 1. Suppose that a locally µ-integrable function
w satisfies Mκ′w(x) ≤ Cw(x) for some positive constant C. Then the following
inequality is true: ∫

{x∈Rd : Mκf(x)>λ}

w(x) dµ(x) ≤ C

λ

∫

Rd

|f(x)|w(x)dµ(x). (13)

Although Komori considered single-weighted norm inequalities, the results
can be readily transformed into a double-weighted norm inequality. With a
minor modification of the proof of Proposition 2.4, we can prove the following
proposition which will be used later.

Proposition 2.5. Let κ > κ′ > 1 and u, v be µ-locally integrable functions.
Suppose that Mκ′u(x) ≤ Cv(x). Then we have∫

{x∈Rn : Mκf(x)>λ}

u(x)dµ(x) ≤ C

λ

∫

Rn

|f(x)|v(x)dµ(x). (14)

Komori showed that in his class of weights, there is no equivalence as in the
classical case. The value of modification parameter κ can be an obstacle for it.
We wish to obtain an estimate such as∫

{x∈Rd : Mκf(x)>λ}

w(x)dµ(x) ≤ C

λ

∫

Rd

|f(x)|Mκw(x)dµ(x) (κ > 1).
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But this estimate is false. Indeed, we can show that it is false by constructing
a counterexample for which we cannot take κ = 3. We give the counterexample
and the proof in Appendix.

2.3. Commutator operators. We present some definitions and known results
needed for stating our commutator theorems.

Definition 2.6 ([10], p. 466). A singular integral operator T is a bounded
linear operator on L2(µ) with a kernel function K that satisfies the following
three properties :

(1) For some appropriately chosen constant C > 0, we have

|K(x, y)| ≤ C

|x− y|n ,

where n is a constant in the growth condition (2).
(2) There exist constants ε > 0 and C > 0 such that

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ C
|x− z|ε
|x− y|n+ε

if |x− y| > 2|x− z|.

(3) If f is a bounded measurable function with a compact support, then we
have

Tf(x) =

∫

Rd

K(x, y)f(y) dµ(y) for all x /∈ supp (f).

Definition 2.7 ([5], Definition 3.1). Let 0 < α < n. Then we define a
fractional integral operator Iα by

Iαf(x) :=

∫

Rd

f(y)

|x− y|n−α
dµ(y),

where n is a constant in the growth condition (2).

It is well known that T is a bounded operator on Lp(µ) if 1 < p < ∞ (see
[10]) and Iα is a bounded operator from Lp(µ) to Lq(µ) if 1 < p < q ≤ ∞
and 1/q = 1/p− α/n (see [5]). The Lp(µ)–Lq(µ)-boundedness of Iα was firstly
proved in a more general form by V. Kokilashvili in Rd (1 < p < q < ∞). In
general non-homogeneous spaces the Lp(µ)–Lq(µ)-boundedness of Iα is proved
in a general setting (1 < p < q < ∞) in [7], see also the monograph by
D. Edmunds, V. Kokilashvili and A. Meskhi [2]. In [13] it is also shown that
T is a bounded operator on Mp

q(µ) if 1 < q ≤ p < ∞ and Iα is a bounded
operator from Mp

q(µ) to Ms
t(µ) if

1 < q ≤ p < ∞, 1 < t ≤ s < ∞, 1/s = 1/p− α/n and t/s = q/p. (15)

Next we formulate the commutator results for these operators.
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Proposition 2.8. Suppose that a ∈RBMO. Let 1 < q ≤ p < ∞ and T be a
singular integral operator with associated kernel K. Then

[a, T ]f(x) := lim
ε→0

∫

|x−y|>ε

(a(x)− a(y))K(x, y)f(y) dµ(y)

can be extended to a bounded operator on Mp
q(µ).

Proposition 2.9. Suppose that a ∈RBMO. If the parameters p, q, s, t, α, n
satisfy (15) and 1 < r < ∞, then

[a, Iα]f(x) := lim
ε→0

∫

|x−y|>ε

(a(x)− a(y))

|x− y|n−α
f(y) dµ(y)

can be extended to a bounded operator from Mp
q(µ) to Ms

t(µ).

In proving the vector-valued estimate, we shall need the ones for Iα and a
singular integral operator T .

Proposition 2.10 ([13]). Suppose that the parameters p, q, s, t, α, n satisfy
(15) and that 1 < r < ∞. Let T be a singular integral operator. Then we have

‖Iαfj : Ms
t(l

r)‖ ≤ C
∥∥fj : Mp

q(l
r)

∥∥ ,∥∥Tfj : Mp
q(l

r)
∥∥ ≤ C

∥∥fj : Mp
q(l

r)
∥∥ .

3. Weighted Norm Estimates

In this section we prove estimates with weights.

3.1. A1-properties. In the first subsection we remove the growth condition on
µ. We consider the following problem.

Problem 3.1. Given κ > 1, find a condition for locally integrable functions
(u, v) such that Mκu(x) ≤ Cv(x).

Set w = (Mag)δ, where a > 1 and δ is a real number slightly less than 1. If the
measure µ satisfies the doubling condition, then as is well-known, w ∈ A1(µ),
i.e., Mκw(x) ≤ Cw(x) for µ-a.e. But now we are in the non-doubling situation
so that, unfortunately, we have to modify the notion of A1(µ) weights. Only
in this subsection we do not have to impose the condition on µ: it suffices to
assume that µ is just a Radon measure on Rd.

Simple calculation yields the following lemma.

Lemma 3.2. Let κ > b > 1. Let a > Cb,κ := b + 4b2

κ−b
and Q,R ∈ Q(µ). If R

satisfies both Q and Rd \ κb−1Q, then we have Q ⊂ ab−1R.

Proof. By considering each component, we may assume that d = 1. Since
in this lemma we do not have to consider the measure µ, we can normalize
Q to obtain Q = [−1, 1]. In that case we have `(R) > κb−1 − 1. Thus if
(κb−1 − 1)(ab−1 − 1) > 4, that is, a > Cb,κ, then we have Q ⊂ ab−1R. ¤

Using this lemma, we will prove
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Theorem 3.3. Let

κ > b > 1, a > Cb,κ, 0 < δ < 1 and 0 ≤ ε <
1

δ
− 1.

For a locally integrable function f with Maf(x) < ∞ µ-a.e. we have

Mκ{(Maf)δ(1+ε)}(x)
1

1+ε ≤ Cδ,a,b,ε,κMbf(x)δ. (16)

Here C is a constant depending on δ, a, b, ε, κ and not on f .

Remark 3.4. Before proving this theorem, we collect some corollaries of this
theorem.

(1) Letting ε = 0, we obtain Mκ{(Maf)δ}(x) ≤ Ca,b,δ,κMbf(x)δ. This is a
substitute for A1(µ) weight in our theory. Since we can take κ′ such that
κ > κ′ > 1 and a > Cκ′,b, we can apply Proposition 2.5 with u = (Maw)δ

and v = (Mbw)δ, where h is a µ-locally integrable function. Then we
obtain∫

{x∈Rn : Mκf(x)>λ}

(Maw)δ(x)dµ(x) ≤ C

λ

∫

Rn

|f(x)|(Mbw)δ(x)dµ(x). (17)

(2) Suppose that Q satisfies µ(κQ) ≤ κd+1µ(Q). Then Theorem 3.3 yields


 1

µ(κQ)

∫

Q

Maf(x)δ(1+ε)dµ(x)




1
1+ε

≤
(

Cδ,a,b,ε inf
Q

Mbf(x)δ

)

≤ Cδ,a,b,ε

µ(Q)

∫

Q

Mbf(x)δdµ(x) ≤ Cδ,a,b,ε,κ

µ(κQ)

∫

Q

Mbf(x)δdµ(x).

Thus

 1

µ(κQ)

∫

Q

Maf(x)δ(1+ε)dµ(x)




1
1+ε

≤ Cδ,a,b,ε,κ

µ(κQ)

∫

Q

Mbf(x)δdµ(x). (18)

This is a substitute for the Reverse Hölder’s inequality.

Proof of Theorem 3.3. By putting δ′ = δ(1 + ε) and replacing δ′ by δ, we can
assume ε = 0. Fix a cube Q ∈ Q(µ). We decompose f w.r.t to κb−1Q :
f = f1 + f2, where f1 = fχκb−1Q. Noting that Ma is weak-(1, 1) bounded (cf.
Lemma 2.3), we are in the position to use Kolmogorov’s lemma. Thus it follows
that

1

µ(κQ)

∫

Q

(Maf1)
δ(y) dµ(y)

≤ C

(
1

µ(κQ)

∫

κb−1Q

|f(y)| dµ(y)

)δ

≤ C(Mbf(x))δ. (19)
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Since Q is arbitrary as long as x ∈ Q, we have Mκ{(Maf1)
δ}(x) ≤ CMbf(x)δ.

Hence the estimate for f1 is valid. Let us turn our attention to the estimate of
f2. By Lemma 3.2, R ∩ (κb−1Q)c 6= ∅ implies that Q ⊂ ab−1R. Thus for all
y ∈ Q we have

Maf2(y) = sup
R∈Q(µ)
y∈bR

1

µ(aR)

∫

R

|f2(z)| dµ(z) ≤ sup
R∈Q(µ)

Q⊂ab−1R

1

µ(aR)

∫

ab−1R

|f2(z)| dµ(z)

≤ sup
S∈Q(µ)
Q⊂bS

1

µ(bS)

∫

S

|f(z)| dµ(z) ≤ Mbf(x).

Hence we obtain
1

µ(κQ)

∫

Q

(Maf2)
δ(y) dµ(y) ≤ CMbf(x)δ. (20)

This is what we want for f2. Combining (19) and (20), we obtain Theorem 3.3.
¤

We state one more corollary of this theorem.

Corollary 3.5. Suppose that the parameters a, b, κ, δ and function f are the
same as in Theorem 3.3. Q ∈ Q(µ) satisfies µ(ακQ) ≤ Kµ(Q) for some α ≥ 1
and K > 0. Then for any µ-measurable subset A ⊂ αQ we have

∫

A

Maf(x)δ dµ(x) ≤ C

(
µ(A)

µ(Q)

) ε
1+ε

∫

Q

Mbf(x)δ dµ(x), (21)

where ε = (1− δ)/2δ.

Proof of Corollary 3.5. Indeed, by Remark 3.4 we have

∫

A

Maf(x)δ dµ(x) ≤
( ∫

A

Maf(x)δ(1+ε) dµ(x)

) 1
1+ε

µ(A)
ε

1+ε

≤
( ∫

αQ

Maf(x)δ(1+ε) dµ(x)

) 1
1+ε

µ(A)
ε

1+ε

≤ C

(
1

µ(ακQ)

∫

αQ

Maf(x)δ(1+ε) dµ(x)

) 1
1+ε

µ(Q)
1

1+ε µ(A)
ε

1+ε

≤ C inf
x∈Q

Mκ

(
Maf

δ(1+ε)
)
(x)

1
1+ε µ(Q)

1
1+ε µ(A)

ε
1+ε

≤ C

( ∫

Q

Mbf(x)δ dµ(x)

)(
µ(A)

µ(Q)

) ε
1+ε

.

This is the desired estimate. ¤
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3.2. Good λ-inequality. In this subsection we apply the results in the pre-
ceding subsection with κ = 9

5
. In the sequel we assume that again µ satisfies the

growth condition. Let C0 := C 9
5
, 3
2

=
63

2
, where Cb,κ is the constant appearing

in Lemma 3.2. To simplify the notation of the weighted measure, we use w(A)
to denote

∫
A

w(x) dµ(x), where w is a positive measurable function and A is
µ-measurable.

The main result of this subsection is

Theorem 3.6. Suppose that the parameters α, n, λ, δ, ε satisfy

0 ≤ α < n, λ > 0, 0 < ε <
1

δ
− 1.

Assume that f ∈Mp
q(µ) and that an increasing sequence of doubling cube {Qj}

satisfy (5). Then there is a constant C > 0 and η0 depending only on the
parameters such that if 0 < η < η0 we have

(M36w)δ ({x ∈ Rd : M ],αf(x) ≤ ηλ,Nf(x) > 2λ})

≤ C1η
ε

1+ε

(
M 3

2
w

)δ ({x ∈ Rd : Nf(x) > λ}) .

Proof. The proof will be similar to that of Theorem 6.2 in [16] except that we
consider the weighted norm inequality. So we omit some details. We set

Eλ := {x ∈ Rd : M ],αf(x) ≤ ηλ, Nf(x) > 2λ}
and

Ωλ := {x ∈ Rd : Nf(x) > λ}.
It can be assumed that Eλ 6= ∅, otherwise there is nothing to prove.

Let x ∈ Eλ. Then by the definition of Eλ, there exists a doubling cube
R = Rx ∈ Q(µ, 2) such that mR(|f |) > 5

4
λ and x ∈ Rλ.

Lemma 3.7. Let η be sufficiently small and suppose that Sx is a doubling
cube containing 2Rx. Then we have mSx(|f |) ≤ 5

4
λ.

Proof. Suppose to the contrary. Then we can find a sequence of doubling cubes
Rk, k = 1, 2, . . . , such that 2Rk ⊂ Rk+1 and mRk

(|f |) > 5λ
4

for all k. By
assumption (5), whether µ is finite or not, we have lim

k→∞
mRk

(f) = 0. Let k be

a large integer with |mRk
(f)| < λ

4
. This implies that mRk

(|f −mRk
(f)|) > λ.

Since M ],αf(x) ≥ mRk
(|f −mRk

(f)|) > λ and x ∈ Eλ, this is a contradiction if
η < 1. ¤

Let us return to the proof of Theorem 3.6. By Lindelöf’s covering lemma we
can find a countable subset Eλ,0 such that Eλ ⊂

⋃
x∈Eλ,0

Rx. Thus we have

(Maw)δ(Eλ) ≤ (Maw)δ

( ⋃
x∈Eλ,0

Rx

)
.



164 Y. SAWANO

Hence it suffices to estimate
∫

S
x∈F Rx

Maw(x)δ dµ(x) for a finite subset F in Eλ,0

independent of F . Using Lemma 2.2, we can take a subset F0 ⊂ F satisfying
⋃
x∈F

Rx ⊂
⋃

x∈F0

10

9
Rx,

∑
x∈F0

χRx(x) ≤ CχΩλ
(x). (22)

Using an argument similar to that in [16] we obtain

µ

(
Eλ ∩ 10

9
Rx

)
≤ C ηµ

(
10

9
Rx

)

for all x ∈ Eλ,0, provided that η is sufficiently small.
By Corollary 3.5 with κ = 9

5
, α = 10

9
we have

(M36w)δ

(
Eλ ∩ 10

9
Rx

)
≤ Cη

ε
1+ε (M 3

2
w)δ(Rx). (23)

Combining (22) and (23), we have the desired result. ¤
As a corollary, by means of a distribution formula, we obtain our next results,

where we replaced η
ε

1+ε by η and used M36f(x) ≤ M 3
2
f(x) for all µ-measurable

functions f .

Corollary 3.8. Let 1 < p < ∞. Under the same assumption as in Theorem
3.6 for small η > 0 we have

∫

Rd

Nf(x)pM36w(x)δ dµ(x)

≤ Cη,δ

∫

Rd

M ],αf(x)pM 3
2
w(x)δdµ(x) + C2 · η

∫

Rd

Nf(x)pM 3
2
w(x)δdµ(x),

where C2 is dependent not on η but on δ.

4. Proof of Theorem 1.3

4.1. A technical lemma. To prove Theorem 1.3 we need the following lemma.
In what follows we usually use the letters u, v, w to denote the parameters with
1 < u, v, w < ∞. We do not use the letter u, v, w to denote weight functions.

Lemma 4.1. Suppose that 1 < v < ∞, 1 < u ≤ w, max
(

1
v′ ,

1
w′

)
< δ < 1.

Then there exists a constant C independent of Q such that

µ(100Q)
1
w
− 1

u

∫

Rd

( ∞∑
j=1

|hj(x)|M 3
2
(|gj| 1δ )(x)δ

)
dµ(x)

≤ C sup
R∈Q(µ)

µ(2R)
1
w
− 1

u‖χRhj : Lu(lv)‖

for all µ-measurable functions gj, hj (j = 1, 2, . . . ) with supp (gj) ⊂ Q and
‖gj : Lu′(lv

′
)‖ ≤ 1.
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Proof. Firstly, we estimate

µ(100Q)
1
w
− 1

u

∫

50Q

( ∞∑
j=1

|hj(x)|M 3
2
|gj| 1δ (x)δ

)
dµ(x).

This is easily done by using Hölder’s inequality and Lemma 2.1.

µ(100Q)
1
w
− 1

u

∫

50Q

( ∞∑
j=1

|hj(x)|M 3
2
|gj| 1δ (x)δ

)
dµ(x)

≤ µ(100Q)
1
w
− 1

u‖χ50Qhj : Lu(lv)‖ · ‖χ50QM 3
2
(|gj| 1δ ) : Lδu′(lδv′)‖δ

≤ C sup
R∈Q(µ)

µ(2R)
1
w
− 1

u‖χRhj : Lu(lv)‖.

Thus the estimation of the integral over 50Q is finished.
In what follows we concentrate on the integral over Rd \ 50Q :

I := µ(100Q)
1
w
− 1

u

∫

Rd\50Q

( ∞∑
j=1

|hj(x)|{M 3
2
(|gj| 1δ )(x)}δ

)
dµ(x).

By using Hölder’s inequality once more and noticing that u ≤ w, we have

I ≤ µ(Q)
1
w
− 1

u

( ∫

Rd\50Q

( ∞∑
j=1

|hj(x)|v
) 1

v

·
( ∞∑

j=1

{M 3
2
(|gj| 1δ )(x)}δv′

) 1
v′

dµ(x)

)
:= II.

By the definition of M 3
2
, we have that M 3

2
(|gj| 1δ )(x) is less than or equal to

sup
R∈Q(µ)
{x}∪Q⊂R

1

µ
(

7
5
R

)
∫

Q

|gj(x)| 1δ dµ(x) =

( ∫

Q

|gj(z)| 1δ dµ(z)

)
· sup

R∈Q(µ)
{x}∪Q⊂R

1

µ
(

7
5
R

)

for all x ∈ Rd \ 50Q. Setting TQ(x) := sup
R∈Q(µ)
{x}∪Q⊂R

µ(Q)

µ( 7
5
R)

for x ∈ Rd \ 50Q, we find

that M 3
2
(|gj| 1δ )(x) ≤

(
1

µ(Q)

∫
Q

|gj(z)| 1δ dµ(z)
)
TQ(x) holds. Inserting this into II,

we have

II ≤µ(Q)
1
w
− 1

u

∫

Rd\50Q

( ∞∑
j=1

|hj(x)|v
)1

v
( ∞∑

j=1

(
TQ(x)

µ(Q)

∫

Q

|gj(z)| 1δ dµ(z)

)δv′) 1
v′

dµ(x)

≤
(

µ(Q)
1
w
− 1

u

∫

Rd\50Q

( ∞∑
j=1

|hj(x)|v
) 1

v

· TQ(x)δ dµ(x)

)

×
( ∞∑

j=1

(
1

µ(Q)

∫

Q

|gj(z)| 1δ dµ(z)

)δv′) 1
v′

.
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By Minkowski’s inequality and the assumption on gj’s, we have

{ ∞∑
j=1

(
1

µ(Q)

∫

Q

|gj(z)| 1δ dµ(z)

)δv′} 1
v′

≤
(

1

µ(Q)

∫

Q

( ∞∑
j=1

|gj(z)|v′
) 1

δv′

dµ(x)

)δ

≤ µ(Q)−
1
u′ .

Thus it follows that

II ≤ µ(Q)
1
w
−1 ·

( ∫

Rd\50Q

( ∞∑
j=1

|hj(x)|v
) 1

v

· TQ(x)δ dµ(x)

)
.

Denoting the origin by O we obtain by the monotone convergence theorem

II ≤ lim
r→∞

µ(Q)
1
w
−1 ·

( ∫

B(O,r)\50Q

( ∞∑
j=1

|hj(x)|v
) 1

v

· TQ(x)δ dµ(x)

)
.

We define Sl,r for r À 1 by Sl,r := {x ∈ B(O, r)\50Q | 2−l < TQ(x) ≤ 2−l+1},
where l = 1, 2, . . . . Notice that B(O, r) \ 50Q can be partitioned into into a
disjoint union of {Sl,r}∞l=1, since TQ(x) ≤ 1 for all x ∈ Rd \ 50Q. Using this
partition, we have

II ≤ C lim
r→∞

µ(Q)
1
w
−1

( ∫

B(O,r)\50Q

( ∞∑
j=1

|hj(x)|v
) 1

v

TQ(x)δ dµ(x)

)

≤ C lim
r→∞

∞∑

l=1

2−lδµ(Q)
1
w
−1

( ∫

Sl,r

( ∞∑
j=1

|hj(x)|v
) 1

v

dµ(x)

)

≤ C lim
r→∞

∞∑

l=1

2−lδµ(Q)
1
w
−1µ(Sl,r)

1
u′ ‖χSl,r

hj : Lu(lv)‖.

By virtue of Lemma 2.2 and the definition of Sl,r, there are cubes R
(m)
l,r (m =

1, . . . , N) such that Sl,r ⊂
N⋃

m=1

6
5
R

(m)
l,r , and that µ

(
7
5
R

(m)
l,r

)
∼ 2−lµ(Q), where N

is the number independent of l and r. Using this covering, we can proceed as
follows:

I ≤ CN lim
r→∞

∞∑

l=1

2−l(δ+ 1
w
−1)µ

(
7

5
R

(α)
l,r

) 1
w
− 1

u ∥∥∥χ 6
5
R

(α)
l,r

hj : Lu(lv)
∥∥∥ .

By assumption 1/w′ < δ < 1, the series converges, so we have the desired
result. ¤
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4.2. Proof of 1.3 (1), (2-a).

Proof of Theorem 1.3 (1), (2-a). Throughout the proof it is assumed that fn ≡ 0
for n greater than some n0 due to the monotone convergence theorem. In the
proof we can always use (5) because we limit ourselves to the proof of Theorem
1.3 (1) and (2-a).

We take an auxiliary t such that 1 < t < min(q, r). And we fix the cube Q.
Then we are to estimate

I := µ(100Q)
1
p
− 1

q

( ∫

Q

( ∞∑
j=1

Nfj(x)r

) q
r

dµ(x)

) 1
q

.

For this purpose put u = q/t, v = r/t, w = p/t, then we have 1 < u ≤ w < ∞
and 1 < v < ∞. We write I as follows:

I =

{
µ(100Q)

1
w
− 1

u

(∫

Q

( ∞∑
j=1

(Nfj(x)t)v

)u
v

dµ(x)

) 1
u
} 1

t

.

By the duality Lv(lu)–Lv′(lu
′
), where u′ = u/(u − 1) and v′ = v/(v − 1), there

exists a system of functions {gj}∞j=1 supported by Q such that

I =

{
µ(100Q)

1
w
− 1

u

(∫

Q

∞∑
j=1

Nfj(x)tgj(x) dµ(x)

)} 1
t

and ‖gj : Lu′(lv
′
)‖ = 1.

Take an auxiliary δ such that max
(

1
v′ ,

1
w′

)
< δ < 1. We have from Corollary

3.8 that

I ≤ C

{
µ(100Q)

1
w
− 1

u

(∫

Q

∞∑
j=1

(
Nfj(x)t{M36(|gj| 1δ )(x)}δ

)
dµ(x)

)} 1
t

≤
{

µ(100Q)
1
w
− 1

u

( ∞∑
j=1

∫

Rd

(Cη,δM
],αfj(x)t

+ C2ηNfj(x)t){M 3
2
(|gj| 1δ )(x)}δ dµ(x)

)} 1
t

≤
{

Cη,δ µ(100Q)
1
w
− 1

u

( ∞∑
j=1

∫

Rd

M ],αfj(x)t{M 3
2
(|gj| 1δ )(x)}δ dµ(x)

)

+ C2ηµ(100Q)
1
w
− 1

u

( ∞∑
j=1

∫

Rd

Nfj(x)t{M 3
2
(|gj| 1δ )(x)}δ dµ(x)

)} 1
t

=

{
Cη,δ µ(100Q)

1
w
− 1

u

∫

Rd

( ∞∑
j=1

M ],αfj(x)t{M 3
2
(|gj| 1δ )(x)}δ

)
dµ(x)
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+ C2ηµ(100Q)
1
w
− 1

u

∫

Rd

( ∞∑
j=1

Nfj(x)t{M 3
2
(|gj| 1δ )(x)}δ

)
dµ(x)

} 1
t

.

We us Lemma 4.1 with hj(x) = M ],αfj(x)t and hj(x) = Nfj(x)t respectively
to obtain

I ≤ C
∥∥M ],αfj(x) : Mp

q(l
r)

∥∥ + C3 η
1
t

∥∥Nfj(x) : Mp
q(l

r)
∥∥ .

Since Q ∈ Q(µ) is arbitrary, we have
∥∥Nfj(x) : Mp

q(l
r)

∥∥ ≤ C
∥∥M ],αfj(x) : Mp

q(l
r)

∥∥ + C3 η
1
t

∥∥Nfj(x) : Mp
q(l

r)
∥∥

for a sufficiently small η. Using η and as every term of this formula is finite, we
have ∥∥Nfj(x) : Mp

q(l
r)

∥∥ ≤ C
∥∥M ],αfj(x) : Mp

q(l
r)

∥∥ .

This is the desired result. ¤

5. An Application to Commutators

In this section we shall extend Propositions 2.8 and 2.9 to lr-valued inequal-
ities.

Theorem 5.1. Suppose that a ∈RBMO. Let 1 < q ≤ p < ∞, 1 < r < ∞
and T be a singular integral operator with associated kernel K. Then

∥∥[a, T ]fj : Mp
q(l

r)
∥∥ ≤ C

∥∥fj : Mp
q(l

r)
∥∥ .

Theorem 5.2. Suppose that a ∈RBMO. If the parameters p, q, r, s, t, α, n
satisfy (15) and 1 < r < ∞, then

‖[a, Iα]fj : Ms
t(l

r)‖ ≤ C
∥∥fj : Mp

q(l
r)

∥∥ .

In the Appendix we consider another type of commutators. The proof of
Theorem 5.1 is somehow easier than that of Theorem 5.2. So we prove only
Theorem 5.2, while the proof of Theorem 5.1 is omitted.

To prove the theorem we need the following pointwise estimates of commu-
tators.

For details we refer to [16, Section 9] in the case of first assertion and to to
[1, p. 1293] in the case of second one.

Lemma 5.3. Let f ∈Mp
q(µ).

(1) Suppose that T is a singular integral operator and a is an RBMO func-
tion. Then

(M ],0[a, T ]f)(x) ≤ C{(M( 4
3
)f)(x) + (M( 4

3
)(Tf))(x)}.

(2) Let 0 < α < n. We have for µ-a.e. x ∈ supp (µ)

(M ],α[a, Iα]f)(x) ≤ C ‖a‖∗
(
Mα

( 9
8
)
f(x) + (M( 3

2
)Iαf)(x) + Iα|f |(x)

)
.
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Proof of Theorems 5.1 and 5.2. Since the proofs of these theorems are similar
to each other, we prove only Theorem 5.2. Suppose first that µ(Rd) = ∞. In
that case we can use Theorem 1.3, Propositions 2.9, 2.10 and Lemma 5.3 (2).
Combining them, we can easily prove the theorem.

Suppose that µ(Rd) < ∞. Then the treatment of ‖M ],α[a, Iα]fj : Ms
t(l

r)‖
is the same as in the case µ(Rd) = ∞.

As for the estimate of the second term

III :=

( ∞∑
j=1

mRd(|[a, Iα]fj|)r

) 1
r

,

we have only to show that this is estimated from above by C‖fj : Lu(lr)‖,
where u =

1 + min
(
q, r, n

α

)

2
, since ‖fj : Lu(lr)‖ ≤ C‖fj : Mp

q(l
r)‖. For this

purpose define an auxiliary v by
1

v
=

1

u
− α

n
. By using Minkowski’s inequality

and the boundedness of [a, Iα], III is estimated from above by
( ∞∑

j=1

mRd(|[a, Iα]fj|v) r
v

) 1
r

≤ C

( ∞∑
j=1

(mRd(|fj|u))
r
u

) 1
r

≤ C‖fj : Lu(lr)‖.

So the proof is finished. ¤

6. Appendix

6.1. A different boundedness of a commutator on the Morrey space.
Finally we consider another commutator with a Lipschitz function and a sin-
gular integral operator T or with a Lipschitz function and a fractional integral
operator. Shirai [15] considered a commutator with b ∈ Λγ and T and proved
the boundedness of [b, T ] with the Lebesgue measure. The same proof also holds
in our nonhomogeneous space. The proof is similar to the usual case with the
aid of Proposition 2.10. For the proof we refer to [15].

Proposition 6.1. Assume that the parameters satisfy

1 < q ≤ p < ∞, 1 < t ≤ s < ∞,
p

q
=

s

t
,

1

s
=

1

p
−α + γ

n
, 0 < α < n, 0 < γ ≤ 1.

Suppose that a continuous function b satisfies

|b(x)− b(y)| ≤ C|x− y|γ (24)

for C > 0. Then we have

‖[b, Iα]fj : Ms
t(l

r)‖ ≤
∥∥fj : Mp

q(l
r)

∥∥ .

Proposition 6.2. Assume that the parameters satisfy

1 < q ≤ p < ∞, 1 < t ≤ s < ∞,
p

q
=

s

t
,

1

s
=

1

p
− γ

n
, 0 < γ ≤ 1.

Suppose that b is the same function as in Proposition 6.1. Then

‖[b, T ]fj : Ms
t(l

r)‖ ≤ C
∥∥fj : Mp

q(l
r)

∥∥ .
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6.2. A note on a weighted norm inequality of Stein-type.
In considering weighted norm inequalities, it would be the best thing of the

following inequality were fulfilled∫

{x∈Rd : Mκf(x)>λ}

|g(x)|dµ(x) ≤ Cκ

∫

Rd

|f(x)|Mκg(x) dµ(x), (25)

but it will hold only if we make a doubling assumption. Here we disprove (25)
with κ = 3 as is announced in Section 2.

Counterexample of (25) . We consider the case d = 2. We define a measure µ
by a weight function f given below :

f(x) =





1 (|x| ≥ 1)
1/m! (2−m < |x| < 2−m+1 for some m ∈ N)
0 (otherwise)

.

Let µ := f(x)dx.
We disprove (25) by reductio ad absurdum. Suppose we have inequality (25)

with κ = 3. First of all fix an integer α. We are going to let α tend to infinity
later.

Claim 6.3. Set Rm = µ(B((2−m, 0), 3 · 2−m))−1. Then we have

B(O, 2 · 2−m) ⊂ {(x, y) ∈ R2 : M3δO(x, y) > Rm},
where δO is a Dirac measure supported on O = (0, 0).

Proof. Let (x, y) ∈ B(O, 2 ·2−m). By the rotation invariance of the sets B(O, 2 ·
2−m) and {(x, y) ∈ R2 : M3δO(x, y) > λ}, we can assume that 0 ≤ x < 2−k+1

and y = 0. Since O, (x, 0) ∈ B((x/2, 0), (1 + s)x/2) for all s > 0, we have
M3δO(x, 0) > µ(B((x/2, 0), (1 + s)x/2))−1. If s > 0 is sufficiently small, we
have M3δO(x, 0) > µ(B((x/2, 0), (1 + s)x/2))−1 > Rk. ¤

It follows from the claim that we have∫

B(O,2·2−m)

|g(x)| dµ(x) ≤ Cµ(B((2−m, 0), 3 · 2−m))M3g(O).

Let φ be a function such that
∫
Rd φ(x) dx = 1 is supported by a small ball

whose center is O. For r ¿ 1/2 we take a function gr of the form gr =
α∑

j=1

1
r2 φ(r2 · −xr

j), where xr
j satisfies

lim
r→0

xr
j =

(
2−m+1 cos

2πj

α
, 2−m+1 sin

2πj

α

)

and

supp (gr) ⊂ B(O, 2−m+1)
⋂ (

α⋃
j=1

B

((
2−m+1 cos

2πj

α
, 2−m+1 sin

2πj

α

)
, r

))
.
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As r → 0, we have α ≤ Cµ(B((2−m, 0), 3 · 2−m))M3µm,α(O), where denoting
by δx as the Dirac measure supported by x, we set

µm,p :=
α∑

j=1

δ(2−m+1 cos 2πj
α

,2−m+1 sin 2πj
α ).

By the definition of M3µm,α(O) we have

M3µm,α(O)

= sup
(y,r)∈Rn×(0,∞)

O∈B(y,r)

]
{
1 ≤ j ≤ α :

(
2−k+1 cos

(
2πj
α

)
, 2−k+1 sin

(
2πj
α

)) ∈ B(y, r)
}

µ(B(y, 3r))
.

For a finite set J = {j1, . . . , jm} with 1 ≤ j1 < j2 < . . . < jm ≤ α we set

SJ := inf

{
µ(B(y, 3r)) : O,

(
2−k+1 cos

(
2πj1

α

)
, 2−k+1 sin

(
2πj1

α

))
, . . . ,

(
2−k+1 cos

(
2πjm

α

)
, 2−k+1 sin

(
2πjm

α

))
∈ B(y, r)

}
.

Then M3µk,α(O) can be written as M3µk,p(O) = max
J⊂{1,...,α}

]J

SJ

.

Fixing α, if ]J ≥ 2, we have by geometric observation that µ(SJ) ≥ Cα

(m−1)!
.

Notice also that µ(B((2−k, 0), 3 · 2−k)) = O
(

1
m!

)
. Thus we have

lim
k→∞

µ(B((2−k, 0), 3 · 2−k))

SJ

= 0.

And therefore S{j} ∼ µ(B((2−k, 0), 3 · 2−k), where ∼ does not depend on α and
k. Thus keeping α fixed, we have

α ≤ C lim
k→∞

M3µk,p(O) ≤ C,

where C is independent of α. Since α is arbitrary, we have obtained the desired
contradiction and (25) is disproved. ¤
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