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ON THE CONVOLUTION OF FUNCTIONS OF
GENERALIZED BOUNDED VARIATIONS

RAJENDRA G. VYAS

Abstract. Let f and g be 2π periodic functions. If f ∈ L1[0, 2π] and g is
from

∧
BV (p)[0, 2π] or, Lip(α, p)[0, 2π] or, r−BV [0, 2π], then f convolution

g inherit the same property.
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The smoothness-increasing operator convolution is known for inheriting the
best properties of each parent function. It is very well known that “f ∈ L1

and if g ∈ Ck or is of bounded variation (that is BV ), then f ∗ g (that is the
convolution of f and g) has the same property ”. This concept of BV can be
generalized in many ways and many interesting generalizations are obtained.
In investigations on the uniform convergence of Fourier series Waterman [1]
introduced the class of functions of

∧
BV . In 1980 Shiba [2] generalized this

class. He introduced the class
∧

BV (p).

Definition 1. Given an interval I, a sequence of non-decreasing positive real
numbers

∧
= {λm} (m = 1, 2, . . .) such that

∑
m

(1/λm) diverges and 1 ≤ p < ∞
we say that f ∈ ∧

BV (p) (that is f is a function of p − ∧
-bounded variation

over (I)) if
VΛ(f, p, I) = sup

{Im}
{VΛ({Im}, f, p, I)} < ∞,

where

VΛ({Im}, f, p, I) =

( ∑
m

|f(bm)− f(am)|p
λm

)1/p

,

and {Im} is a sequence of non-overlapping subintervals Im = [am, bm] ⊂ I =
[a, b].

Note that for p = 1 one gets the class
∧

BV (I); if λm ≡ 1 for all m, one gets
the class BV (p); if p = 1 and λm ≡ m for all m, one gets the class Harmonic
BV (I); if p = 1 and λm ≡ 1 for all m, one gets the class BV (I).

Definition 2. For p ≥ 1, 0 < α ≤ 1, we say that f ∈ Lip(α, p) over I if

‖Tyf − f‖p,I = O(|h|α) as h −→ 0

where ‖(·)‖P,I denotes the Lp norm over I and Thf(x) = f(x + h).

By considering differences of higher order the concept of bounded variation
is generalized to bounded rth variation which can be defined as follows.
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Definition 3. For a positive integer r, we say f ∈ r−BV (I) (that is, f is of
bounded rth-variation over I) if for arbitrary (n + 1)-points x0 < x1 < · · · < xn

in I, in an arithmetic progression we have

V r(f, I) = sup
n

V r
n (f, I) < ∞,

where

sup
n

V r
n (f, I) =

n−r∑
i=0

| 4r f(xi)|,

in which 4f(xi) = f(xi+1)− f(xi) and for k ≥ 2,

4kf(xi) = 4k−1f(xi+1)−4k−1f(xi)

so that

4rf(xi) =
r∑

m=0

(−1)m(r
m)f(xi+r−m).

Obviously, BV (I) ⊆ r−BV (I). It can be noted that the Weierstrass contin-

uous but nowhere differentiable function f(x) =
∞∑

m=4

b−mcos(bmx) (b > 1) is a

function of bounded rth variation, but it is not a function of bounded variation
as shown by Mazahar [4].

Definition 4 ([5]). For a given non-decreasing concave downward function
h(n) on the positive integers, we say that f ∈ V [h](I) if there is a constant c

such that
n∑

m=1

|f(Im)| ≤ ch(n), n ∈ N , where {Im} and I are as in Definition 1.

In Fourier analysis, for any two 2π periodic functions f and g, f convolution
g is defined as follows.

Definition 5. For any f, g ∈ L1[0, 2π], f ∗ g is defined as

(f ∗ g)(x) =
1

2π

2π∫

0

(f(x− y)g(y))dy.

These functions of generalized bounded variation share many properties of a
function of bounded variation. Therefore it is interesting to know whether these
properties of generalized variations are hereditary under convolution or not. We
will prove the following results on the convolution of functions of generalized
bounded variation.

Theorem 1. If f ∈ L1[0, 2π] and g ∈ ∧
BV [0, 2π], then f ∗g ∈ ∧

BV [0, 2π].

Theorem 2. If f ∈ L1[0, 2π] and g ∈ ∧
BV (p)[0, 2π], p ≥ 1, then f ∗ g ∈∧

BV (p)[0, 2π].

Remark. Since L1 is a ring with respect to convolution as a ring product. By
Theorem 2 the class

∧
BV (p) can be regarded as a module over the ring L1.
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Theorem 3. If f ∈ L1[0, 2π] and g ∈ Lip(α, p) over [0, 2π], 0 ≤ α ≤ 1,
p ≥ 1, then f ∗ g ∈ Lip(α, p) over [0, 2π].

Theorem 4. If f ∈ L1[0, 2π] and g ∈ r−BV [0, 2π], then f∗g ∈ r−BV [0, 2π].

Theorem 5. If f ∈ L1[0, 2π] and g ∈ V [h]([0, 2π]), then f ∗g ∈ V [h]([0, 2π]).

Lemma. If f ∈ L1[0, 2π] and g ∈ Lp[0, 2π] (p ≥ 1), then

‖Thf ∗ g − f ∗ g‖p,[0,2π] ≤ ‖f‖1‖Thg − g‖p,[0,2π].

Proof. For any h ∈ Lq[0, 2π], where q satisfies 1
p
+ 1

q
= 1, from the Fubini–Tonelli

theorem we get

∣∣∣∣
1

2π

2π∫

0

[Thf ∗ g(x)− f ∗ g(x)]h(x)dx

∣∣∣∣

≤ 1

2π

2π∫

0

|h(x)|
{

1

2π

2π∫

0

|f(y)| |(Thg − g)(x− y)|dy

}
dx

=
1

2π

2π∫

0

|f(y)|
{

1

2π

2π∫

0

|h(x)||(Thg − g)(x− y)|dx

}
dy

≤ ‖f‖1‖h‖q‖Thg − g‖p, from Hölder’s inequality.

Hence the result follows from the converse of the Hölder’s inequality [3, Exercise
3.6, p. 65]. ¤

Proof of Theorem 1. For any two real numbers a and b we have

|f ∗ g(b)− f ∗ g(a)| ≤ 1

2π

2π∫

0

|f(y)||g(b− y)− g(a− y)|dy. (1)

Thus, for every sequence {Ik}2n
k=1 of non-overlapping subintervals Ik = [ak, bk] ⊂

I = [0, 2π], we get

2n∑

k=1

|f ∗ g(Ik)|
λk

≤ 1

2π

2π∫

0

|f(y)|
( 2n∑

k=1

|g(bk − y)− g(ak − y)|
λk

)
dy

≤ V∧(g, [0, 2π])‖f‖1. (2)

Hence the result follows. ¤

Proof of Theorem 2. Since every function of
∧

BV (p) is bounded, from the lem-
ma we get

2π∫

0

|(f ∗ g)(Ik)|pdx ≤ ‖f‖p
1

2π∫

0

|g(Ik)|pdx, (3)
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for every sequence {Ik}2n
k=1 of non-overlapping subintervals Ik = [ak, bk] ⊂ I =

[0, 2π]. Dividing both the sides of the above equation by λk and performing
summation from k = 1 to 2n, we get

2π∫

0

( 2n∑

k=1

|(f ∗ g)(Ik)|p
λk

)
dx ≤ ‖f‖p

1

2π∫

0

( 2n∑

k=1

|g(Ik)|p
λk

)
dx

= 2πV∧(g, p, {Ik})‖f‖p
1.

Hence the result follows. ¤

Proof of Theorem 3. Theorem 3 easily follows from the lemma. ¤

Proof of Theorem 4. From the definition of convolution we get

4(f ∗ g)(x) =
1

2π

2π∫

0

f(y)4g(x− y)dy,

42(f ∗ g)(x) =
1

2π

2π∫

0

f(y)42g(x− y)dy.

Similarly, for any positive integer r we get

4r(f ∗ g)(x) =
1

2π

2π∫

0

f(y)4rg(x− y)dy.

Thus, for arbitrary (n + 1)-points x0 < x1 < x2 < · · · < xn in I = [0, 2π], in an
arithmetic progression we get

|4r(f ∗ g)(xk)| ≤ 1

2π

2π∫

0

|f(y)||4rg(xk − y)|dy, ∀k = 0, n− r.

By taking summation over k = 0, 1, 2, . . . , n− r, we get

n−r∑

k=0

|4r(f ∗ g)(xk)| ≤ 1

2π

2π∫

0

|f(y)|
( n−r∑

k=0

|4rg(xk − y)|
)

dy

≤ V r(f, [0, 2π])‖f‖1.

Hence the result follows. ¤

Proof of Theorem 5. Theorem 5 can be easily obtained from (2) by taking λk =
1 for all k. ¤
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