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SEMIMARTINGALE LOCAL TIME AND THE AMERICAN
PUT OPTION

PETRE BABILUA

Abstract. A new result is obtained on the vanishing of the local time of
a non-negative continuous semimartingale at zero. Based on this result, an
early exercise premium representation of a value function of the American
put option is obtained in a one-dimensional general diffusion model.
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In this paper we investigate the American put option problem in a general
diffusion model and its related optimal stopping problem. The main result of the
investigation is the representation of a value function of the American put option
as a sum of the corresponding value function of the European type put option
and the early exercise premium. In the finance literature this representation
is known under the name of the early exercise premium. It was derived by
many authors in terms of the well known Black–Scholes model (i.e., when the
dynamics of share values is described by geometric Brownian motion). Among
them were N. El Karoui and I. Karatzas [5] and S. Jacka [3]. The former authors
proceeded from the results of the theory of balayage of general type random
processes, while Jacka used the fact that a value function of the American put
option is a solution of the problem with a free boundary (Stefan’s problem).
A thorough investigation of the American put option problem in the Black–
Scholes model was carried out by R. Myneni [8]. It should be however noted
that the proofs of many authors somewhat lack the clearness.

Our approach is based on studying the properties of local times of general type
continuous semimartingales and, as a result, we obtain a sufficient condition
(Theorem 3) for the vanishing of local times at zero of non-negative continuous
semimartingales. The verification of this condition for the American put option
problem has turned out to be a simple matter. In particular, using this condition
we derive an early exercise premium representation (Theorem 4) for a value
function of the American put option in terms of a general one-dimensional
diffusion model. The proof we give is quite clear. Furthermore, our result
allows one to directly obtain as a particular case the early exercise premium
representation for a value function of the American put option in terms of the
well-known Black–Scholes model.

Let (Ω,F , P) be a probability space with a standard Wiener process (Wt,FW
t ),

0 ≤ t ≤ T , defined on it. We will consider on (Ω,F , P) the finance market with
two assets (Bt, St), 0 ≤ t ≤ T , where Bt is the bank account value at time t and
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St is the share price at time t. The evolution of these assets obeys the equations

dBt = r(t)Bt dt, 0 ≤ t ≤ T, B0 = 1,

dSt = r(t)St dt + σ(t, St)St dWt, 0 ≤ t ≤ T, S0 > 0, (1)

where the continuous functions r(t), σ̃(t, x) = σ(t, x)x, 0 ≤ t ≤ T , x > 0, are
assumed to be such that

1) 0 ≤ r(t) ≤ R,

2) 0 < σ ≤ σ(t, x) ≤ C,

3)
∣∣σ̃(t, x)− σ̃(t, y)

∣∣ ≤ K|x− y|.
(2)

Note that the random process St

Bt
is a martingale with respect to filtration FW

t .

Conditions (2) guarantee the existence of a unique strong solution of (1) and
also of the following stochastic equation with its initial condition:

dSu(t, x) = r(u)Su(t, x) du

+ σ
(
u, Su(t, x)

)
Su(t, x) dWu, t ≤ u ≤ T,

St(t, x) = x, x > 0.

(3)

Let us consider the American put option for the share St with the payoff

function g(x) = (c − x)+. The corresponding payoff process X̃t has the form

X̃t = g(St), while the value process Vt of the American option is written as

Vt = ess sup
t≤τ≤T

E

(
e
−

τR
t

r(u) du
g(Sτ )

∣∣ FW
t

)
, 0 ≤ t ≤ T.

It is clear that Vt = BtYt, where

Bt = e

tR
0

r(u) du
, Yt = ess sup

t≤τ≤T
E

(
e
−

τR
0

r(u) du
g(Sτ )

∣∣ FW
t

)
. (4)

Note that the value process Vt of the American put option majorizes the
payoff process g(St), Vt ≥ g(St), 0 ≤ t ≤ T , and Yt ≥ Xt, where

Xt = e
−

tR
0

r(u) du
g(St), 0 ≤ t ≤ T. (5)

Here Xt is the discounted payoff process while the process Yt is its Snell envelope
(a minimal supermartingale that majorizes Xt).

Along with the value process of the American put option, we define the value
function of this option

vT (t, x) = sup
t≤τ≤T

E

(
e
−

τR
t

r(u) du(
c− Sτ (t, x)

)+
)

, 0≤ t≤T, x>0. (6)

It is obvious that it is also a value function of the corresponding optimal
stopping problem of the nonhomogeneous Markov diffusion process St.

Now let us introduce the following notation:

DT ≡
{

(t, x) : 0 ≤ t < T, 0 < x, vT (t, x) > g(x)
}

,
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where DT is the continuation domain of stopping problem; DT
t is the section of

DT at a point t, 0 ≤ t < T ,

DT
t ≡

{
x : (t, x) ∈ DT

}
.

We denote by P (t, x; u,B), u ≥ t, x > 0, with a Borel subset B of (0, +∞)
the transition probability of the nonhomogeneous diffusion process St.

As is known (see [1], p. 445, formula (10)), for the random processes Xt and
Yt the following expansions are valid:

Xt = X0 + mt + At, At = A+
t − A−

t , 0 ≤ t ≤ T, (7)

Yt = Y0 + Mt − Ct, 0 ≤ t ≤ T, (8)

where mt, Mt are uniformly integrable martingales, while the processes A+
t , A−

t ,
Ct are predictable nondecreasing integrable processes, A+

0 = A−
0 = C0 = 0.

Let us now prove the lemma which will be used in proving our next theorem.

Lemma 1. Consider the process Su(t, x) satisfying equation (3). If 0 < x <
y, then

Su(t, x) ≤ Su(t, y) P-a.s. for all u, t ≤ u ≤ T.

Proof. It is clear that the inequality Su(t, x) ≤ Su(t, y) P-a.s. is equivalent to
the equality (Su(t, x)− Su(t, y))+ = 0 P-a.s., which in turn is the same as

E
(
Su(t, x)− Su(t, y)

)+
= 0.

Due to (3) we have

d
(
Su(t, x)− Su(t, y)

)
= r(u)

(
Su(t, x)− Su(t, y)

)
du

+
(
σ̃(u, Su(t, x))− σ̃(u, Su(t, y))

)
dWu, t ≤ u ≤ T.

Let us write the well-known Tanaka–Meyer formula (see, e.g., [9]) for the
process (Su(t, x)− Su(t, y))+

(
Su(t, x)− Su(t, y)

)+
= (x− y)+

+

u∫

t

I(Sv(t,x)−Sv(t,y)>0) d
(
Sv(t, x)− Sv(t, y)

)
+

1

2
L◦u

(
S�(t, x)− S�(t, y)

)

=

u∫

t

I(Sv(t,x)−Sv(t,y)>0)r(v)
(
Sv(t, x)− Sv(t, y)

)
dv

+

u∫

t

I(Sv(t,x)−Sv(t,y)>0)

(
σ̃(v, Sv(t, x))− σ̃(v, Sv(t, y))

)
dWv

+
1

2
L◦u

(
S�(t, x)− S�(t, y)

)
. (9)

Since in (9) the last stochastic integral is a square integrable martingale, its
mathematical expectation is equal to zero (see [7], Ch. IV, §2).
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Taking the mathematical expectation of both sides of equality (9), we obtain

E
(
Su(t, x)− Su(t, y)

)+

= E

u∫

t

r(v)
(
Sv(t, x)− Sv(t, y)

)+
dv +

1

2
EL◦u

(
S�(t, x)− S�(t, y)

)
.

Using Yor’s corollary [13], we have

L◦u
(
S�(t, x)− S�(t, y)

)

= lim
ε→0

1

ε

u∫

t

I(0<Sv(t,x)−Sv(t,y)≤ε)

(
σ̃(v, Sv(t, x))− σ̃(v, Sv(t, y))

)2
dv

≤ lim
ε→0

1

ε

u∫

t

I(0<Sv(t,x)−Sv(t,y)≤ε)K
2
(
Sv(t, x)− Sv(t, y)

)2
dv ≤ lim

ε→0

u∫

t

K2ε dv = 0,

which implies

E
(
Su(t, x)− Su(t, y)

)+
= E

u∫

t

r(v)
(
Sv(t, x)− Sv(t, y)

)+
dv.

Denoting

ϕ(u) ≡ E
(
Su(t, x)− Su(t, y)

)+
, t ≤ u ≤ T,

we obtain

ϕ(u) ≤ R

u∫

t

ϕ(v) dv

for all u and using Gronwall’s lemma, we have

E
(
Su(t, x)− Su(t, y)

)+
= 0. ¤

Theorem 1. The section of DT at the point t has the form

DT
t =

(
bT (t), +∞)

, 0 ≤ t < T,

where bT (t) is some function which satisfies the condition

0 < bT (t) < c, 0 ≤ t < T.

Proof. It is clear that 0 6∈ DT
t . Indeed, suppose that 0 ∈ DT

t , it is the same as
{(t, 0) ∈ DT : vT (t, 0) > g(0) = c}, which contradicts the condition vT (t, x) <c.

We have

dSu(t, x) = r(u)Su(t, x) du

+ σ
(
u, Su(t, x)

)
Su(t, x) dWu, t ≤ u ≤ T,

St(t, x) = x, x > 0,

dSu(t, y) = r(u)Su(t, y) du

+ σ
(
u, Su(t, y)

)
Su(t, y) dWu, t ≤ u ≤ T,
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St(t, y) = y, y > 0.

We are to prove that if x ∈ DT
t and y > 0, then y ∈ DT

t .
Note that for the stopping problem for the diffusion process Su(t, x) there

exists an optimal stopping time τ ∗(t, x) (see [6], Theorems 3.1.8–3.1.10)
Using the preceding lemma, for the value function vT (t, x) defined in (6) we

have

vT (t, y)− vT (t, x) = vT (t, y)− E
[
e
−

τ∗(t,x)R
t

r(u) du(
c− Sτ∗(t,x)(t, x)

)+
]

≥ E
[
e
−

τ∗(t,x)R
t

r(u) du(
c−Sτ∗(t,x)(t, y)

)+−e
−

τ∗(t,x)R
t

r(u) du(
c−Sτ∗(t,x)(t, x)

)+
]

= E
[
e
−

τ∗(t,x)R
t

r(u) du(
c−Sτ∗(t,x)(t, y)

)−e
−

τ∗(t,x)R
t

r(u) du(
c−Sτ∗(t,x)(t, x)

)]

+E
[
e
−

τ∗(t,x)R
t

r(u) du(
c−Sτ∗(t,x)(t, y)

)−−e
−

τ∗(t,x)R
t

r(u) du(
c− Sτ∗(t,x)(t, x)

)−]

≥ E
[
e
−

τ∗(t,x)R
t

r(u) du(
c−Sτ∗(t,x)(t, y)

)−e
−

τ∗(t,x)R
t

r(u) du(
c−Sτ∗(t,x)(t, x)

)]

= E
[
e
−

τ∗(t,x)R
t

r(u) du(
Sτ∗(t,x)(t, x)− Sτ∗(t,x)(t, y)

)]

= E
[
St(t, x)− St(t, y)

]
= x− y,

i.e., vT (t, y) ≥ (x− y) + vT (t, x). Since vT (t, x) > (c− x)+, we have

vT (t, y) > x− y + (c− x)+ > x− y + c− x = c− y,

where vT (t, y) > 0, i.e., vT (t, y) > (c− y)+. ¤

To derive the early exercise premium representation of the American put op-
tion, we need to investigate the properties of a local time for general continuous
semimartingales. To this end, let us consider some continuous semimartingale
Zt, 0 ≤ t ≤ T , and its set of zeros

H = {(t, w) : Zt(w) = 0}. (10)

Denote by L◦t (Z) the right local time of the semimartingale at zero. We also
need to use the following stopping times

Dt(w) = inf
{
s > t : Zs(w) 6= 0

} ∧ T, 0 ≤ t ≤ T, (11)

and to consider the corresponding predictable random set

H̃0 =
⋃
r

(r,Dr], (12)

where (r,Dr] denotes the stochastic intervals and the union is taken over all
rationals r, such that 0 ≤ r ≤ T .
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Theorem 2. Let us consider some continuous semimartingale Zt, 0 ≤ t ≤ T ,
and its related set of zeros H = {(t, w) : Zt(w) = 0}. Let us consider its
arbitrary, progressively measurable open subset H0 ⊆ H. Then the following
relations are valid:

I.

t∫

0

I eH0
dL◦s(Z) = 0,

t∫

0

I eH0
dL◦s(−Z) = 0,

II.

t∫

0

IH0 dL◦s(Z) = 0,

t∫

0

IH0 dL◦s(−Z) = 0.

In this case, if H0 is also a predictable random set, then

III.

t∫

0

IH0 dZs(w) = 0, 0 ≤ t ≤ T.

Proof. We have

Zt = Z0 +

t∫

0

(
I(Zs>0) + I(Zs=0) + I(Zs<0)

)
dZs, (13)

Z+
t = Z+

0 +

t∫

0

(
I(Zs>0) dZs +

1

2
L◦t (Z), (14)

(−Zt)
+ = (−Z0)

+ +

t∫

0

I(−Zs>0) d(−Zs) +
1

2
L◦t (−Z). (15)

From equality (15) we obtain

Z−
t = Z−

0 −
t∫

0

I(Zs<0) dZs +
1

2
L◦t (−Z). (16)

Subtracting (16) from (14) gives

Zt = Z0 +

t∫

0

(
I(Zs>0) + I(Zs<0)

)
dZs +

1

2

(
L◦t (Z)− L◦t (−Z)

)
. (17)

If we equate equalities (17) and (13) to each other, then we have

t∫

0

I(Zs=0) dZs =
1

2

(
L◦t (Z)− L◦t (−Z)

)
. (18)
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Consider the stochastic interval (t,Dt(w)]. Then, using the above equalities, we
obtain

Z+
Dt
− Z+

t =

Dt∫

t

I(Zs>0) dZs +
1

2

(
L◦Dt

(Z)− L◦t (Z)
)
,

Z−
Dt
− Z−

t = −
Dt∫

0

I(Zs<0) dZs +
1

2

(
L◦Dt

(−Z)− L◦t (−Z)
)
.

The latter two equalities are the same as

Z+
Dt
− Z+

t =

T∫

t

I(t<s≤Dt, Zs>0) dZs +
1

2

(
L◦Dt

(Z)− L◦t (Z)
)
,

Z−
Dt
− Z−

t = −
T∫

t

I(t<s≤Dt, Zs<0) dZs +
1

2

(
L◦Dt

(−Z)− L◦t (−Z)
)
.

Let us consider the random variables

Z+
Dt
− Z+

t , Z−
Dt
− Z−

t , I(t<s≤Dt, Zs>0), I(t<s≤Dt, Zs<0)

and for each ω ∈ Ω let us distinguish two cases:
1) Dt(ω) = t;
2) Dt(ω) > t.
In case 1) the above-given random variables are equal to zero. In case 2),

we observe that if s is such that t < s ≤ Dt(ω), then Zs = 0 and thus, by the
continuity of the process Zt, we have ZDt = 0, Zt = 0, which means that in case
2) also all four random variables are equal to zero. Hence it follows that

L◦Dt
(Z) = L◦t (Z), L◦Dt

(−Z) = L◦t (−Z)

and therefore ∫

(r,Dr]

dL◦s(Z) = 0,

∫

(r,Dr]

dL◦s(−Z) = 0,

By the definition of H̃0,∫

eH0

dL◦s(Z) = 0,

∫

eH0

dL◦s(−Z) = 0

which is the same as
t∫

0

I eH0
dL◦s(Z) = 0,

t∫

0

I eH0
dL◦s(−Z) = 0.

The first part is thereby proved.
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Since H0 ⊆
⋃
r

(r,Dr] = H̃0, the following relation is valid:

t∫

0

IH0 dL◦s(Z) = 0,

t∫

0

IH0 dL◦s(−Z) = 0.

From (18) we obtain

I(Zs=0) dZs =
1

2
d
(
L◦t (Z)− L◦t (−Z)

)
.

When H0 is predictable, we can write

IH0I(Zs=0) dZs =
1

2
IH0 d

(
L◦t (Z)− L◦t (−Z)

)
,

t∫

0

IH0 dZs =
1

2

t∫

0

IH0 dL◦s(Z)− 1

2

t∫

0

IH0 dL◦s(−Z)=0. ¤

Theorem 3. Let Zt be a continuous non-negative semimartingale with its
decomposition

Zt = Z0 + M z
t + G+

t −G−
t , 0 ≤ t ≤ T, (19)

where M z
t is a local martingale, G = G+

t − G−
t is a process of finite variation,

and G+
t , G−

t are some nondecreasing processes.

If
T∫
0

I(H\ eH0) dG+
s = 0, then L◦t (Z) = 0 and

t∫
0

I(Zs=0) dZs = 0.

Proof. It is clear that the right local time L◦t (−Z) = 0, t ≥ 0.
We have

1

2
L◦t (Z) =

t∫

0

I(Zs=0) dZs

=

t∫

0

I(Zs=0) dM z
s +

t∫

0

I(Zs=0) dG+
s −

t∫

0

I(Zs=0) dG−
s . (20)

Using occupation time formula (see, e.g., [9], p. 216, Corollary 1) we obtain

t∫

0

I(Zs=0) d〈M z〉s = 0,

so we have
t∫

0

I(Zs=0) dM z
s = 0. (21)
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Using (21), from (20) we obtain

1

2
L◦t (Z) +

t∫

0

I(Zs=0) dG−
s =

t∫

0

I(Zs=0) dG+
s ,

from which we conclude that the random processes 1
2
L◦t (Z) and

t∫
0

I(Zs=0) dG−
s

are absolutely continuous with respect to the process
t∫

0

I(Zs=0) dG+
s . Thus for

these random processes we have the representations

1

2
L◦t (Z) =

t∫

0

µ1
sI(Zs=0) dG+

s , (22)

t∫

0

I(Zs=0) dG−
s =

t∫

0

µ2
sI(Zs=0) dG+

s , (23)

where the processes µ1
s and µ2

s are both vary in [0, 1].
From equality (22) we obtain

1

2
dL◦t (Z) = µ1

t I(Zt=0) dG+
t .

By virtue of Theorem 2,
t∫

0

I eH0
dL◦s(Z) = 0 and therefore L◦t (Z) =

t∫
0

IH\ eH0
dL◦s(Z). Hence

L◦t (Z) = 2

t∫

0

I(H\ eH0)µ
1
sI(Zs=0) dG+

s ≤ 2

t∫

0

I(H\ eH0) dG+
s = 0

and thus we obtain L◦t (Z) = 0,
t∫

0

I(Zs=0) dZs = 0. ¤

Before formulating the main result of this paper on the early exercise premium
representation of the American put option, we need to prove one more lemma.

Lemma 2. Consider a random process Xt(s, x) = ln St(s, x), s ≤ t ≤ T ,
where St(s, x) is the random process defined by equation (3). Then Xt(s, x)
satisfies the stochastic differential equation

dXt(s, x) = µ̂
(
t,Xt(s, x)

)
dt + σ̂

(
t,Xt(s, x)

)
dWt, s ≤ t ≤ T, (24)

where

µ̂(t, x) = r(t)− 1

2
σ2(t, ex), σ̂(t, x) = σ(t, ex),



208 P. BABILUA

and is its unique solution. Moreover, if c(t), 0 ≤ t ≤ T , is some measurable
function, then the relations

P
{
Xt(s, x) = c(t)

}
= 0

are valid for all t ≥ s.

Proof. By virtue of equality (3) we have and using Ito’s formula for Xt(s, x) =
ln St(s, x), s ≤ t ≤ T , we obtain

d ln St(s, x)=
(
r(t)− 1

2
σ2

(
t, St(s, x)

))
dt+σ

(
t, St(s, x)

)
dWt, s≤ t≤T,

by which come to the desirable result (24), i.e., Xt(s, x) satisfies equation (24)
and is its unique solution. Indeed, suppose equation (24) has two solutions

X1
t (s, x) and X2

t (s, x). Then eX1
t (s,x) and eX2

t (s,x) are solutions of equation (3),
but this equation has only one solution and therefore X1

t (s, x) = X2
t (s, x) for

almost all s ≥ t. If we follow [12], Theorem 9.1.9, then we have

P
{
Xt(s, x) = c(t)

}
=

∫

{c(t)}

P̂ (s, x; t, y) dy = 0,

where P̂ (s, x; t, y) is the transition density of the nonhomogeneous Markov dif-
fusion process Xt(s, x). ¤

We will now formulate the theorem on representation of the value function
of the American put option.

Theorem 4. Let bT (t) be the boundary function of the continuation domain
defined in Theorem 1. Assume that it has left and right limits bT (t+), bT (t−),
0 < t < T . Then for the value function of the American put option the following
early exercise premium representation is valid

vT (t, x) = E
(
e
−

TR
t

r(u) du(
c− ST (t, x)

)+
)

+

T∫

t

cr(u)e
−

uR
t

r(s) ds
P (t, x; u, (0, bT (u)]) du, 0 ≤ t ≤ T, x > 0,

where P (t, x; u, ·) is the transition probability for the nonhomogeneous Markov
diffusion process St(s, x).

Proof. Consider the random process defined by equality (5):

Xt = e
−

tR
0

r(u) du
(c− St)

+.

For the process (c− St)
+ we write the Tanaka–Meyer formula

(c− St)
+ = (c− S0)

+ +

t∫

0

I(c−St>0) d(c− St) +
1

2
L◦t (c− St),
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we have

d
(
e
−

tR
0

r(u) du
(c− St)

+
)

= −r(t)e
−

tR
0

r(u) du
(c− St)

+ dt + e
−

tR
0

r(u) du
d(c− St)

+

= −r(t)e
−

tR
0

r(u) du
dt (c− St)

+ + e
−

tR
0

r(u) du(− I(St<c) dSt +
1

2
L◦t (c− St)

)

= −r(t)e
−

tR
0

r(u) du
dt(c− St)

+ − e
−

tR
0

r(u) du
I(St<c) dSt +

1

2
e
−

tR
0

r(u) du
dL◦t (c− St).

Now, using (1) we obtain

d
(
e
−

tR
0

r(u) du
(c− St)

+
)

= −r(t)e
−

tR
0

r(u) du
dt (c− St)

+ − e
−

tR
0

r(u) du
I(St<c)r(t)St dt

−e
−

tR
0

r(u) du
I(St<c)σ(t, St) St dWt +

1

2
e
−

tR
0

r(u) du
dL◦t (c− St)

= −r(t)e
−

tR
0

r(u) du(
(c− St)

+ + I(St<c)St

)
dt

+
1

2
e
−

tR
0

r(u) du
dL◦t (c− St)− e

−
tR
0

r(u) du
I(St<c)σ(t, St)St dWt.

Note that (c− St)
+ + I(St<c)St = cI(St<c) and therefore we have

dXt = −r(t)e
−

tR
0

r(u) du
cI(St<c) dt +

1

2
e
−

tR
0

r(u) du
dL◦t (c− St)

− e
−

tR
0

r(u) du
I(St<c)σ(t, St)St dWt,

i.e., for the process Xt we have obtained the representation

Xt = mt + A+
t − A−

t ,

where

A−
t =

t∫

0

cr(u)I(Su<c)e
−

uR
0

r(s) ds
du.

Let us consider the nonnegative process Zt = Yt − Xt, 0 ≤ t ≤ T , where Yt

and Xt are the processes defined by equalities (4) and (5), respectively. Using
decompositions (7) and (8) for Yt and Xt, we find that

Zt = Z0 + M z
t − Ct − At, M z

t = Mt −mt, At = A+
t − A−

t , 0 ≤ t ≤ T,

where mt and Mt are uniformly integrable martingales, while A+
t , A−

t and Ct

are predictable nondecreasing integrable processes, A+
0 = A−

0 = C0 = 0.
We have

1

2
L◦t (Z) =

t∫

0

I(Zs=0) dZs =

t∫

0

I(Zs=0) dM z
s −

t∫

0

I(Zs=0) dCs −
t∫

0

I(Zs=0) dAs.
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It is known that
t∫

0

I(Zs=0) dM z
s = 0.

It is also known (see [10], Lemma 1) that
t∫

0

I(Zs=0) dCs =Ct. Therefore we have

1

2
L◦t (Z) + Ct +

t∫

0

I(Zs=0) dA+
s =

t∫

0

I(Zs=0) dA−
s .

Taking the latter equality into account, we conclude that 1
2
L◦t (Z), Ct, and

t∫
0

I(Zs=0) dA+
s are absolutely continuous processes with respect to the process

t∫
0

I(Zs=0) dA−
s .

Suppose that
T∫

0

IH\ eH0
dA−

s = 0 P-a.s. (25)

If instead of the component G+
t used in Theorem 3, we take A−

t , and in the role
of the component G−

t we take Ct + A+
t , then using Theorem 3 we obtain

L◦t (Z) = 0,

t∫

0

I(Zs=0) dZs = 0,

Ct = −
t∫

0

I(Zs=0) dAs. (26)

Let us now prove that (25) is valid. Besides of H and H̃0 introduced above
by relations (10) and (12), respectively, let us introduce the following sets:

H0 =
{

(t, w) : 0 < t ≤ T, St(w)− bT (t−) < 0
}

,

H 0 =
{

(t, w) : 0 < t ≤ T, St(w)− bT (t) < 0
}

,

N =
{

(t, w) : 0 < t ≤ T, bT (t−) = bT (t)
}

=
{

t : 0 < t ≤ T, bT (t−) = bT (t)
}
× Ω.

Note that

H =
{

(t, w) : 0 ≤ t ≤ T, St(w) ≤ bT (t)
}

.

We have the inclusions:

H0 ⊆ H̃0, H0 ⊆ H, H \ H̃0 ⊆ H \H0.
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In view of the latter inclusion for the validity of (25) it is sufficient to verify

that
T∫
0

I(H\H0) dA−
s = 0 holds. To prove this relation let us first verify that

H \H0 ⊆ (H \H 0) ∪N c.
Indeed, H0 ∩N = H 0 ∩N and

H \H0 ⊆ H \ (H0 ∩N)

= H \ (H 0 ∩N) = (H \H 0) ∪ (H \N) ⊆ (H \H 0) ∪N c.

Therefore we have
T∫

0

IH\H0
dA−

s ≤
T∫

0

I(H\H 0)∪Nc dA−
s ≤

T∫

0

I(Ss(w)=bT (s)) dA−
s +

T∫

0

I(bT (s−)6=bT (s)) dA−
s

=

T∫

0

I(Su(w)=bT (u))cr(u)I(Su<c)e
−

uR
0

r(s) ds
du ≤ cR

T∫

0

I(Su(w)=bT (u)) du.

By virtue of Lemma 2, for c(t) = ln bT (t) we have P{Su = bT (u)} = 0,
T∫
0

I(H\H0) dA−
s = 0, which in turn implies (25) and because of (26) we obtain

Ct = −
t∫

0

I(Zs=0) dAs = −
t∫

0

I(Su≤bT (u)) dAu

= −
t∫

0

I(Su≤bT (u)) dA+
u +

t∫

0

I(Su≤bT (u)) dA−
u

= −1

2

t∫

0

I(Su≤bT (u))e
−

uR
0

r(s) ds
I(Su=c) dL◦u(c− St)

+

t∫

0

I(Su≤bT (u))cr(u)e
−

uR
0

r(s) ds
I(Su<c) du.

Note that I(Su≤bT (u))I(Su=c) = 0, I(Su≤bT (u))I(Su<c) = I(Su≤bT (u)). Therefore even-
tually we obtain

Ct =

t∫

0

cr(u)e
−

uR
0

r(s) ds
I(Su≤bT (u)) du.

As we know, Yt = Mt − Ct, YT = MT − CT , YT = XT . Since

Yt − YT = Yt −XT = Mt −MT + (CT − Ct),

we have

Yt − E(XT |FW
t ) = E(CT − Ct|FW

t ), (27)
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where (FW
t ) is the filtration generated by W . Multiplying both sides of equality

(27) by e

tR
0

r(u) du
, we obtain

Vt = e

tR
0

r(u) du
E(XT |FW

t ) + e

tR
0

r(u) du
E
(
CT − Ct|FW

t

)
,

Vt = E
(
e
−

TR
t

r(u) du
(c− ST )+|FW

t

)
+ e

tR
0

r(u) du
E
(
CT − Ct|FW

t

)
,

Vt = E
(
e
−

TR
t

r(u) du
(c− ST )+|FW

t

)
+ E

( T∫

t

cr(u)e
−

uR
t

r(s) ds
I(Su≤bT (u)) du|FW

t

)
.

We know that Vt = vT (t, St), where Vt is the value process of the American
put option, and vT (s, x) is the value function.

Since FW
t = FS

t , St(t, x) = x, x > 0, we have

vT (t, x) = E
(
e
−

TR
t

r(u) du
(c− ST (t, x))+

)

+ E
( T∫

t

cr(u)e
−

uR
t

r(s) ds
I(Su(t,x)≤bT (u)) du

)
,

vT (t, x) = E
(
e
−

TR
t

r(u) du
(c− ST (t, x))+

)

+

T∫

t

cr(u)e
−

uR
t

r(s) ds
P (t, x; u, (0, bT (u)]) du. ¤

Corollary 1. Let the functions r(t) and σ(t, x) be independent of the time,
i.e., r(t) = r, σ(t, x) = σ(x). Then for the American put option, the early
exercise premium representation holds

vT (t, x) = E
(
e−r(T−t)

(
c− ST (t, x)

)+)
+

T∫

t

cre−r(u−t)P (t, x; u, (0, bT (u)]) du.

Proof. To prove this statement, it is sufficient to show that the boundary bT (t) is
a monotone, in particular nondecreasing function, which automatically implies
the fulfillment of the condition of Theorem 4.

We first show that the function vT (t, x) is nonincreasing with respect to t.
Indeed, we have

vT (t, x) = sup
t≤τ≤T

E
(
e−r(τ−t)

(
c− Sτ (t, x)

)+)
, 0 ≤ s < t ≤ T,

vT (s, x) = sup
s≤τ≤T

E
(
e−r(τ−s)

(
c− Sτ (s, x)

)+)
.
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Since St is a homogeneous Markov diffusion process, we have

vT (t, x) = sup
0≤τ≤T−t

E
(
e−rτ

(
c− Sτ (0, x)

)+)
,

vT (s, x) = sup
0≤τ≤T−s

E
(
e−rτ

(
c− Sτ (0, x)

)+)
.

From the latter equalities we find that vT (s, x) ≥ vT (t, x). We have

vT
(
s, bT (t) + ε

) ≥ vT
(
t, bT (t) + ε

)
> g

(
bT (t) + ε

)
.

This inequality is true by virtue of the definition of the boundary. For each
ε > 0 we have bT (t) + ε ∈ Ds or, which is the same, bT (t) + ε > bT (s). Finally,
we obtain bT (s) ≤ bT (t), which in turn implies that the boundary bT (t) is a
nondecreasing function. ¤

Corollary 2. Let us consider the Black–Scholes model r(t) = r, σ(t, x) = σ.
Then the value function of the American put option is written as

vT (t, x) = E
(
e−r(T−t)

(
c− ST (t, x))+

)

+

T∫

t

cre−r(u−t)Φ
( ln bT (u)

x
− (r − σ2

2
)(u− t)

σ
√

u− t

)
du.

where Φ is the standard normal distribution function.

Proof. By Corollary 1, the value function of the American put option has the
form

vT (t, x) = E
(
e−r(T−t)

(
c− ST (t, x))+

)
+

T∫

t

cre−r(u−t)P (t, x; u, (0, bT (u)]) du.

By virtue of the definition of transition probability we have

P (t, x; u, (0, bT (u)]) = P
{
Su(t, x) ≤ bT (u)

}
.

Using the condition St = S0 exp
(
σWt + (r − σ2

2
)t

)
we obtain

Su(t, x) = x exp
(
σ(Wu −Wt) +

(
r − σ2

2

)
(u− t)

)
, t ≤ u ≤ T,

P (t, x; u, (0, bT (u)]) = P

{
exp

(
σ(Wu −Wt) +

(
r − σ2

2

)
(u− t)

)
≤ bT (u)

x

}

= Φ
( 1

σ
ln bT (u)

x
− 1

σ
(r − σ2

2
)(u− t)√

u− t

)
,

i.e., we have

vT (t, x) = E
(
e−r(τ−t)

(
c− St(t, x)

)+)

+

T∫

t

cre−r(u−t)Φ
( ln bT (u)

x
− (r − σ2

2
)(u− t)

σ
√

u− t

)
du. ¤
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