
Georgian Mathematical Journal
Volume 13 (2006), Number 2, 215–228

EXISTENCE THEORY FOR PERTURBED NONLINEAR
BOUNDARY VALUE PROBLEMS WITH INTEGRAL

BOUNDARY CONDITIONS

ABDELKADER BELARBI, MOUFFAK BENCHOHRA, AND BAPURAO C. DHAGE

Abstract. In this paper, the existence of solutions and extremal solutions
for a second order perturbed nonlinear boundary value problem with integral
boundary conditions is proved under the mixed generalized Lipschitz and
Carathéodory conditions.

2000 Mathematics Subject Classification: 34A60, 34B15.
Key words and phrases: Nonlinear boundary value problem, fixed point,
extremal solutions.

1. Introduction

This paper is concerned with the existence of solutions and extremal solutions
for a perturbed nonlinear boundary value problem with integral boundary con-
ditions. More precisely, we consider the following perturbed nonlinear boundary
value problem with integral boundary conditions:

x′′(t) ∈ F (t, x(t)) + G(t, x(t)) for a.e. t ∈ [0, 1], (1)

x(0)− k1x
′(0) =

1∫

0

h1(x(s)) ds, (2)

x(1) + k2x
′(1) =

1∫

0

h2(x(s)) ds (3)

where F,G : [0, 1] × R → P(R) are compact-valued and multivalued maps,
P(R) is the family of all nonempty subsets of R, hi : R → R are continuous
functions and ki are nonnegative constants (i = 1, 2). Boundary value problems
with integral boundary conditions form a very interesting and important class
of problems. They include two-, three-, multipoint and nonlocal boundary value
problems as special cases. For boundary value problems with integral boundary
conditions and comments on their importance, we refer the reader to the pa-
pers of Brykalov [4], Denche and Marhoune [7], Gallardo [11], Karakostas and
Tsamatos [15], Lomtatidze and Malaguti [20], Jankowskii [14], Krall [18] and
the references therein. Recently, Khan [16] applied the generalized method of
quasilinearization to a class of second order boundary value problems with inte-
gral boundary conditions. Belarbi and Benchohra [3] considered the particular
problem (1)–(3) with G ≡ 0 and obtained existence results when the right-hand
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side has convex as well as nonconvex values. The present paper is motived by
a recent one due to Dhage, Gatsori and Ntouyas [10] in which the existence of
solutions and extremal solutions for first order perturbed functional differential
inclusions is proved under the mixed generalized Lipschitz and Carathéodory
conditions. In this paper, we present existence results for the problem (1)–(3)
under the mixed generalized Lipschitz and Carathéodory conditions.

2. Preliminaries

In this section, we introduce the notation, definitions, and preliminary facts
from multivalued analysis which are used throughout this paper.

C([0, 1],R) is the Banach space of all continuous functions from [0, 1] into R
with the norm

‖x‖∞ = sup{|x(t)| : 0 ≤ t ≤ 1}.
L1([0, 1],R) denotes the Banach space of measurable functions x : [0, 1] −→ R

which are Lebesgue integrable normed by

‖x‖L1 =

1∫

0

|x(t)|dt for all x ∈ L1([0, 1],R).

AC1((0, 1),R) is the space of differentiable functions x : (0, 1) → R, whose
first derivative x′ is absolutely continuous.

Let (X, |·|) be a normed space, Pcl(X) = {Y ∈ P(X) : Y closed }, Pb(X) =
{Y ∈ P(X) : Y bounded}, Pcp(X) = {Y ∈ P(X) : Y compact} and Pcp,c(X) =
{Y ∈ P(X) : Y compact and convex}. A multivalued map G : X → P(X) is
convex- (closed-) valued if G(x) is convex- (closed-) for all x ∈ X. G is bounded
on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X) (i.e.,
sup
x∈B

{sup{|y| : y ∈ G(x)}} < ∞). G is called upper semi-continuous (u.s.c.) on

X if for each x0 ∈ X the set G(x0) is a nonempty closed subset of X and if for
each open set N of X containing G(x0), there exists an open neighbourhood
N0 of x0 such that G(N0) ⊆ N. G is said to be completely continuous if G(B) is
relatively compact for every B ∈ Pb(X). If the multivalued map G is completely
continuous with nonempty compact values, then G is u.s.c. if and only if G has
a closed graph (i.e., xn −→ x∗, yn −→ y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G
has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed point set
of the multivalued operator G will be denoted by FixG. A multivalued map
G : [0, 1] → Pcl(R) is said to be measurable if for every y ∈ R, the function
t 7−→ d(y, G(t)) = inf{|y − z| : z ∈ G(t)} is measurable. For more details on
multivalued maps see the books of Aubin and Cellina [1], Aubin and Frankowska
[2], Deimling [6] and Hu and Papageorgiou [13] .

Definition 2.1. A multivalued map F : [0, 1] × R → P(R) is said to be
Carathéodory if

(i) t 7−→ F (t, y) is measurable for each y ∈ R, and
(ii) y 7−→ F (t, y) is upper semi-continuous for a.e. t ∈ [0, 1].
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For each x ∈ C([0, 1],R), define the set of selections of F by

SF,x = {v ∈ L1([0, 1],R) : v(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1]}.
Let F : [0, 1] × R → P(R) be a multivalued map with nonempty compact

values. Assign to F the multivalued operator

F : C([0, 1],R) → P(L1([0, 1],R))

by letting

F(x) = {w ∈ L1([0, 1],R) : w(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1]}.
The operator F is called the Nemytskij operator associated with F.

Let (X, d) be a metric space induced from the normed space (X, | · |).
Consider Hd : P(X)× P(X) −→ R+ ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(X), Hd) is a

metric space and (Pcl(X), Hd) is a generalized metric space, see [17].

Definition 2.2. A multivalued operator N : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

b) a contraction if and only if it is γ-Lipschitz with γ < 1.

We apply the following form of the fixed point theorem of Dhage [8] in the
sequel.

Theorem 2.1. Let B(0, r) and B[0, r] denote respectively the open and the
closed ball in a Banach space E centered at the origin and of radius r and
let A : B[0, r] → Pcl,cv,bd(E) and B : B[0, r] → Pcp,cv(E) be two multivalued
operators satisfying

(i) A is a multivalued contraction, and
(ii) B is compact and upper semi-continuous.

Then either

(a) the operator inclusion x ∈ Ax + Bx has a solution in B[0, r] or
(b) there exists an u ∈ E with ‖u‖ = r such that λu ∈ Au + Bu for some

λ > 1.

The following lemma will be used in the sequel.

Lemma 2.1 ([19]). Let X be a Banach space. Let F : [0, 1]×X −→ Pcp,cv(X)
be an L1-Carathéodory multivalued map with SF,x 6= ∅ and let Γ be a linear
continuous mapping from L1([0, 1], X) to C([0, 1], X), then the operator

Γ ◦ SF : C([0, 1], X) −→ Pcp,cv(C([0, 1], X)),
x 7−→ (Γ ◦ SF )(x) := Γ(SF,x)

is a closed graph operator in C([0, 1], X)× C([0, 1], X).
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3. Existence Result

In this section, we are concerned with the existence of solutions for the prob-
lem (1)–(3).

Definition 3.1. A function x ∈ AC1((0, 1),R) is said to be a solution of (1)–
(3) if there exist functions v1, v2 ∈ L1([0, 1],R) with v1(t) ∈ F (t, x(t)) for a.e.
t ∈ [0, 1] and v2(t) ∈ G(t, x(t)) for a.e. t ∈ [0, 1] such that x′′(t) = v1(t) + v2(t)
for a.e. t ∈ [0, 1] and the function x satisfies the conditions (2) and (3).

We need the following auxiliary result. Its proof uses a standard argument.

Lemma 3.1. For any σ(t), ρ1(t), ρ2(t) ∈ L1([0, 1],R), the nonhomogeneous
linear problem

x′′(t) = σ(t) for a.e. t ∈ [0, 1],

x(0)− k1x
′(0) =

1∫

0

ρ1(s) ds,

x(1) + k2x
′(1) =

1∫

0

ρ2(s) ds,

has a unique solution x ∈ AC1((0, 1),R),

x(t) = P (t) +

1∫

0

H(t, s)σ(s) ds,

where

P (t) =
1

1 + k1 + k2

{
(1− t + k2)

1∫

0

ρ1(s) ds + (k1 + t)

1∫

0

ρ2(s) ds

}

is the unique solution of the problem

x′′(t) = 0 for a.e. t ∈ [0, 1],

x(0)− k1x
′(0) =

1∫

0

ρ1(s) ds,

x(1) + k2x
′(1) =

1∫

0

ρ2(s) ds,

and

H(t, s) =
−1

k1 + k2 + 1

{
(k1 + t)(1− s + k2), 0 ≤ t < s ≤ 1,

(k1 + s)(1− t + k2), 0 ≤ s < t ≤ 1,

is the Green’s function of the corresponding homogeneous problem. We note
that H(t, s) < 0 on (0, 1)× (0, 1).
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We transform the BVP (1)–(3) into a fixed point problem. Consider the
operator N : C([0, 1],R) −→ P(C([0, 1],R)) defined by

N(x) =

{
u ∈ C([0, 1],R) : u(t) = Px(t) +

1∫

0

H(t, s)(v1(s) + v2(s)) ds,

v1 ∈ SF,x and v2 ∈ SG,x

}
.

where the operator P : AC1(J,R) → R is defined by

Px(t) =
1

1 + k1 + k2

{(1− t + k2)

1∫

0

h1(x(s)) ds + (k1 + t)

1∫

0

h2(x(s)) ds}.

Remark 3.1. Clearly, from Lemma 3.1, the fixed points of N are solutions of
(1)–(3).

Let us introduce the following hypotheses:

(H1) The function t → F (t, y) is measurable, convex-valued and integrably
bounded for each y ∈ R.

(H2) Hd(F (t, y), F (t, y)) ≤ l(t)|y− y| for a.e. t ∈ [0, 1] and all y, y ∈ R where
l ∈ L1([0, 1],R) and Hd(0, F (t, 0)) ≤ l(t) for a.e. t ∈ [0, 1].

(H3) There exist two nonnegative constants d1 and d2 such that

|h1(y)− h1(y)| ≤ d1|y − y| and |h2(y)− h2(y)| ≤ d2|y − y|
for all y, y ∈ R.

(H4) The multivalued map G(t, y) has compact and convex values for each
(t, y) ∈ [0, 1]× R.

(H5) G is Carathéodory.
(H6) There exist a function q ∈ L1([0, 1],R) with q(t) > 0 for a.e. t ∈ [0, 1]

and a continuous nondecreasing function ψ : R+ → (0,∞) such that

‖G(t, y)‖P ≤ q(t)ψ(|y|) for a.e. t ∈ [0, 1] for all y ∈ R.

(H7) There exists a real number r > 0 such that

r >
1

1+k1+k2
[(1 + k2)h1(r) + (1 + k1)h2(r)] + H∗‖l‖L1 + H∗ψ(r)‖q‖L1

1−H∗‖l‖L1

,

where H∗ = sup
(t,s)∈[0,1]×[0,1]

|H(t, s)|.

Theorem 3.1. Suppose that hypotheses (H1)–(H7) are satisfied. If

1

1 + k1 + k2

[(1 + k1)d1 + (1 + k2)d2] + H∗‖l‖L1 < 1,

then the BVP (1)–(3) has at least one solution.
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Proof. Let X = C([0, 1],R) and define an open ball B(0, r) in X centered at
the origin and of radius r, where the real number r satisfies the inequality in
hypothesis (H7). Define two multivalued maps on B[0, r] by

A(x) =

{
u ∈ X : u(t) = Px(t) +

1∫

0

H(t, s)v1(s) ds, v1 ∈ SF,x

}
(4)

and

B(x) =

{
u ∈ X : u(t) =

1∫

0

H(t, s)v2(s) ds, v2 ∈ SG,x

}
. (5)

We shall show that the operators A and B satisfy all the conditions of The-
orem 2.1. The proof will be given in several steps.

Step 1: First we show that A(x) is a closed convex and bounded subset
of X for each x ∈ B[0, r]. This follows easily if we show that the values of
the Nemytskij operator associated are closed in L1([0, 1],R). Let {wn} be a
sequence in L1([0, 1],R) converging to a point w. Then wn → w in measure and
thus there exists a subset S of positive integers with {wn} converging a.e. to w
as n → ∞ through S. Now, since (H1) holds, the values of SF,x are closed in
L1([0, 1],R). Thus, for each x ∈ B[0, r], we have that A(x) is a nonempty and
closed subset of X.

We prove that A(x) is a convex subset of X for each x ∈ B[0, r]. Let u1, u2 ∈
A(x). Then there exist v1, v2 ∈ SF,x such that for each t ∈ [0, 1] we have

ui(t) = Px(t) +

1∫

0

H(t, s)vi(s) ds (i = 1, 2).

Let 0 ≤ d ≤ 1. Then, for each t ∈ [0, 1], we obtain

(du1 + (1− d)u2)(t) = Px(t) +

1∫

0

H(t, s)[dv1(s) + (1− d)v2(s)] ds.

Since SF,x is convex (because F has convex values), we have

du1 + (1− d)u2 ∈ A(x).

Step 2: We show that A is a multivalued contraction on B[0, r]. Let x, x ∈
B[0, r] and u1 ∈ A(x). Then there exists v1(t) ∈ F (t, x(t)) such that for each
t ∈ [0, 1]

u1(t) = Px(t) +

1∫

0

H(t, s)v1(s) ds.

From (H2) it follows that

Hd(F (t, x(t)), F (t, x(t))) ≤ l(t)|x(t)− x(t)|.
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Hence there exists w ∈ F (t, x(t)) such that

|v1(t)− w| ≤ l(t)|x(t)− x(t)|, t ∈ [0, 1].

Consider U : [0, 1] → P(R) given by

U(t) = {w ∈ R : |v1(t)− w| ≤ l(t)|x(t)− x(t)|}.
Since the multivalued operator V (t) = U(t) ∩ F (t, x(t)) is measurable (see
Proposition III.4 in [5]), there exists a function v2(t) which is a measurable
selection for V . So, v2(t) ∈ F (t, x(t)) and for each t ∈ [0, 1]

|v1(t)− v2(t)| ≤ l(t)|x(t)− x(t)|.
Let us define for each t ∈ [0, 1]

u2(t) = Px(t) +

1∫

0

H(t, s)v2(s) ds,

where

Px(t) =
1

1 + k1 + k2

[
(1− t + k2)

1∫

0

h1(x(s)) ds + (1 + k1)

1∫

0

h2(x(s)) ds

]
.

We have

|u1(t)− u2(t)| ≤ |Px(t)− Px(t)|+
1∫

0

|H(t, s)||v1(s)− v2(s)| ds

≤ 1

1 + k1 + k2

[(1 + k1)d1 + (1 + k2)d2]‖x− x̄‖∞

+

1∫

0

|H(t, s)|l(s)|x(s)− x(s)| ds.

Thus

‖u1 − u2‖ ≤
(

1

1 + k1 + k2

[(1 + k1)d1 + (1 + k2)d2] + H∗‖l‖L1

)
‖x− x‖∞.

From an analogous relation obtained by interchanging x and x, it follows that

Hd(A(x), A(x)) ≤
(

1

1 + k1 + k2

[(1 + k1)d1 + (1 + k2)d2] + H∗‖l‖L1

)
‖x− x‖∞.

So, A is a multivalued contraction on X.

Step 3: Now we show that the multivalued operator B is compact and upper
semi-continuous on B[0, r]. First we show that B is compact on B[0, r]. Let
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x ∈ B[0, r] be arbitrary. Then for each u ∈ B(x) there exists v ∈ SG,x such that
for each t ∈ [0, 1] we have

u(t) =

1∫

0

H(t, s)v(s) ds.

From (H5) we have

|u(t)| ≤
1∫

0

|H(t, s)| |v(s)| ds ≤ H∗
1∫

0

|v(s)| ds

≤ H∗
1∫

0

q(s)ψ(‖x‖∞) ds ≤ H∗‖q‖L1 ψ(r).

Next, we show that B maps the bounded sets into the equi-continuous sets of
X. Let t, τ ∈ [0, 1], and x ∈ B[0, r]. For each u ∈ B(x)

|u(t)− u(τ)| ≤
1∫

0

|H(t, s)−H(τ)| |v(s)| ds

≤
1∫

0

|H(t, s)−H(τ)| q(t)ψ(‖x‖∞) ds

≤
1∫

0

|H(t, s)−H(τ, s)| q(s)ψ(r) ds.

The right-hand side tends to zero as |t− τ | → 0. An application of the Arzelá–
Ascoli theorem implies that the operator B : B[0, r] −→ P(X) is compact.

Step 4: Next we prove that B has a closed graph. Let xn → x∗, yn ∈ B(xn)
and yn → y∗. We need to show that y∗ ∈ B(x∗).
yn ∈ B(xn) means that there exists vn ∈ SG,xn such that for each t ∈ [0, 1]

yn(t) =

1∫

0

H(t, s)vn(s) ds.

We must show that there exists y∗ ∈ SG,x∗ such that for each t ∈ [0, 1]

y∗(t) =

1∫

0

H(t, s)v∗(s) ds.

Clearly, we have
‖yn − y∗‖∞ −→ 0 as n →∞.

Consider the continuous linear operator

Γ : L1([0, 1],R) → X
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given by

v 7−→ (Γv)(t) =

1∫

0

H(t, s)v(s) ds.

From Lemma 2.1 it follows that Γ ◦ SF is a closed graph operator. Moreover,
we have

yn(t) ∈ Γ(SG,xn).

Since xn → x∗, it follows from Lemma 2.1 that

y∗(t) =

1∫

0

H(t, s)v∗(s) ds

for some v∗ ∈ SG,x∗ .

Step 5 : Now we show that the second assertion of Theorem 2.1 is not true.
Let u ∈ X be a possible solution of λu ∈ A(u) + B(u) for some real number
λ > 1 with ‖u‖∞ = r. Then there exist v1 ∈ SF,u and v2 ∈ SG,u such that for
each t ∈ [0, 1] we have

u(t) = λ−1Px(t) + λ−1

1∫

0

H(t, s)v1(s) ds + λ−1

1∫

0

H(t, s)v2(s) ds.

Then

|u(t)| ≤ |Px(t)|+ H∗
1∫

0

|v1(s)| ds + H∗
1∫

0

|v2(s)| ds

≤ 1

1 + k1 + k2

[
(1 + k2)

1∫

0

h1(u(s)) ds + (1 + k1)

1∫

0

h2(u(s)) ds

]

+ H∗
1∫

0

(l(s)|u(s)|+ l(s)) ds + H∗
1∫

0

q(s)ψ(|u(s)|) ds

≤ 1

1 + k1 + k2

[
(1 + k2)

1∫

0

h1(‖u‖∞) ds + (1 + k1)

1∫

0

h2(‖u‖∞) ds

]

+ H∗
1∫

0

(l(s)‖u‖∞ + l(s)) ds + H∗
1∫

0

q(s)ψ(‖u‖∞) ds.
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Taking the supremum over t we get

‖u‖∞ ≤ 1

1 + k1 + k2

[
(1 + k2)

1∫

0

h1(‖u‖∞) ds + (1 + k1)

1∫

0

h2(‖u‖∞) ds

]

+ H∗
1∫

0

(l(s)‖u‖∞ + l(s)) ds + H∗
1∫

0

q(s)ψ(‖u‖∞) ds.

Substituting ‖u‖∞ = r into the above inequality yields

r ≤
1

1+k1+k2
[(1 + k2)h1(r) + (1 + k1)h2(r)] + H∗‖l‖L1 + H∗ψ(r)‖q‖L1

1−H∗‖l‖L1

which is a contradiction to (H7). As a result, the conclusion (ii) of Theorem
2.1 does not hold. Hence the conclusion (i) holds and consequently the BVP
(1)–(3) has a solution x on [0, 1]. This completes the proof. ¤

4. Existence of Extremal Solutions

In this section we shall prove the existence of maximal and minimal solutions
of the BVP (1)–(3) under suitable monotonicity conditions on the multifunc-
tions involved in it.

We equip the space X = C([0, 1],R) with the order relation ≤ defined by the
cone K in X, that is,

K = {x ∈ X | x(t) ≥ 0, ∀t ∈ [0, 1]}.
It is known that the cone K is normal in X. The details on cones and their
properties can be found in Heikkila and Lakshmikantham [12]. Let a, b ∈ X be
such that a ≤ b. Then, by an order interval [a, b] we mean a set of points in X
given by

[a, b] = {x ∈ X | a ≤ x ≤ b}.
Let D, Q ∈ Pcl(X). Then by D ≤ Q we mean a ≤ b for all a ∈ D and b ∈ Q.
Thus a ≤ D implies that a ≤ b for all b ∈ Q; in particular, if D ≤ D, then it
follows that D is a singleton set.

Definition 4.1. Let X be an ordered Banach space. A mapping T : X →
Pcl(X) is called isotone increasing if x, y ∈ X with x < y, then we have that
T (x) ≤ T (y). Similarly, T is called isotone decreasing if T (x) ≥ T (y) whenever
x < y.

We use the following fixed point theorem in the proof of the main existence
result of this section.

Theorem 4.1 (Dhage [9]). Let [a, b] be an order interval in a Banach space
and let A, B : [a, b] → Pcl(X) be two multivalued operators satisfying the condi-
tions:

(a) A is a multivalued contraction,
(b) B is completely continuous,
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(c) A and B are strictly monotone increasing, and
(d) A(x) + B(x) ⊂ [a, b], ∀x ∈ [a, b].

Further if the cone K in X is normal, then the operator inclusion x ∈ A(x) +
B(x) has the smallest fixed point x∗ and the largest fixed point x∗ ∈ [a, b].
Moreover x∗ = lim

n
xn and x∗ = lim

n
yn, where {xn} and {yn} are the sequences

in [a, b] defined by

xn+1 ∈ A(xn) + B(xn), x0 = a and yn+1 ∈ A(yn) + B(yn), y0 = b.

We need the following definitions in the sequel.

Definition 4.2. A function a ∈ AC1([0, 1],R) is called a strict lower solution
of the BVP (1)–(3) if a′′(t) ≥ v1(t) + v2(t) for a.e. t ∈ [0, 1],

a(0)− k1a
′(0) ≤

1∫

0

h1(a(s)) ds and a(1) + k2a
′(1) ≤

1∫

0

h2(a(s)) ds,

where v1, v2 ∈ L1([0, 1],R) are such that v1(t) ∈ F (t, a(t)) and v2(t) ∈ G(t, a(t))
for a.e. t ∈ [0, 1].

Similarly, a strict upper solution b of BVP (1)–(3) is defined by reversing the
order.

Definition 4.3. A solution xM of the BVP (1)–(3) is said to be maximal if
for any other solution x of BVP (1)–(3) on [0, 1] we have x(t) ≤ xM(t) for each
t ∈ [0, 1].

Similarly, a minimal solution of the BVP (1)–(3) is defined by reversing the
order.

Definition 4.4. A multivalued function F (t, x) is called strictly monotone
increasing in x almost everywhere for t ∈ J , if F (t, x) ≤ F (t, y) for a.e. t ∈ J for
all x, y ∈ R with x < y. Similarly F (t, x) is called strictly monotone decreasing
in x almost everywhere for t ∈ J , if F (t, x) ≥ F (t, y) for a.e. t ∈ J for all
x, y ∈ R with x < y.

We consider the following assumptions in the sequel.

(H8) The multivalued functions F (t, x) and G(t, x) are strictly monotone de-
creasing in x for a.e. t ∈ [0, 1].

(H9) The functions h1 and h2 are continuous and nondecreasing.
(H10) The BVP (1)–(3) has a lower solution a and an upper solution b with

a ≤ b.

Theorem 4.2. Assume that the hypotheses (H1)–(H5), (H8)–(H10) hold.
Then the BVP (1)–(3) has a minimal and a maximal solution on [0, 1].

Proof. It can be shown, as in the proof of Theorem 3.1, that A and B define
the multivalued operators A : [a, b] → Pcl,cv,bd(X) and B : [a, b] → Pcp,cv(X). It
can be similarly shown that A and B are respectively a multivalued contraction
and compact and upper semi-continuous on [a, b]. We shall show that A and B
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are isotone increasing on [a, b]. Let x, y ∈ [a, b] be such that x ≤ y, x 6= y. Then
by (H8) and (H9) we have for each t ∈ [0, 1]

A(x) =

{
u ∈ X : u(t) = Px(t) +

1∫

0

H(t, s)v1(s) ds, v1 ∈ SF,x

}

=

{
u ∈ X : u(t) =

1

1 + k1 + k2

[
(1− t + k2)

1∫

0

h1(x(s)) ds

+ (t + k1)

1∫

0

h2(x(s)) ds

]
+

1∫

0

H(t, s)v1(s) ds, v1 ∈ SF,x

}

≤
{

u ∈ X : u(t) =
1

1 + k1 + k2

[
(1− t + k2)

1∫

0

h1(y(s)) ds

+ (t + k1)

1∫

0

h2(y(s)) ds

]
+

1∫

0

H(t, s)v1(s) ds, v1 ∈ SF,y

}

= A(y).

Hence A(x) ≤ A(y).
Similarly, by (H8) we have for each t ∈ [0, 1]

B(x) =

{
u ∈ X : u(t) =

1∫

0

H(t, s)v2(s) ds, v2 ∈ SG,x

}

≤
{

u ∈ X : u(t) =

1∫

0

H(t, s)v2(s) ds, v2 ∈ SG,y

}

= B(y).

Hence B(x) ≤ B(y). Thus A and B are isotone increasing on [a, b]. Finally, let
x ∈ [a, b] be any element. Then by (H10),

a ≤ A(a) + B(a) ≤ A(x) + B(x) ≤ A(b) + B(b) ≤ b,

which shows that A(x) + B(x) ⊂ [a, b] for all x ∈ [a, b]. Thus the multivalued
operators A and B satisfy all the conditions of Theorem 4.1 to yield that the
BVP (1)–(3) has a maximal and a minimal solution on [0, 1]. This completes
the proof. ¤
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12. S. Heikkilä and V. Lakshmikantham, V. Monotone iterative techniques for discon-
tinuous nonlinear differential equations. Monographs and Textbooks in Pure and Applied
Mathematics, 181. Marcel Dekker, Inc., New York, 1994.

13. Sh. Hu and N. S. Papageorgiou, Handbook of multivalued analysis. Vol. I. Theory.
Mathematics and its Applications, 419. Kluwer Academic Publishers, Dordrecht, 1997.

14. T. Jankowskii, Differential equations with integral boundary conditions. J. Comput.
Appl. Math. 147(2002), No. 1, 1–8.

15. G. L. Karakostas and P. Ch. Tsamatos, Multiple positive solutions of some Fredholm
integral equations arisen from nonlocal boundary-value problems. Electron. J. Differential
Equations 2002, No. 30, 17 pp. (electronic).

16. R. A. Khan, The generalized method of quasilinearization and nonlinear boundary
value problems with integral boundary conditions. Electron. J. Qual. Theory Differ. Equ.
2003, No. 19, 15 pp. (electronic).

17. M. Kisielewicz, Differential inclusions and optimal control. Mathematics and its Ap-
plications (East European Series), 44. Kluwer Academic Publishers Group, Dordrecht;
PWN—Polish Scientific Publishers, Warsaw, 1991.

18. A. M. Krall, The adjoint of a differential operator with integral boundary conditions.
Proc. Amer. Math. Soc. 16(1965), 738–742.

19. A. Lasota and Z. Opial, An application of the Kakutani–Ky Fan theorem in the theory
of ordinary differential equations. Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys.
13(1965), 781–786.

20. A. Lomtatidze and L. Malaguti, On a nonlocal boundary value problem for second
order nonlinear singular differential equations. Georgian Math. J. 7(2000), No. 1, 133–154.



228 A. BELARBI, M. BENCHOHRA, AND B. C. DHAGE

(Received 8.03.2005)

Authors’ addresses:

A. Belarbi and M. Benchohra
Laboratoire de Mathématiques
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