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THE POTENTIAL METHOD FOR THE REACTANCE WAVE
DIFFRACTION PROBLEM IN A SCALE OF SPACES

LUIS P. CASTRO AND DAVID NATROSHVILI

Abstract. This paper is concerned with a screen type boundary value prob-
lem arising from the wave diffraction problem with a reactance condition. We
consider the problem in a weak formulation within Bessel potential spaces,
and where both cases of a complex and a pure real wave number are ana-
lyzed. Using the potential method, the boundary value problem is converted
into a system of integral equations. The invertibility of the corresponding
matrix pseudodifferential operator is shown in appropriate function spaces
which allows the conclusion about the existence and uniqueness of a weak
solution to the original problem. Higher regularity properties of solutions
are also proved to exist in some scale of Bessel potential spaces, upon the
corresponding smoothness improvement of given data. In particular, the
Cα-smoothness of solutions in a neighbourhood of the screen edge is estab-
lished with arbitrary α < 1 in the two-dimensional case and α < 1/2 in the
three-dimensional case.
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1. Introduction and the Formulation of the Problem

We consider a boundary-transmission problem for the Helmholtz equation, in
the Bessel potential space setting, which arises in the context of wave diffraction
theory. The boundary Σ under consideration consists of a (possibly distorted)
strip (along the x3-axis) and certain boundary conditions are assumed on it in
the form of so-called reactance conditions [1, 2, 3].

For a large range of materials the electromagnetic theory gives a quasi-
homogeneous refracted wave, which propagates perpendicularly to the boundary
Σ irrespective of an incident angle. The x3-dependence can be therefore can-
celled due to the perpendicular wave propagation implying a two-dimensional
formulation of the diffraction problem in question.

Let Ω := R2 \ Σ, where Σ is a C∞-smooth non-self-intersecting connected
open arc (say, a straight line segment (0, a) on the x-axis). We assume that Σ
is a proper part of some closed C∞-smooth simple curve S surrounding some
bounded domain Ω+. Let Ω− := R2 \ Ω+. By n(x) = (n1(x), n2(x)) we denote
the outward unit normal vector at a point x ∈ S = ∂Ω+. This defines the
positive direction of the normal vector on the arc Σ uniquely.

We look for a weak solution u ∈ H1
loc(Ω) to the Helmholtz equation

( ∆ + k2 ) u = 0 in Ω, (1.1)
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satisfying the following boundary conditions on Σ

[ u(x) ]+ − [ u(x) ]− = h0(x), x ∈ Σ, (1.2)

[∂n u(x)]+ − [∂n u(x)]− + q [ u(x) ]+ = h1(x), x ∈ Σ, (1.3)

where ∂n denotes the normal derivative operator, and the wave number k and
the reactance number q are in general complex constants k = k1 + i k2, q =
q1 + i q2 (with kj, qj ∈ R); we assume that the boundary data belong to the
appropriate function spaces:

h0 ∈ r
Σ

H̃
1
2 (Σ), h1 ∈ r

Σ
H̃− 1

2 (Σ), (1.4)

where r
Σ

is the restriction operator to Σ. The motivation for the inclusions (1.4)
is quite natural and described in Section 3. The symbols [ · ]± denote limits on
Σ from Ω± which are understood either in the usual trace sense for Dirichlet
type conditions or in the generalized trace sense for Neumann type conditions
(see, e.g., [4, 5, 6]).

Here and in what follows we use the abbreviations: H1
2, loc(Ω) = H1

loc(Ω),

H̃s
2(Σ) = H̃s(Σ), and Hs

2(Σ) = Hs(Σ). Recall that

Hs(Σ) := { r
Σ
f : f ∈ Hs(S) }, H̃s(Σ) := { f ∈ Hs(S) : supp f ⊂ Σ }.

Note that if k2 = = k 6= 0 (say k2 > 0), then polynomially bounded solutions
of the Helmholtz equation decay exponentially at infinity and we have u ∈
H1(Ω).

If k is real (say k > 0), then we have to require that u ∈ H1
loc(Ω) satisfy the

Sommerfeld radiation condition at infinity, u ∈ Som(Ω) (see, e.g., [7, 8]):

∂

∂|x| u(x)− i k u(x) = O ( |x|− 3
2 ) as |x| → ∞. (1.5)

In what follows we assume that u exponentially decays at infinity for a complex
k, while u is assumed to be radiating for a real k.

We will refer to the above formulated boundary value problem (BVP) as the
Problem (P )

Σ
.

In the present paper, by using a different approach we present a generaliza-
tion of the results of [9] on the Problem (P )

Σ
along the following lines: (i) our

consideration here is not restricted only to the complex wave number case but
also involves the case of a wave number with a zero imaginary part; (ii) as men-
tioned above, we consider here surfaces other than the strip geometry analyzed
in [9]; (iii) a new improvement of the high regularity scale of solutions is given
in the concluding section. Note that the methods of [9] lead also to existence
and uniqueness results for regularity classes given below for the weak solution
case.

Finally, the approach employed in the paper can be applied to the general
three-dimensional case as well, where Σ is a two-dimensional two-sided C∞-
smooth connected manifold of arbitrary geometrical shape with C∞-smooth
edge boundary ∂Σ. We assume that Σ is a proper part of some closed connected
non-self-intersecting C∞-smooth surface S surrounding a bounded domain Ω+ ∈
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R3. In the three-dimensional formulation of the BVP (P )
Σ

we have to replace
only the Sommerfeld radiation condition (1.5) by the following one [7, 8]

∂

∂|x| u(x)− i k u(x) = O ( |x|−2) as |x| → ∞. (1.6)

See also Remark 4.5 below concerning the three-dimensional case.

2. Uniqueness Result

We start by analyzing the conditions for the uniqueness of a solution. For
this, we consider the corresponding homogeneous Problem (P )

Σ
.

Theorem 2.1. Let k2 = = k 6= 0, and assume that one of the following five
conditions is satisfied:

1) k1 k2 q2 < 0, 2) q2 = 0, k1 6= 0, 3) k1 = 0, q2 6= 0,

4) k1 = 0, q2 = 0, q1 ≥ 0, 5) k1 k2 q2 > 0, (k2
2 − k2

1) +
2 k1 k2 q1

q2

≥ 0.
(2.1)

Then the homogeneous Problem (P )
Σ

(h0 = h1 = 0) possesses only a trivial
solution.

Proof. Let R be a sufficiently large positive number and B(R) be the ball (disk)
centered at the origin and having radius R. We assume that Ω+ ⊂ B(R) and set
Ω−

R := Ω−∩B(R). Further, let u be a solution to the homogeneous problem (P )
Σ

and write the corresponding Green formulae for u and its complex conjugate u
in the domains Ω+ and Ω−

R (see, e.g., [8]):
∫

Ω+

[ |∇ u |2 − k2 |u |2 ] dx =
〈

[ ∂n u ]+
S

, [ u ]+
S

〉
S

, (2.2)

∫

Ω−R

[ | ∇u |2 − k2 |u |2 ] dx = −
〈

[ ∂n u ]−
S

, [ u ]−
S

〉
S

+

∫

∂B(R)

∂nu u dS , (2.3)

where ∇ = (∂1, ∂2). Throughout the paper the symbols 〈 · , · 〉
S

and 〈 · , · 〉
Σ

stand for the duality brackets between the dual spaces H− 1
2 (S) and H

1
2 (S),

or H̃− 1
2 (Σ) and H

1
2 (Σ) or H− 1

2 (Σ) and H̃
1
2 (Σ). For regular functions, e.g.,

f, g ∈ L2(M), we have

〈 f , g 〉M =

∫

M

f g dM,

where M∈ {S, Σ}.
Note that due to the homogeneous boundary condition (1.2) and the interior

C∞-regularity in Ω of solutions to the equation (1.1), we actually have [ u ]+S =
[ u ]−S . Moreover, in accordance with this interior regularity we have [ ∂nu ]+

S\Σ =

[ ∂nu ]−
S\Σ and therefore

[ ∂nu ]+
Σ
− [ ∂nu ]−

Σ
∈ H̃− 1

2 (Σ).
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Using these relations and the boundary condition (1.3), from (2.2) and (2.3) by
summing we get

∫

Ω+∪Ω−R

[ |∇ u |2 − k2 |u |2 ] dx =
〈

[ ∂nu ]+
Σ
− [ ∂nu ]−

Σ
, [ u ]+

Σ

〉
Σ

+

∫

∂B(R)

∂nu u dS

= −q

∫

Σ

| [ u ]+ |2 dS +

∫

∂B(R)

∂nu u dS. (2.4)

Since k2 = = k 6= 0, the function u exponentially decays at infinity and in (2.4)
we can pass to the limit as R →∞ to obtain

∫

Ω

[ | ∇u |2 − k2 |u |2 ] dx = −q

∫

Σ

| [ u ]+ |2 dS. (2.5)

By separating the real and the imaginary part we arrive at the equalities

∫

Ω

[ |∇ u |2 + (k2
2 − k2

1) |u |2 ] dx = −q1

∫

Σ

| [ u ]+ |2 dS, (2.6)

2 k1 k2

∫

Ω

|u |2 dx = q2

∫

Σ

| [ u ]+ |2 dS. (2.7)

Now it is very easy to verify that each condition in (2.1) yields u = 0 in Ω. ¤

Theorem 2.2. Let k be a real positive number and q2 = = q ≤ 0. Then the
homogeneous Problem (P )

Σ
(h0 = h1 = 0) possesses only a trivial solution.

Proof. By the same arguments as above we arrive at the relation (2.4) for a
solution u to the homogeneous problem (P )

Σ
. Assuming R to be sufficiently

large we can apply the Sommerfeld radiation condition on the sphere (circle)
∂B(R) and afterwards separate the imaginary part of the equation to obtain

−q2

∫

Σ

| [ u ]+ |2 dS + k

∫

∂B(R)

|u |2 dS = O(R−1). (2.8)

We have employed here the fact that if u ∈ Som(Ω), then u(x) = O(|x|−1/2) as
|x| → ∞ [7]. From (2.8) we derive

lim
R→∞

∫

∂B(R)

| u |2 dS = 0,

whence u = 0 in Ω follows due to the well known Rellich–Vekua theorem [7,
8]. ¤
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3. Potentials and the Integral Representation Formula of
Solutions

Let us denote by Γ(x, k) := − i

4
H

(1)
0 (k |x|) the fundamental function of the

Helmholtz operator, ( ∆ + k2 ) Γ( x, k) = δ(x), where δ( · ) is the Dirac delta

function. Here H
(1)
0 (k |x|) is the Hankel function of first kind and of order zero.

It decays exponentially at infinity for a complex k and satisfies the Sommerfeld
radiation condition for a real positive k. We recall that the fundamental function
Γ(x, k) has a logarithmic singularity in a neighbourhood of the origin, say, for
|x| < 1/2 (for details see, e.g., [8])

Γ(x, k) = − 1

2 π
ln

1

|x| +O(|x|2 ln |x|), |x| < 1/2.

We then consider the corresponding single and double layer potentials,

V (ψ)(x) =

∫

Σ

Γ(x− y, k) ψ(y) dS , (3.1)

W (ϕ)(x) =

∫

Σ

[ ∂n(y)Γ(x− y, k) ] ϕ(y) dS , (3.2)

where ψ and ϕ are the density functions. By the standard arguments of Green
identities we can derive the following integral representation of a radiating so-
lution of the Helmholtz equation in the domains Ω+ and Ω− [7],∫

∂Ω+

{
[ ∂n(y)Γ(x− y, k) ] [ u(y) ]+ − Γ(x− y, k) [ ∂nu(y) ]+

}
dS

=

{
u(x) for x ∈ Ω+,

0 for x ∈ Ω−,
(3.3)

−
∫

∂Ω−

{
[ ∂n(y)Γ(x− y, k) ] [ u(y) ]− − Γ(x− y, k) [ ∂nu(y) ]−

}
dS

=

{
0 for x ∈ Ω+,

u(x) for x ∈ Ω−.
(3.4)

By summing these equations and taking into account that in our case u satisfies
the continuity conditions on S \ Σ

[ u(x) ]+ = [ u(x) ]−, [∂n u(x)]+ = [∂n u(x)]−, x ∈ S \ Σ, (3.5)

we obtain the general integral representation for a radiating solution u of the
equation (1.1) in the domain Ω:

u(x) =

∫

Σ

{
[ ∂n(y)Γ(x− y, k) ]

(
[ u(y) ]+ − [ u(y) ]−

)

− Γ(x− y, k)
(
[ ∂nu(y) ]+ − [ ∂nu(y) ]−

) }
dS



256 L. P. CASTRO AND D. NATROSHVILI

= W
(
[ u ]+

Σ
− [ u ]−

Σ

)
(x)− V

(
[ ∂nu ]+

Σ
− [ ∂nu ]−

Σ

)
(x), x ∈ Ω. (3.6)

Thus, this formula holds for a solution u ∈ H1(Ω) of the Helmholtz equation
in the case of a complex wave number k as well as for a radiating solution
u ∈ H1

loc(Ω) ∩ Som(Ω) in the case of a real positive wave number k.

Note that [ u ]±
S
∈ H

1
2 (S) and [ ∂nu ]±

S
∈ H− 1

2 (S) with S = ∂Ω±, and, due to
equalities (3.5), we have the inclusions

[ u ]+
S
− [ u ]−

S
∈ H̃

1
2 (Σ) , [∂n u]+

S
− [∂n u]−

S
∈ H̃− 1

2 (Σ). (3.7)

Let us remark here that we have the continuous embedding H
1
2 (Σ) ↪→

r
Σ

H̃− 1
2 (Σ) which, along with (3.7), shows that the inclusions in (1.4) are actu-

ally necessary for the problem (P )
Σ

to be solvable.
We recall now some properties of the above-introduced potentials and of the

corresponding boundary integral operators needed in our further analysis.
We start with the so-called jump relations

[ V (ψ) ]+
S

= [ V (ψ) ]−
S

=: Hψ , [ ∂n V (ψ) ]±
S

=: [∓ 2−1 I +K> ] ψ ,

[ W (ϕ) ]±
S

=: [± 2−1 I +K ] ϕ , [ ∂n W (ϕ) ]+
S

= [ ∂n W (ϕ) ]−
S

=: Lϕ ,
(3.8)

where I stands for the unit operator, and

(Hψ)(x) :=

∫

Σ

Γ(x− y, k) ψ(y) dS, x ∈ Σ, (3.9)

(K> ψ)(x) :=

∫

Σ

[∂n(x)Γ(x− y, k)] ψ(y) dS, x ∈ Σ, (3.10)

(Kϕ)(x) :=

∫

Σ

[∂n(y)Γ(y − x, k)] ϕ(y) dS, x ∈ Σ, (3.11)

(Lϕ)(x) := lim
Ω±3 z→x∈Σ

2∑
j=1

nj(x) ∂zj
W (ϕ)(z) , x ∈ Σ. (3.12)

Clearly, K and K> are mutually transposed operators.
The above-introduced integral operators, originally defined for smooth func-

tions with a compact support in Σ, can be continuously extended to the bounded
operators

r
Σ
H : H̃s(Σ) → Hs+1(Σ) , r

Σ
K : H̃s(Σ) → Hs(Σ) ,

r
Σ
K> : H̃s(Σ) → Hs(Σ) , r

Σ
L : H̃s+1(Σ) → Hs(Σ) ,

(3.13)

for arbitrary s ∈ R. Moreover, they are pseudodifferential operators of order
−1, 0, 0, and 1, respectively.

We also have the following mapping properties of a single- and a double-layer
potential,

V : H̃s(Σ) → Hs+1+ 1
2 (Ω±) ,

W : H̃s(Σ) → Hs+ 1
2 (Ω±) ,

(3.14)
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for a complex k, and

V : H̃s(Σ) → H
s+1+ 1

2
loc (Ω−) ∩ Som(Ω−) ,

: H̃s(Σ) → Hs+1+ 1
2 (Ω+) ,

W : H̃s(Σ) → H
s+ 1

2
loc (Ω−) ∩ Som(Ω−) ,

: H̃s(Σ) → Hs+ 1
2 (Ω+) ,

(3.15)

for a real positive k.
The proofs of the above assertions can be found, e.g., in [5, 10, 11, 12, 13, 14],

where the Fredholm properties of these operators are studied as well.
We apply these results to show the existence and regularity of solutions to

our original problem (P )
Σ
.

4. Existence and Regularity Results

We look for a solution of the problem (P )
Σ

in the form

u(x) = W
(
ϕ

)
(x)− V

(
ψ

)
(x), x ∈ Ω, (4.1)

where the unknown densities ϕ and ψ are related to the boundary values of the
source u and its normal derivative ∂nu by the equations

ϕ = [ u ]+
S
− [ u ]−

S
, ψ = [ ∂nu ]+

S
− [ ∂nu ]−

S
(4.2)

due to the general integral representation formula (3.6). We assume that

ϕ ∈ H̃
1
2 (Σ), ψ ∈ H̃− 1

2 (Σ), (4.3)

in accordance with the inclusions (3.7). Note that the embedding u ∈ H1(Ω)
for a complex k and the embedding u ∈ H1

loc(Ω) ∩ Som(Ω) for a real positive k
are then automatically satisfied.

With the help of jump relations (3.8) and the boundary conditions (1.2)–(1.3)
we get the following equations for the densities ϕ and ψ,

r
Σ

ϕ = h0 on Σ, (4.4)

r
Σ

ψ + q r
Σ

[ 2−1 ϕ +Kϕ−Hψ ] = h1 on Σ. (4.5)

Let us construct the matrix operator

P :=

[
r

Σ
I 0

q r
Σ

[ 2−1I +K ] r
Σ

[ I − qH ]

]
(4.6)

and consider the vectors

Φ := ( ϕ, ψ )> , F := ( h0, h1 )> . (4.7)

The simultaneous equations (4.4) and (4.5) can now be written as

P Φ = F on Σ , (4.8)

where

Φ ∈ H̃
1
2 (Σ)× H̃− 1

2 (Σ) , F ∈ r
Σ

[
H̃

1
2 (Σ)× H̃− 1

2 (Σ)
]

.
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Lemma 4.1. The operator

P : H̃
1
2 (Σ)× H̃− 1

2 (Σ) → r
Σ

[
H̃

1
2 (Σ)× H̃− 1

2 (Σ)
]

(4.9)

is invertible.

Proof. Due to the compactness of Σ, the operator

r
Σ
H : H̃− 1

2 (Σ) → r
Σ

H̃− 1
2 (Σ)

is compact in view of the mapping property (3.13). Therefore, (4.9) is a compact
perturbation of the triangular operator with the unit (r

Σ
I) invertible operators

on the principal diagonal. Consequently, (4.9) is a Fredholm operator with zero
index. The homogeneous equation P Φ = 0 implies Φ = 0 on Σ due to the
uniqueness theorem for the problem (P )

Σ
. Thus the null space of the operator

(4.9) is trivial, which completes the proof. ¤

From this lemma it follows that the nonhomogeneous equation (4.8) is uni-

quely solvable for arbitrary F ∈ r
Σ

[
H̃

1
2 (Σ)× H̃− 1

2 (Σ)
]
. This immediately

leads to the following existence result.

Theorem 4.2. The boundary value problem (P )
Σ

is uniquely solvable for
arbitrary data h0 and h1 satisfying the inclusions (1.4). The solution u is rep-
resentable in the form (4.1), where

r
Σ
ϕ = h0, (4.10)

and ψ solves the integral equation

r
Σ

[ ψ − qHψ ] = h1 − q r
Σ

[ 2−1 ϕ +Kϕ ] on Σ. (4.11)

Moreover, the solution u belongs to the space H1(Ω) for a complex k, and to the
space of radiating functions H1

loc(Ω) ∩ Som(Ω) for a real positive k.

Now we require that the boundary data h0 and h1 be smoother and derive
higher regularity results for the solution pair (ϕ, ψ) of the system (4.4)–(4.5),
and for the corresponding solution u of BVP (P )

Σ
. All these requirements are

assembled in the following assertion.

Theorem 4.3. If the boundary data satisfy the conditions

( h0, h1 ) ∈ r
Σ

[ H̃1+s(Σ)× H̃s(Σ) ], −1/2 < s < 1/2, (4.12)

then the solution u to the problem (P )
Σ

possesses the regularity

u ∈ H1+ 1
2
+s(Ω±) (4.13)

for a complex k and

u ∈ H
1+ 1

2
+s

loc (Ω±) ∩ Som(Ω) (4.14)

for a real positive k.
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Proof. Due to Lemma 4.1 it is evident that the system (4.4)–(4.5) with h0 and

h1 as in (4.12) is solvable and (ϕ, ψ) ∈ ( H̃
1
2 (Σ)× H̃− 1

2 (Σ) ). To show a higher
regularity we proceed as follows.

First we remark that if h0 ∈ r
Σ

H̃1+s(Σ), then from (4.10) we have r
Σ
ϕ = h0,

i.e.,

ϕ ∈ H̃1+s(Σ), −1/2 < s < 1/2. (4.15)

In accordance with the mapping property (3.13), it follows that

r
Σ
Kϕ ∈ H1+s(Σ) ⊂ Hs(Σ) = r

Σ
H̃s(Σ), (4.16)

since −1/2 < s < 1/2 ([15], Ch.1, §11; [16], Ch.4, §4.3).

On the other hand, if h1 ∈ r
Σ

H̃s(Σ), then from (4.11) we have

r
Σ

ψ − q r
Σ

[Hψ ] = f on Σ (4.17)

with
f := h1 − q r

Σ
[ 2−1 ϕ +Kϕ ] ∈ r

Σ
H̃s(Σ) ⊂ r

Σ
H̃− 1

2 (Σ).

Therefore ψ ∈ H̃− 1
2 (Σ) implies

r
Σ
Hψ ∈ H

1
2 (Σ) ⊂ Hs(Σ) = r

Σ
H̃s(Σ)

due to the mapping property (3.13) and since −1/2 < s < 1/2. Then from
(4.17) it follows that

ψ ∈ H̃s(Σ). (4.18)

Now, from the representation formula (4.1) and the inclusions (4.15)–(4.18)
we conclude by (3.14) and (3.15) that the solution u to the problem (P )

Σ
has

the regularity properties (4.13) and (4.14). ¤
Remark 4.4. By using the Sobolev–Kondrashov embedding theorems (for the

two-dimensional case Ω ⊂ R2), from (4.13) and (4.14) we conclude that u ∈
C

1
2
+s(Ω±) with 0 < s < 1/2 (see, e.g., [16], Ch. 2, §2.8.1). Moreover, [ ∂nu ]±

S
∈

Hs(S) exist in the usual trace sense.

Remark 4.5. We note here that in the three-dimensional case we have to
construct the layer potentials with the help of the fundamental function

Γ(x, k) := − 1

4 π

exp{i k | x|}
|x|

which satisfies the Sommerfeld radiation condition (1.6). The jump relations
and mapping properties of these layer potentials and the corresponding bound-
ary integral operators are absolutely the same as described in Section 3. There-
fore the main existence and regularity results obtained in Section 4, Lemma 4.1
and Theorems 4.2 and 4.3, remain valid in the three-dimensional case as well.
The Hölder continuity result for the solution u now reads as u ∈ Cs(Ω±), with
0 < s < 1/2, in accordance with the Sobolev–Kondrashov embedding theorems
for the three-dimensional case Ω ⊂ R3. However, we still have the embedding
[ ∂nu ]±

S
∈ Hs(S) which shows that the generalized traces [ ∂nu ]±

Σ
actually exist

in the usual trace sense.
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15. J.-L. Lions and E. Magenes, Problèmes aux limites non homognes et applications. Vol.
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